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Highlights

e Phytosterols can crystallise within an oil and water-based emulsion system and can
influence emulsion surface morphology.

e Phytosterols are able to lower interfacial tension at an oil and water interface.

e The combination of phytosterols and whey protein was able to lower interfacial
tension to a greater extent than the two components separately.

e A synergistic interaction between phytosterols and whey protein was proposed and
confirmed by interfacial modeling.

Abstract: Phytosterols possess the ability to significantly lower low-density lipoprotein (LDL)

cholesterol levels in the blood, but their bioaccessibility is highly dependent upon the solubility



of the phytosterol within the carrier matrix. Currently, there is a limited amount of knowledge
on how phytosterols interact at oil-water interfaces, despite research indicating that these
interfaces could promote the crystallization of phytosterols and thus decrease bioaccessibility.
In order to fill this knowledge gap, this work expands upon a previously studied emulsion
system for encapsulating phytosterols and addresses whether phytosterols can crystalize at an
oil-in-water emulsion interface. Images from multiple microscopic techniques suggest
interfacial phytosterol crystallization in 0.6% phytosterol-enriched emulsions, while interfacial
tension results and calculated models showed that whey protein and phytosterols had a
synergistic effect on interfacial tension. A deeper understanding of the interfacial behavior of
phytosterols in emulsions can provide the functional food and pharmaceutical industry with the

knowledge needed to design more bioaccessible phytosterol-enriched products.

Abbreviations: CSLM-Confocal laser scanning microscopy, Cryo-SEM-Cryo-scanning

electron microscopy MCT-Medium-chain triglyceride, PLM-polarized light microscopy

Keywords: phytosterols, plant sterols, -sitosterol, LDL cholesterol, functional foods,

interfacial tension, emulsion, bioactive, microscopy
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1. Introduction

Phytosterols, or plant sterols, are compounds found within plant-cell membranes that
are well-known for their ability to reduce levels of low-density lipoprotein (LDL) cholesterol
in the blood (Jones, MacDougall, Ntanios, & Vanstone, 1997; Moruisi, Oosthuizen, &
Opperman, 2006; Ostlund, 2002). Phytosterols are present in all foods of plant origins, such as
fruits, cereals, and nuts, but only in limited concentrations. To significantly lower LDL-
cholesterol levels, dietary supplementation is needed to achieve the recommended > 1.5 g of
phytosterols per day (Berger, Jones, & Abumweis, 2004). Therefore, as the incidence of heart
disease increases and consumers become more health-conscious, so does the use of
phytosterols within food products (Henson, Cranfield, & Herath, 2010; Zawistowski, 2010).
Phytosterol-enriched food products, or functional foods, can be utilized to lower cholesterol
levels simply by regularly ingesting the food product. Despite their increased use within the
functional food sector, little is known about how phytosterols interact with different food

components.

On a molecular level, phytosterols are chemically similar to human cholesterol and
possess the same tetracyclic-backbone; differences between the two compounds arise at the C-
22 and C-5 positions, with the presence or absence of various side chains and/or a double bond.
These various side chains also distinguish between phytosterol varieties, the most common
being B-sitosterol, stigmasterol and campesterol (Jones & AbuMweis, 2009; Ostlund, 2002).
The molecular similarities between phytosterols and human cholesterol enable phytosterols to
successfully reduce serum cholesterol levels by preventing cholesterol absorption within the

small intestine (Santas, Codony, & Rafecas, 2013). Phytosterols also possess anti-



inflammatory and anti-carcinogenic properties and have no associated negative side-effects

(Engel & Schubert, 2005; Jones et al., 1997).

Despite these benefits, phytosterol enrichment of food systems is not common due to
formulation difficulties associated with their insolubility and crystallinity at room temperature
(Zawistowski, 2010). Thus, phytosterols are commonly esterified by the industry to improve
their solubility and dispersibility within food matrices, such as margarine (Clifton, 2007).
Addtionally esterification results in higher processing costs, as compared to using natural
phytosterols and unpredictable absorption rates (Clifton, 2007). Phytosterol esters have to be
hydrolyzed prior to absorption, which is subject to inter-individual variability among human
digestive systems, resulting in absorption rates varying between 40-96% (Carden, Hang,

Dussault, & Carr, 2015).

Conversely, emulsion-based delivery systems can be utilized to enhance the solubility
of non-esterified phytosterols, but the bioacessbility of the emulsion is dependent upon the
physical state of the phytosterol (Ostlund, 2002). Previous studies have demonstrated that
crystalline, non-solubilized phytosterols are not as effective at lowering LDL-cholesterol in the
blood, as solubilized phytosterols (Jones & AbuMweis, 2009; Pouteau et al., 2003).
Phytosterols can crystallize within the carrier oil, but it should be noted that the presence of
water at the interface can also induce sterol crystallization (Engel & Schubert, 2005; Jandacek,
Webb, & Mattson, 1977). Phytosterols possess the ability to lower interfacial tension, and thus
their propensity to move to an interface could lead to crystallization and decreased

bioaccessibility (Cercaci, Rodriguez-Estrada, Lercker, & Decker, 2007).

Despite phytosterol crystallization resulting in decreased bioaccessibility in functional
food emulsions, very little research has been performed in analysing the mechanism by which
phytosterols crystallize. Previously research conducted by the group highlighted how
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phytosterols crystallize within a triacylglycerol-based food emulsion, utilizing whey protein as
the emulsifier; however, little emphasis was placed upon the possibility of phytosterol
crystallization at the interface (Zychowski et al., 2016). Thus, this work seeks to investigate
the possibility of phytosterols crystallization at the interface and to characterize how
phytosterols influence the morphology and physical properties of a food emulsion. The
morphology of phytosterol-enriched emulsions (PE emulsions) were analyzed utilizing
confocal laser scanning microscopy, cryo-scanning electron microscopy, polarized light
microscopy, and a Malvern mastersizer to study droplet size distribution. Interfacial tension
and modelling were used to understand phytosterol and whey protein behavior at the emulsion
interface. By understanding how the interfacial behavior of phytosterols influences the
properties of a food emulsion, the functional food industry can design more stable and

bioaccessible, phytosterol-enriched products.
2. Materials and Methods
2.1 Chemicals and Ingredients

