203 research outputs found

    Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification

    Get PDF
    Advancing the design of thin-film composite membrane surfaces is one of the most promising pathways to deal with treating varying water qualities and increase their long-term stability and permeability. Although plasma technologies have been explored for surface modification of bulk micro and ultrafiltration membrane materials, the modification of thin film composite membranes is yet to be systematically investigated. Here, the performance of commercial thin-film composite desalination membranes has been significantly enhanced by rapid and facile, low pressure, argon plasma activation. Pressure driven water desalination tests showed that at low power density, flux was improved by 22% without compromising salt rejection. Various plasma durations and excitation powers have been systematically evaluated to assess the impact of plasma glow reactions on the physico-chemical properties of these materials associated with permeability. With increasing power density, plasma treatment enhanced the hydrophilicity of the surfaces, where water contact angles decreasing by 70% were strongly correlated with increased negative charge and smooth uniform surface morphology. These results highlight a versatile chemical modification technique for post-treatment of commercial membrane products that provides uniform morphology and chemically altered surface properties

    Physical and interfacial characterization of phytosterols in oil-in-water triacylglycerol-based emulsions

    Get PDF
    peer-reviewedPhytosterols possess the ability to significantly lower low-density lipoprotein (LDL) cholesterol levels in the blood, but their bioaccessibility is highly dependent upon the solubility of the phytosterol within the carrier matrix. Currently, there is a limited amount of knowledge on how phytosterols interact at oil-water interfaces, despite research indicating that these interfaces could promote the crystallization of phytosterols and thus decrease bioaccessibility. In order to fill this knowledge gap, this work expands upon a previously studied emulsion system for encapsulating phytosterols and addresses whether phytosterols can crystalize at an oil-in-water emulsion interface. Images from multiple microscopic techniques suggest interfacial phytosterol crystallization in 0.6% phytosterol-enriched emulsions, while interfacial tension results and calculated models showed that whey protein and phytosterols had a synergistic effect on interfacial tension. A deeper understanding of the interfacial behavior of phytosterols in emulsions can provide the functional food and pharmaceutical industry with the knowledge needed to design more bioaccessible phytosterol-enriched products

    Determining how polymer-bubble interactions impact algal separation using the novel "Posi"-dissolved air flotation process

    Get PDF
    The novel dissolved air flotation (DAF) process that uses hydrophobically-modified polymers (HMPs) to generate positively charged bubbles (PosiDAF) has been shown to separate negatively charged algal cells without the need for coagulation-flocculation. Previous research has been limited to HMPs of poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) and, while they were effective at bench-scale, performance at pilot-scale was better using commercial poly(N,N-diallyl-N,N-dimethylammonium chloride) (PDADMAC). Hence, the aim of this research was to compare the effectiveness of PDADMAC modified with aliphatic and aromatic moieties in comparison to previously tested PDMAEMA HMPs in respect to algal cell separation and minimisation of effluent polymer concentration, as well as defining the underlying polymer-bubble interaction mechanisms. Polymer-bubble adhesion properties were measured using atomic force microscopy (AFM) while polymer concentration was monitored via zeta potential and, where possible, assays using fluorescence spectroscopy. Both PDADMAC functionalised with a fluorinated aromatic group (PDADMAC-BCF) and PDMAEMA modified with 1-bromodecane respectively, gave effective cell separation, while the treated effluent zeta potential values at maximum cell removal were lower than the other polymers trialled. The effluent polymer concentration when using PDADMAC-BCF was four times lower in comparison to another aromatically modified PDADMAC polymer. AFM studies indicated that, in contrast to the PDMAEMA-based polymers, the PDADMAC-based polymers did not adsorb closely to the bubble surface. The different polymer-bubble interactions indicate that separation mechanisms will also vary, potentially leading to differences in process effectiveness when explored at pilot scale

    Charge tunable thin-film composite membranes by gamma-ray triggered surface polymerization