Crystalline phytosterols, glycerol, and sodium azide were purchased from Sigma
Aldrich (Wicklow, Ireland). The main sterol present was p-sitosterol (>70%) with residual
campesterol and f-sitostanol. Commercial-grade anhydrous milk fat (AMF) was obtained from
Corman Miloko (Tipperary, Ireland). Whey protein isolate (WPI; BiPro®, of 92.7% protein)
was purchased from Davisco Foods International Inc (Minnesota, USA). Purified medium-
chain triglyceride oil was procured from Pure Vita labs (British Columbia, Canada) for

interfacial measurements.
2.2 Preparation of Emulsions

Oil-in-water emulsions (10% oil: 1% protein: 89% H>0) were prepared on a wt/wt basis with

or without added phytosterols in the oil ratio (0.3% or 0.6% wt/wt) as detailed by Zychowski
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et al. (2016). Emulsions were prepared by homogenization with an APV 1000 homogenizer
(SPX flow, Germany) at 300 bar pressure for 1 pass at 60°C. Higher pressures or more passes
were not employed within this study as more intense treatments yielded smaller droplets, which
were unsuitable for microscopic evaluation (Zychowski et al., 2018). Emulsions were allowed
to statically cool and were stored at 20-25°C with 0.1% sodium azide added to the final
emulsion. PE emulsions were formulated at levels of 0.0%, 0.3%, and 0.6% (wt/wt) PE with
0.0% functioning as the control. The 0.6% PE sample contained the highest level of
phytosterols, as PE emulsions created with 0.8% phytosterols were not stable and separated
immediately upon pre-homogenisation. All evaluations and images were carried out within 24
h on samples from three separate emulsion trials.

2.3 Physical Characterization of Emulsions

2.3.1 Particle Size.

The droplet size distribution of the emulsion was measured at 22°C utilizing a Malvern
Mastersizer 3000 equipped with a Hydro R cell (Malvern Instruments Ltd, Worcestershire,
UK). Distilled water was used as the dispersing medium with an obscuration between 4-10%
and absorption level of 0.001. Refractive index values of 1.33 for water and 1.46 for milk fat
were used in the optical parameters. The D(4,3) value was calculated by the Mastersizer 3000
software based on a spherical geometry, where n; is the number of droplets with diameter d;

(eq 1). All evaluations were carried out in triplicate on three separate emulsion trials.

Dy (= ) ndt/ Y nd)) (1)

2.3.2 Polarized Light Microscopy

Polarized light images were captured using an Olympus BX51 microscope (Olympus

Corporation, Tokyo, Japan) at 60X using a ProgRes CT3 camera with Prores 2.7.7 software
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(Jenoptik, Wiltshire, UK). Fifty microliters of emulsion samples were placed onto a glass slide
with a coverslip. The glass slide was then placed directly onto the heating element of a Linkam
LNP heating/cooling stage (Linkam, Surrey, UK). Images were taken at 20°C and after heating
to 50°C at 3°C/min since 50°C is above the melting point of milk fat but not of phytosterols
within a TAG matrix (Acevedo & Franchetti, 2016; Lopez, Bourgaux, Lesieur, & Ollivon,
2007). Images were taken to characterise changes in emulsion morphology and the presence of

crystals above the melting point of milk fat.
2.3.3 Confocal Laser Scanning Microscopy

Imaging was performed with a confocal laser scanning microscope (CLSM; Leica
Microsystems CMS GmbH, Wetzlar, Germany) with a 63x oil immersion objective and 3x and
5x zoom factors. Samples were prepared for microscopic analysis by adding 10 pl of Nile Blue
(Sigma Aldrich, Wicklow) concentrated at 0.1 g/100 pl to 1 ml of emulsion sample and
vortexing the sample for 10 s, as detailed previously (Zychowski et al., 2016). Nile blue is used
to stain the protein phase and the oxidation product of Nile blue, Nile red, stains the lipid phase
(Auty et al., 2001). Nile blue has been found not to influence lipid crystallisation (Herrera &
Hartel, 2000). After vortexing, 50 ul of the emulsion was pipetted onto a glass microscope slide
and a coverslip was placed on top. Images were captured at 8-bit, 512x512 pixels resolution
and were pseudo-colored to show protein (red) and lipid (green). Dual channel confocal
imaging employing an Argon laser at 488 nm (Nile red) and a Helium/Neon laser at 633 nm
(Nile blue) was used to excite the lipid and protein dyes, respectively. After imaging, the
protein and lipid channels were visualised separately and combined to highlight visualization
of the protein coverage around the emulsion droplets using the LAS AF software (Leica

Mircosystems CMS GmbH, Wetzlar, Germany).



2.3.4 Cryo-scanning Electron Microscopy

Cryo-scanning electron microscopy was performed using a Zeiss Supra 40VP field
emission SEM (Carl Zeiss SMT Ltd., Cambridge, UK). Samples were prepared for imaging by
adding 200 pl glycerol (cryo-protectant) into 1 ml of emulsion and vortexing for 10 s. Samples
were then centrifuged for 5 min at 10,000 rpm in an Eppendorf centrifuge (model 5417R;
Eppendorf, Hauppauge, New York) at 20°C to concentrate the fat droplets. Afterwards, 400 pl
of the solution was removed from the top of the tube and mounted onto a slotted aluminum
sample holder. In order to cryo-fix the sample, the stage was then plunged immediately into
melting liquid nitrogen slush (— 210°C). The sample was then transferred under vacuum to the
cryo-preparation chamber using the Alto 2500 cryo-transfer device (Gatan Ltd., Oxford, UK).
Once inside the chamber, the sample was fractured at -195°C, followed by sublimation at -
90°C for 2 min. After sublimation, the sample was sputter-coated with platinum at -130°C and
transferred to the cold stage for imaging at -125°C. Secondary electron images were obtained

at an operating distance of 6 mm and an accelerating voltage of 2 kV.
2.4 Interfacial and Surface Characterization of Emulsion Systems

2.4.1 Dynamic Interfacial Tension Measurements

Interfacial tension (yI) was measured using a Kruss K12 tensiometer (Kruss GmbH,
Hamburg, Germany) equipped with a Wilhelmy plate, as described previously (Drapala, Auty,
Mulvihill, & O'Mahony, 2015). Dynamic (yI) data was collected continuously during the first
5 min at 60°C and in subsequent 5 min intervals over 30 min; this was performed to simulate
emulsion formation conditions and to capture initial changes in (yI) with the addition of
phytosterols and whey proteins at the oil-water interface, respectively. In addition, previous

research has demonstrated that phytosterols are in a liquid lamellar state at 60°C in MCT-based
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system (Zychowski et al., 2016). Whey protein solutions were reconstituted at 0.5%, 1%, 2%,
or 3% (wt/wt; % protein) in an ice bath with Milli-Q water and stirred at 300 rpm. Solutions
were then stored overnight at 4°C to allow for complete hydration. Phytosterols were added to
the oil phase of MCT at 1% increments between 0.0-6.0% wt/wt as described previously
(Zychowski et al., 2016). Filtered water (Milli-Q system) with MCT (no WPI), without

phytosterol, was used as a control sample.

Purified MCT oil was used to simulate melted AMF in these emulsions, as the
commercial grade AMF used in this study produced inconsistent results between the water and
lipid phase, most likely due to the presence of minor lipid components such as phospholipids
and free fatty acids. MCT oil was chosen as it has been used previously to study the behaviour

of milk proteins in other model milk systems (Waninge et al., 2005).

Before each measurement, the Wilhelmy plate was calibrated by submerging the plate
within the light phase, consisting of MCT solution with or without phytosterol. After
calibration, 25 ml of the heavy phase, water or whey protein solution, was added into the
sample holder. The Wilhelmy plate was then lowered onto the interface and the light phase was
added until the plate was completed submerged. The glass sample vessel and Wilhelmy plate
were cleaned and annealed before each measurement. All glassware for sample preparation
was acid-washed overnight with 1 M Nitric acid and washed 3 times with distilled water before

drying. Measurements were completed in triplicate on each interface.
2.4.2. Surface Modeling

In order to describe the interfacial interactions of the phytosterol and WPI interfaces at
60°C, collected interfacial tension data was fitted utilizing the Isofit® Software developed by
Aksenenko and Miller (M6bius, Miller, & Fainerman, 2001). As noted previously for other

whey protein systems, the adsorption of protein is different compared to other typical
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surfactants, due to structural reorganization and electrostatic or hydrophobic interactions
between adsorbed molecules at the interface (Pradines, Kragel, Fainerman, & Miller, 2008). In
this system, the Langmuir model best fit the protein-only system, while the Frumkin model
was employed on the phytosterol-system. The following equations (2-7) describe the isotherm

models employed (Mdbius et al., 2001).
—1;—;) =In(1 —Tw) + a(Tw)? )

where I1 = y;,,—Yw 1S the surface pressure, w is the molar area, I is the surface excess and o
is the interaction parameter between adsorbed adjacent surfactant molecules at the oil-water

interface. The adsorption isotherm for Frumkin model is given by:

Tw
1-Tw

bc = exp(—2al'w) 3)

where b is the adsorption rate constant and c is the bulk concentration of surfactant. With

surface coverage given by 8 = I'w, equations 1 and 2 can be written as:

—0% — In(1 - 0) + a(8)? (4)

RT
bc = 1?—eexp(—ZaG) (5)

There are three model parameters, b, ® and o. When a=0, i.e. when there is no interaction

between adsorbed surfactant molecules, the Frumkin equation limits to a Langmuir isotherm.
Nw
—ar = In(1-10) (6)

0
be = — @)

These models were used to calculate the interfacial concentration of phytosterol and whey
protein at different concentrations necessary for the employment of regular solution theory,

which will be described in detail in the upcoming sections.
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2.5 Statistical Analysis

Mean values * standard deviations of the data were reported for each emulsion
formulation. Results were analysed for statistical significance utilizing SAS® 9.3 software for
Windows. A Tukey's Post Hoc Difference Test with a level of probability at p <0.05 was used

to analyze significant differences between treatments.
3. Results
3.1 Shape, Size, and Morphology

3.1.1 Particle Size

The particle size of emulsions enriched with 0.0% (control), 0.3%, and 0.6%, wt/wt of
phytosterol were expressed as the mean of volume-weighted distributions (D,3)). Phytosterol
addition resulted in a significant decrease (p<0.05) in D,3) values of all emulsions, from 0.85
+ 0.02 um in the control emulsion to 0.78 £ 0.03 pum or 0.70 £ 0.01 pum in the 0.3% and 0.6%
PE emulsions, respectively. Decreases in particle size have been observed previously with
phytosterol enrichment in milk fat-based emulsions (Zychowski et al., 2016). Statistically
significant decreases in particle size have been observed previously with phytosterol
enrichment in milk fat-based emulsions (Zychowski et al., 2018; Zychowski et al., 2016). The
overall droplet size distribution ranged from 0.1 to 16.4 um (Fig. 1). The decrease in D3y from
PE was observed by a slight increase in smaller droplet sized peak, which was observed in the

collected microscopy data and is detailed further below.
3.1.2 Polarized Light Microscopy

Figure 2 shows polarized light microscopy (PLM) images of the 0.6% PE emulsion
with milk fat as the carrier matrix at 20°C and 50°C. Crystalline material can be identified by

its optical response to polarization through light birefringence and is commonly used to
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establish the presence of crystalline material within food matrices (Chen, Guo, Wang, Yin, &
Yang, 2016; Maher, Auty, Roos, Zychowski, & Fenelon, 2015; Thivilliers, Laurichesse,
Saadaoui, Leal-Calderon, & Schmitt, 2008; Toro- Vazquez, Rangel- Vargas, Dibildox-

Alvarado, & Chard- Alonso, 2005). Birefringence within the 0.6% PE emulsion appeared at
both temperatures, which confirmed the presence of phytosterol derived crystalline material,
as 50 °C is above the melting point of AMF but below that of phytosterols within a TAG matrix
(Acevedo & Franchetti, 2016; Lopez et al., 2007). Birefringence within the 0.0% and 0.3% PE
emulsion was not seen in emulsion droplets and is discussed in more detail below (data not

shown).
3.1.3 Confocal Laser Scanning Microscopy.