    Get PDF
    Thin-film composite poly(amide) (PA) membranes have greatly diversified water supplies and food products. However, users would benefit from a control of the electrostatic interactions between the liquid and the net surface charge interface in order to benefit wider application. The ionic selectivity of the 100 nm PA semi-permeable layer is significantly affected by the pH of the solution. In this work, for the first time, a convenient route is presented to configure the surface charge of PA membranes by gamma ray induced surface grafting. This rapid and up-scalable method offers a versatile route for surface grafting by adjusting the irradiation total dose and the monomer concentration. Specifically, thin coatings obtained at low irradiation doses between 1 and 10 kGy and at low monomer concentration of 1 v/v% in methanol/water (1:1) solutions, dramatically altered the net surface charge of the pristine membranes from-25 mV to +45 mV, whilst the isoelectric point of the materials shifted from pH 3 to pH 7. This modification resulted in an improved water flux by over 55%, from 45.9 to up 70 L.m -2 .h -1 , whilst NaCl rejection was found to drop by only 1% compared to pristine membranes

    Silver metal nano-matrixes as high efficiency and versatile catalytic reactors for environmental remediation

    Get PDF
    Nano-porous metallic matrixes (NMMs) offer superior surface to volume ratios as well as enhanced optical, photonic, and electronic properties to bulk metallic materials. Such behaviours are correlated to the nano-scale inter-grain metal domains that favour the presence of electronic vacancies. In this work, continuous 3D NMMs were synthesized for the first time through a simple diffusion-reduction process whereby the aerogel matrix was functionalized with (3-Mercaptopropyl)trimethoxysilane. The surface energy of the silica monolith templates was tuned to improve the homogeneity of the reduction process while thiol functionalization facilitated the formation of a high density of seeding points for metal ions to reduce. The diameter of NMMs was between 2 and 1000 nm, corresponding to a silver loading between 1.23 and 41.16 at.%. A rates of catalytic degradation kinetics of these NMMS which is three orders of magnitude higher than those of the non-functionalized silver-silica structures. Furthermore, the enhancement in mechanical stability at nanoscale which was evaluated by Atomic Force Microscopy force measurements, electronic density and chemical inertness was assessed and critically correlated to their catalytic potential. This strategy opens up new avenues for design of complex architectures of either single or multi-metal alloy NMMs with enhanced surface properties for various applications

    Getting the feel of food structure with atomic force microscopy

    Get PDF
    This article describes the progress in the development of the atomic force microscope as an imaging tool and a force transducer, with particular reference to applications in food science. Use as an imaging tool has matured and emphasis is placed on the novel insights gained from the use of the technique to study food macromolecules and food colloids, and the subsequent applications of this new knowledge in food science. Use as a force transducer is still emerging and greater emphasis is given on the methodology and analysis. Where available, applications of force measurements between molecules or between larger colloidal particles are discussed, where they have led to new insights or solved problems related to food science. The future prospects of the technique in imaging or through force measurements are discussed

    Characterization of optical properties and surface roughness profiles: The Casimir force between real materials

    Get PDF
    The Lifshitz theory provides a method to calculate the Casimir force between two flat plates if the frequency dependent dielectric function of the plates is known. In reality any plate is rough and its optical properties are known only to some degree. For high precision experiments the plates must be carefully characterized otherwise the experimental result cannot be compared with the theory or with other experiments. In this chapter we explain why optical properties of interacting materials are important for the Casimir force, how they can be measured, and how one can calculate the force using these properties. The surface roughness can be characterized, for example, with the atomic force microscope images. We introduce the main characteristics of a rough surface that can be extracted from these images, and explain how one can use them to calculate the roughness correction to the force. At small separations this correction becomes large as our experiments show. Finally we discuss the distance upon contact separating two rough surfaces, and explain the importance of this parameter for determination of the absolute separation between bodies.}Comment: 33 pages, 14 figures, to appear in Springer Lecture Notes in Physics, Volume on Casimir Physics, edited by Diego Dalvit, Peter Milonni, David Roberts, and Felipe da Ros
    • …
    corecore