Confocal laser scanning microscopy (CSLM) with fluorescent staining was performed
to examine the lipid and protein distribution within PE emulsions (Fig. 3). Images were
captured at 3 and 5x magnification with protein and lipid components labelled as red and green,
respectively. Protein and lipid fluorescent channels were overlapped in all CLSM images,
except the zoomed in protein image for the 0.6% PE emulsion at 5x magnification. Images
were found to agree with the given particle size distribution and in general, smaller droplets
were found in images in with higher level of plant sterols as observed previously (Fig. 1 ;

Zychowski et al., 2016).

No morphological differences were observed between the control and 0.3% PE
emulsion. Conversely, in the 0.6% PE emulsion, detectable crystals, identified by negative
contrast as straight edges, were present within and at the surface of larger emulsion droplets,
as observed previously (Zychowski et al., 2016). Separated protein scans of the 0.6% PE
emulsion demonstrated how crystalline material is distributed within the emulsion and appears

to disrupt protein coverage on the lipid droplets.
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3.1.4 Cryo-scanning Electron Microscopy

Droplet surface and fracture morphology was visualized utilizing cryo-scanning
electron microscopy (Cryo-SEM; Fig. 4). Cryogenic fracturing enabled the visualization of
cross-sections of the emulsion samples. The control emulsion contained relatively smooth
droplets, as seen in the confocal images (Fig. 3). The 0.3% and 0.6% PE emulsions both
contained droplet cross-sections showing straight-edged and angular/needle-like structures
within the emulsions droplets, consistent with PLM micrographs (Fig. 2) and other cryo-images
of fat crystals (Heertje, 1993). Besides having droplets containing crystalline material, the 0.6%
PE emulsion sample had some larger coalesced droplets, which had altered and roughened
surfaces, suggestive of crystalline material at the droplet interface (Rousseau, 2000). A similar
surface morphology has been observed in other food systems, such as margarine or cocoa butter
emulsions, which exploit surface crystals to stabilize the interface (Heertje, 1993; Norton &

Fryer, 2012).
3.2 Interfacial Tension and Modeling of Emulsion Systems
3.2.1 Interfacial Tension

Interfacial tension was measured at 60 °C to understand the interactions of phytosterols
and whey protein at the interface during initial emulsion formation and homogenization (Table
1; Fig. 5a & b). In agreement with previous research, the initial interfacial tension (yl 0 min)
of water with medium-chain triglyceride (MCT) oil (water/MCT), was found to be 20.4 £ 0.5
mN/m (Jumaa & Muiller, 1998; Mao et al., 2009). Upon the addition of just 2% phytosterol
(0.2% wt/wt if emulsified), to the oil phase, there is a significant decrease in observed initial
vl, as compared to the water/MCT sample. Correspondingly, every 1% increase in phytosterol,
with a water-only aqueous phase, resulted in a further significant decrease in initial yl. The

water/6% phytosterol sample, had a value of 9.3 = 0.3 mN/m, which was the lowest of all of
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the water/phytosterol interfaces and was similar to that of the 1% protein/MCT sample with an
initial yI value of 10.0 = 0.4 mN/m (Table 1). The water/6% phytosterol sample also had a
slight increase in interfacial tension values at 5 and 30 min but, since these values all fall within

the standard deviation, this was not deemed significant.

When phytosterol and protein addition were added separately, both decreased initial
interface tension, but interfaces with > 3% phytosterol and whey protein combined had a
significantly lower initial yl (p <0.05) than all other samples. The lowest initial yI was of the
1% protein/5% phytosterol and 1% protein/6% phytosterol interfaces, at 3.6 + 0.5 mN/m and
2.7 £ 0.5 mN/m, respectively (Table 1). These results for initial yl describe the ability of both
phytosterols and whey protein to move to the interface and influence the interfacial tension at
an oil/water surface both separately and synergistically. Both phytosterols and whey protein
possess an amphiphilic molecular structure and their ability to influence interfacial tension
separately is expected (Chen et al., 2016; McClements, 2004; Rossi, ten Hoorn, Melnikov, &
Velikov, 2010; Rouimi, Schorsch, Valentini, & Vaslin, 2005). However, a synergistic effect
between these two molecules has not been recorded previously and will be further discussed

later.

The interfaces were continuously monitored for 5 min, then in subsequent 5 min
intervals for 30 mins. Final values at 5 min (ylI 5 min) and 30 min (yl 30 min) were compared
against the initial ylI (A 0-5 min and A 0-30 min, respectively), as a quantitative means of
evaluation (Table 1; Fig. 5a & b). By comparing changes within these two time points, several
features regarding interface formation can be described. Firstly, 1% phytosterols and whey
protein separated at the interface had statistically similar A 0-5 min values, but the 1% whey
protein sample had a larger A 0-30 min value (Table 1). This demonstrated that whey protein

can decrease interfacial tension more than phytosterols, but during initial emulsion formation
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their ability is relatively similar. Secondly, the largest initial change in interfacial tension
occurred for the 1% protein/4% phytosterol sample but, at 30 min, the overall change in tension
was similar to other samples (Table 1; Fig. 5b). Thus, this multicomponent interface

demonstrates that this synergistic interfacial effect acts quickly upon the oil/water interface.
3.2.2 Interfacial Modeling

The ability of surfactants to synergistically influence interfacial tensions has been
previously studied by several authors (Zhou & Rosen, 2003)(Reddy & Ghosh, 2010; Rosen &
Hua, 1982; Rosen & Zhou, 2001). To model this relationship, final interfacial tension results
were graphed on wt/wt % of each component and the mixed phytosterol and whey protein
interfaces (Fig. 6). A synergic relationship between whey protein and phytosterols was
apparent, as phytosterol concentrations higher than 3% at 1% protein had a lower final yl values
than the two components separately. This data was then processed by the regular solution
theory (RST) developed by Rubingh and altered by Rosen and Hau (1982) to account for the
possible interaction between phytosterols and whey protein at the surface of an oil and water
system (Rosen & Hua, 1982; Rubingh, 1979). The approach by Rosen and Hua takes the non-
ideality of mixing two compounds into consideration through a molecular interaction
parameter, f (eq. 8) (Rosen & Hua, 1982). The magnitude of the interaction parameter
corresponds to the deviation from ideal solution behavior. Negative values of the interaction
parameter signify that the attractive interaction between the surfactants in the mixture is greater
than the self-attraction of each surfactant. Positive values indicate repulsive interactions

between the surfactants. The molecular interaction parameter, £, is defined by equation 8.

Cs
ln( /xscso)

="y ®)
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where, Cs is the bulk concentration of surfactant (phytosterols) in the mixture, Xs is the

interfacial composition of surfactant, and C2is the bulk concentration of pure surfactant

required to achieve the same interfacial tension of the mixture.

Rosen and Hua showed that the interfacial composition (Xs) can be calculated by
utilizing equation 9 (Rosen & Hua, 1982). Here, Cs and Xs refer to the phytosterols

concentrations, while Cp and Xp correspond to the protein bulk concentration and interfacial
composition, respectively.

C
xZ ln( S/stso)

(1-xs)21n<cp/(1_xs) c;;)

=1 9)

To solve for xs, CZand Cp are needed, which are the bulk concentrations of pure
surfactants (phytosterols and WPI) required to achieve the same interfacial tension as that of
the mixture. Values for C¢ and Cpwere derived from the adsorption isotherm, Langmuir and

Frumkin for whey protein and phytosterol, respectively (Eq. 9 & Fig. 7).

For a fixed bulk protein concentration of 1 wt%, with increasing phytosterol
concentration, the interaction parameter and the interfacial composition were calculated to
better understand the synergistic effect of protein and phytosterols at the interface (eqg. 8-9;
Table 2). The interaction parameter was negative, suggesting attractive behavior between the
adsorbed proteins and phytosterols at the interface (Rosen & Hua, 1982; Zhou & Rosen, 2003).
However, after the interfacial tension of the systems reaches its lower limit at 4% sterol and
1% protein, the interaction parameter remains relatively constant, even decreasing slightly

upon phytosterol addition (Table 2).

As seen previously within other whey protein-surfactant complexes (B-lactoglobulin

with sodium dodecyl sulfate or cetyltrimethylammonium bromide), once the interface is
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saturated with the complex, additional surfactant can lead to less surface-active complexes,
which then have to compete with free surfactant molecules (Wustneck, Kragel, Miller, Wilde,
& Clark, 1996). Subsequently, as the concentration of phytosterol in the lipid phase increased
from 2-6 wt%, the calculated interfacial composition of phytosterols increased from 54 to 88
mol% (Table 2). This indicates that, during emulsion formation, phytosterols can outcompete
whey protein/whey protein complexes for space at the oil/water interface. Preliminary results
showed that it was not possible to form emulsions consisting of > 8% phytosterol and 1%
protein or phytosterols alone; this confirms that, at higher levels of phytosterol addition, the
interfacial composition is indeed different and dominated by phytosterols (Zychowski et al.,

2016).

Even though the RST approach is strictly only valid when both the surfactants are present
in a single phase, it is surprising that the theory gives a qualitative picture of the interfacial
composition when the surfactants adsorb from two different phases, which is the case for
proteins and phytosterols that are dispersed within the oil and aqueous phase, respectively. The
calculations presented in this section are intended for a qualitative explanation of synergistic

behavior of phytosterols and proteins at the oil/water interface.
4. Discussion
4.1 Influence of Phytosterol Addition on the Morphology and Physical Properties of

Emulsions.

Particle size and images captured using PLM, CSLM, and cryo-SEM demonstrated the
effect of phytosterol enrichment on the emulsion system. Particle size of the PE emulsion
significantly decreased with each subsequent addition of phytosterols into the oil phase

between separate emulsion trials. Although the trend was similar, the extent of difference
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between trials was less than what was observed previously using a different homogenizer and
mastersizer (Zychowski et al., 2016). A decrease in emulsion droplet size was also recorded in
a study which analyzed the stability of oil-in-water loaded MgCl> emulsions with phytosterols
enriched into the continuous phase. Emulsion droplets dispersed with the phytosterol
containing lipid were found to be smaller upon initial formation and were able to resist
coalescence unlike the control sample without phytosterols. In the same study, this was further
investigated by studying the o/w interface with and without the presence of phytosterols and
results demonstrated that the presence of phytosterols significantly influenced the adsorption
behaviour of the both of the emulsifiers used, polyglycerol polyricinoleate (PGPR) and sodium
caseinate (Andrade & Corredig, 2016). Phytosterols have also been documented to decrease
interfacial tension without the presence of protein, as observed within the current and previous
studies (Table 1 & Fig. 5b; Cercaci, et al., 2007). Thus, it is hypothesised that the recorded
decrease in particle size could be due to the presence of phytosterols at the oil-in-water

interface.

However, it should be noted that this change in particle size was not significant enough
the change the stability of these PE emulsions over time. In a follow up study performed by
this group, PE emulsions were evaluated for emulsion instability over 1 month with a similar
particle size and trend as recorded within this study; sizes were control=0.94 + 0.06, 0.3
%=0.86 + 0.06 0.06%=0.73 + 0.07 um. In addition, PE emulsions were created at 0.2 um for
comparison via high pressure homogenisation. In this study, no significant change in stability
(p < 0.05) was observed in the emulsions created with or without phytosterols after 1 week or
1 month of formation that possessed had a particle size of 0.94-0.73 um. The PE emulsion with
an average droplet size of 0.2 um were found to be significantly more stable overtime than the

PE emulsions with the larger particle size, indicating the need for large differences in average
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droplet sizes to observe significant differences in stability (Zychowski et al., 2018).
Interestingly, no significant difference was observed in stability upon the addition of
phytosterols into the emulsion systems; typically, the presence of crystals within an emulsion
system causes emulsion destabilisation, by means particle coalescence of the lipid droplets
(McClements, 2012). However, destabilisation due to the presence phytosterol crystals was not
observed within this system, nor in other emulsion systems containing phytosterols (Andrade
& Corredig, 2016; Chen et al., 2016). This is most likely due to ability of phytosterols to form

a stable contact angle at the oil and water interface, which is discussed in more detail below.

PLM images were captured at 20°C and 50°C, as AMF melts completely at ~40°C and
phytosterol within TAG systems at around ~60°C (Fig. 2; Acevedo et al., 2016; Lopez et al.,
2007; Zychowski et al., 2016). Birefringence in the images was used to distinguish the presence
of crystalline material within the emulsion systems. Thus, the birefringence observed at 50 °C,
above the melting point of AMF, confirms that the observed crystals in images are indeed
composed of phytosterols. No crystalline AMF was observed in the 0.0% and 0.3% samples,

despite the sample being held at 20°C for 24 h.

This was most likely due to the size of the milk crystals produced during this time being
insufficient to be detected by the polarised light microscope. Similarly, Truong et al. (2014)
captured images of milk fat-based emulsions after aging at 4 ‘C for 24 using cryogenic
transmission electron microscopy (cryo-TEM). In the images of milk fat-based emulsion
ranging from 0.73 to 0.23 um in size, no large crystals were apparent at the interface or in the
captured cross sections of the emulsion droplets; only a fine crystalline network was made
visible through the use of high powered Cryo-TEM.. Similar results have been observed in

lard-based emulsions, where fine crystals could not be observed via polarised light and larger
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protruding lard crystals could only be observed in some emulsion droplets after holding for

several hours (S. D. Campbell, Goff, & Rousseau, 2001)

Images captured using CSLM differentiated between the lipid and protein components
of the PE emulsions. Previous CSLM images published by Zychowski et al. (2016) showed an
altered interface present within 0.6% PE emulsion, as seen in this study, but did not clearly
capture the protein layer distribution around fat droplets. In Figure 3, all PE emulsions can be
visualized, along with the images taken from the separated protein and lipid channels for the
0.6% PE emulsion. The separated channel images show protein coverage around the lipid
droplet of the 0.6% PE emulsion, except where phytosterol interfacial crystals were present
(Fig. 3; Image 3b). This gap in protein coverage supports the hypothesis of phytosterols being
present at the interface and suggests that possibility that phytosterols can stabilize the interface
of an emulsion droplet. Phytosterol stabilization at the interface was also observed in PE
sunflower oil emulsions with octenyl succinic anhydride starch as the main emulsifier.
Phytosterols were able to co-crystallize with the starch and this complex formed a strong barrier
around the dispersed oil droplets. After 90 d emulsions containing phytosterols were ~8 times
smaller than the control emulsion with starch alone, which had coalesced, demonstrating the

ability of crystalline phytosterols to successfully stabilize an interface (Chen et al., 2016).

Cross-sectional images taken using cryo-SEM highlight how phytosterol crystallization
influences the surface morphology of emulsion droplets (Fig. 4). Micrographs of the control
and 0.3% PE emulsions show droplets with a relatively smooth surface, compared to the
coalesced droplets present in the 0.6% PE emulsion. These larger droplets facilitate the
visualization of the presence of phytosterol crystals but, in line with previous studies, did not

result in significant destabilization of the PE emulsion system (Zychowski et al., 2016).
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Crystallization within emulsions usually results in partial coalescence, which leads to
particle aggregation and eventual emulsion destabilization (McClements, 2012). As mentioned,
phytosterols have been previously documented to crystallize at the interface but not destabilize
the emulsion. Although phytosterol crystallization might not result in emulsion destabilization,
it can decrease bioaccessibility within the functional food systems (Jones & AbuMweis, 2009).
For example, in a study performed by Nestec, 1.8 g of non-esterified phytosterols were
solubilised in a milk matrix and consumed; the solubilised phytosterol ester resulted in a 29.1
+ 4.1% reduction in LDL-cholesterol levels (Pouteau et al., 2003). Conversely, 3 g of
crystallised phytosterols administered in a crystallised tablet were only able to decrease LDL-
cholesterol levels by 11.0% (Carr, Krogstrand, Schlegel, & Fernandez, 2009). In a side by side
study, 0.7 g solubilised phytosterols in micelles were ~25% more effective in reducing LDL
cholesterol level than 1 g of powdered crystalline phytosterols (Ostlund, Spilburg, & Stenson,
1999). The discrepancy between these results highlights the need for further research on factors

that influence phytosterol solubility in food matrices.
4.2 The Influence of Phytosterols and Whey protein on Interfacial Tension.

Dynamic yI values were evaluated under several different concentrations of
phytosterols and whey protein to understand the influence of each component individually and
with various combinations of emulsion formations (Table 1; Fig. 5a & b). The unadulterated
surface for all measurements is the initial yI of the interface with MCT oil and water, as
adjustments to this interface resulted from the addition of either phytosterol to the oil phase
and/or whey protein isolate to the water phase (Drapala et al., 2015). When > 2% phytosterols
were added to the oil phase, initial yI values decreased significantly (p <0.05; Table 1). The
ability of phytosterols to decrease yI has been observed previously in an experiment employing

hexane, as the lipid phase, with dissolved phytosterols; results demonstrated that even low
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phytosterol concentrations(1 mmol/kg) in hexadecane were able to significantly decrease vlI,
while higher phytosterol concentrations could further decrease yI (Cercaci et al., 2007).
Phytosterols such as B-sitosterol, campesterol and sigmasterol possess a hydrophobic,
tetracyclic, fused-ring skeleton and a polar, hydroxyl group. The differing polarities within
their chemical structure give phytosterols a slightly amphiphilic nature, allowing them to
interact with both the aqueous and lipid phases at oil-water interfaces (Chen et al., 2016; Rossi

etal., 2010).

As expected, whey protein, consisting mainly of B-lactoglobulin, was also able to
decrease interfacial tension in the absence of phytosterols (Table 1 & Fig. 5a). Even with the
addition of only 0.5% whey protein, the initial yI significantly decreased but, unlike phytosterol
addition, increasing the concentration of protein (0.5-3%) had little effect on yI values (Table
1). It is hypothesized that whey protein at 0.5% had already saturated the MCT and water
interface, and thus increasing protein concentration was not able to significantly further
decrease interfacial tension (Dickinson, 1999; McClements, 2004). Whey proteins are
comprised of large globular proteins, and the rate at which they adsorb at the oil-water interface
is limited by their size, compared to other smaller surfactants; however, they have been shown
to provide long-term stability to oil-water interfaces (Courthaudon, Dickinson, Matsumura, &
Williams, 1991; McClements, 2015). Thus, it not surprising that whey proteins were able to
significantly reduce initial yI and over time had a much larger A (yI init-yI 30 min), as compared
to the phytosterol/water interfaces. Similar interfacial results for whey protein and oil interfaces
have been observed previously (Drapala et al., 2015; Li, Auty, O'Mahony, Kelly, & Brodkorb,

2016; Sunder, Scherze, & Muschiolik, 2001).

Most interestingly, the lowest initial yI values came from interfaces containing 3% >

phytosterols and whey protein (Table 1) but, as can be noted, all levels of phytosterol
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concentration influenced interfacial tension in the presence of protein (Fig. 5b). In addition, the
largest (A 0-5 min) value was achieved with the 1.0% protein/4.0% phytosterol interface at 3.2
+ 0.6 mN/m (Table 1). This data suggests that phytosterols and whey protein synergistically
reduce interfacial tension and are able to interact at the interface more quickly together than
when separated. Thus, the authors believe that whey proteins and phytosterols can be
considered to participate in synergism at the emulsion interface. Synergism is defined here as
“the condition in which the properties of the surfactant mixture are better than those attainable

with the individual surfactants by themselves” (Reddy & Ghosh, 2010).

The interaction between phytosterols and whey protein was quantified using RST
modified by Rosen and Hua (Rosen & Hua, 1982; Rubingh, 1979) In mixed interfaces with 1%
protein and 1-6% phytosterol, the interaction parameter was found to be negative, suggesting
that phytosterols and whey protein are interacting at the surface interface (Zhou & Rosen,
2003). Within the bulk system, both the whey protein and phytosterols have negative electric-
static charges (Rossi et al., 2010; Zychowski et al., 2016); however, phytosterols possess a
negatively charged hydroxyl group, which most likely interacts at the interface, while the

remaining portions of the molecule are relatively neutral.

Although there are limited studies investigating the binding properties of phytosterols
and proteins, a patent by Monstanto has previously described the technology of using egg
proteins to limit the crystallization behaviour of phytosterols, as the two compounds are
believed to form a complex. The patent technology entails heating an edible food-grade
triglyceride-based system to 60 °C in order to melt the phytosterols. Egg protein, dissolved in
water, is then added with lecithin and an emulsion is created. The mixture is then dried, and it
is believed that phytosterol crystallisation was limited by the egg protein addition (Corliss,

Finley, Basu, Kincs, & Howard, 2000).
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In a follow up study by the Zychowski et al. (2018), emulsions with lecithin and whey
protein were found, using synchrotron X-ray scattering, to prevent phytosterol crystallisation
to a greater degree than phytosterol and whey protein emulsions without lecithin alone.
Lecithin, consisting mostly of phosolipids, is well known for its ability to solubilize
phytosterols within micelles and can prevent phytosterol crystallisation (Ostlund et al., 1999).
Thus in the described Monsanto patents, it is unclear if the decrease in phytosterol
crystallisation is due to the presence of egg protein and/or addition of lecithin into the emulsion-
based systems. Phytosterols have also been documented via fluoresce probes to bind with the
fungal protein called elicithin. This cysteine rich-protein functions as an extracellular sterol
carrier protein and provides the fungi with phytosterols which are needed for plant membrane
synthesis, as some Phytophthora fungi cannot synthesize phytosterols internally (Mikes et al.,
1998). Whey proteins also possess a high concentration of cysteine amino acids, which could
also aid in its ability to interact with phytosterols at the emulsion interface (Keri Marshall,

2004).

The interaction parameter reached its most negative result (strongest interaction) at 4%
phytosterol and 1% protein, which also coincided with the lower limit of interfacial tension on
the tensiometer. Phytosterol levels > 5% resulted in lower levels of protein adsorption and
higher levels of phytosterol adsorption and interaction parameters. In other whey protein-
surfactant systems, once protein adsorption has been saturated, additional surfactant has been
found to drive hydrophobic interaction between the complexes. This leads to decreased surface
activity of the complex and, thus, the complex must compete for the interface with free
surfactant molecules (Wistneck et al., 1996). Results from the previously conducted study by
Zychowski et al. (2016), found that in emulsions with > 8% phytosterols and 1% protein or

phytosterols alone were not stable and could not be homogenized. This confirms the calculated
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results, suggesting that, at a higher concentration of phytosterol enrichment, the interfacial
composition is dominated by phytosterols. The results calculated via RST serve as
quantification of the interaction between phytosterols and whey proteins at the surface

interface.

This synergism was recorded and modelled to occur at the interface at 60 °C, which
was the temperature at which the emulsions were formed, indicating potential relationship
between phytosterols and whey proteins at this temperature. However, these emulsions were
cooled to 20 °C for storage and, during this time, the phytosterols were found to crystallize in
both the 0.3% and 0.6% emulsion (Zychowski et al., 2018). At 20 °C in the 0.6% PE emulsion
some of the phytosterol crystalline material appears to be present at the interface, as changes
in morphology are visible from microscopy images (Fig. 2 -4). Thus, it is hypothesised that
phytosterols and proteins remain at the interface and within the droplet during this cooling
process and impact the morphology and the size of the emulsion droplets. However, it is
important to consider how the interfacial tension could be changing during this cooling process

and how phytosterol crystallization at the o/w interface could be influencing this process.

Regarding interfacial tension research has demonstrated that as the temperature of an
o/w system containing a surfactant decreases, so does the interfacial tension (Salager, Morgan,
Schechter, Wade, & Vasquez, 1979; Spaepen, 1994). As this system cools further, the free
energy of the system increases until the activation energy for crystallisation is reached. Once
this activation energy is met, nuclei form and a negative change in free energy occurs
(Damodaran, Parkin, & Fennema, 2007; Widlak, Hartel, & Narine, 2001). These nuclei grow
into crystals which can stabilise or destabilise an interface based on the wetting properties of

the solid-crystal at the oil and water interface. If the crystal forms a contact angle between the
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oil and water interface of less than 90°, the crystal can stabilise an o/w emulsion (Rousseau,

2000).

In non-food system, colloidal particles such as paraffin wax can be used to stabilise an
emulsion system without the use of an emulsifier. In food systems generally, the presence of
some surfactant is required. The properties of these surfactants can change the observed contact
angle and, thus, the observed interfacial tension (Rousseau, 2000). Campbell (1989) evaluated
palm oil fat crystals for contact angle at the o/w interface and emulsion stability using different
emulsifiers (3 different monoacylglycerols (MAG), Span 80, lecithin and sodium caseinate).
Interestingly MAG, Span 80 and lecithin had no effect on the contact angle of the palm oil
crystals. However after 1% sodium caseinate was added into the solution, smaller contact
angles were observed with concurrently more stable emulsions. This was believed to be due to
the protein being able to alter the polar interactions between the emulsifiers and crystals, which

ultimately led to a decrease in the contact angles.

In a similar study, glycerol monopalmitate (GMP), a fat which crystallises around 18
C, was added to an oil and water interface and the system was crystallised between 40 °C to 1
°C. As the interface with only GMP, oil and water cooled, crystallisation was observed as a
sharp decline in interfacial tension. Conversely, milk proteins alone were added into the
aqueous phase and interfacial tension was found not to change significantly across the
temperature range. However, when GMP and milk protein were combined, the two gave a
lower interfacial tension than what was observed separately. During GMP crystallisation the
combined interface decreased significantly, as observed during GMS crystallisation alone but
the GMP appeared to “squeezed out” the milk proteins presence at the interface (Krog &

Larsson, 1992).
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In our system, at room temperature, it can be judged that the PE emulsion interface is
not completely covered in phytosterol crystals even at 0.6% PE, and that protein is present at
the interface(Fig. 3)./Confocal images detail the displacement of protein from the oil and water
interface where phytosterols crystals are present, as reported by Krog & Larsson (1992).
However, during emulsion formation, it is believed that both phytosterols and whey protein
interact synergistically, as modelled and observed with interfacial tension measurement; this
interaction gives rises to significantly smaller emulsion droplets and the observed changes in
emulsion morphology. During cooling, the interfacial tension most likely decreases and some
of the phytosterol present at the interface crystallise. The extent of the interaction between
whey protein and phytosterols has yet to be studied at lower temperatures, along with the actual
contact angle of phytosterols at o/w interfaces and this could examined in future studies.
However, despite the presence of phytosterol crystals, PE enriched emulsion, up to 0.6% wt/wt,
remain stable over the course of a month, as compared to emulsions without phytosterols

present, suggesting that these phytosterols do not destabilise the interface significantly.
5. Conclusions

Phytosterol crystallization impacts the bioaccessibility of bioactive compounds and can
possibly occur at the interface phytosterol-enriched emulsion as demonstrated by confocal,
cryo-SEM, and polarized light microscopy. Upon examining the emulsion interface, interfacial
tension results demonstrated that both phytosterols and whey proteins were able to lower
interfacial tension. However, the combination of phytosterols and whey protein was able to
lower interfacial tension to a greater extent than the two components separately, demonstrating
synergism between the two compounds. These results were confirmed by interfacial modeling
results, suggesting that the two compounds were interacting at the interface. This type of

behavior between phytosterols and whey protein is not well studied and highlights a novel
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exploitable characteristic of phytosterols, which can be utilized within the functional food
industry. Additionally, this work highlights the need to monitor crystallization within and at
the surface of the phytosterol-enriched matrices to improve bioaccessibility in the final food

product.
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Tables

Table 1 Interfacial tension for oil and water systems containing different concentrations of whey

protein and phytosterols. All interfaces contained water and medium chain triglycerides, but some
interfaces were respectively enriched with either/both whey protein and phytosterols.

Interfacial tension (yI) (mN/m)

Interface 0 min 5 min 30 min A (0-5min) A (0-30min)
Water/mct 20.4+05° 19.9+04%  196+0.3*  05+06%¢ 09+0.6%
Water/1% ps 20.3+0.2° 195+0.2*  186+05°  0.8+0.3% 1706
Water/2% ps 17.4+04> 17.2+0.5° 16.6 £0.6°  0.2+0.6%cd" 0.8 +0.7%°
Water/3% ps 156 +0.1° 15.6+0.1° 155+02°  0.1+0.2°"  0.1+0.2%
Water/4% ps 13.6+0.4% 136+04Y 136+04° 0.0x0.6 0.0 £0.7%
Water/5% ps 11.2+0.5% 11.2+05° 10.8 + 0.5¢ 0.0+0.8%¢"  0.4+0.7¢
Water/6% ps 9.3+0.3f 9.6 +£0.3f 10.2+0.7¢  -0.3+0.4f -0.9+0.7¢
0.5% pro/mct 10.0 +0.5e" 9.3+ 0.6 6.8 +0.4° 0.8+0.8%®  33+0.79
1.0% pro/mct 10.0 +0.4°" 9.1 +0.3% 6.3 +£0.3¢ 0.9+0.5%  37+05%
1.5% pro/mct 9.2+0.5f 8.7 £ 0.49 6.2 + 0.5 0.6 +0.60¢ 3.0+0.79
2.0% pro/mct 9.7 0.4 8.2 +£0.3%" 58+0.19  15+05%  39+0.4%
3.0% pro/mct 9.6 + 0.6 8.3+ 0.5%" 59+0.79  13+08%"  3.8+0.9%
1.0% pro/1.0% ps 9.1 +0.2f 8.3 £0.19" 6.9 +0.2° 0.8+0.2%  22+0.2
1.0% pro/2.0% ps 9.4+ 0.2 75+0.1" 5.4 +0.1%9 1.9+0.2" 4.1 +0.29"
1.0% pro/3.0% ps 7.3 +0.59 5.8+ 0.3 3.5+0.2" 1.5+0.6%"  3.8+0.6%
1.0% pro/4.0% ps 5.9 +0.6" 2.7+0.2 2.2+0.4 3.2+0.6 3.6 £0.79"
1.0% pro/5.0% ps 3.6 +0.5' 2.7+0.1 2.3+0.3 0.9+05°  13+0.6%°
1.0% pro/6.0% ps 2.7 = 0.5' 25+05 2.6 +0.31 0.2 £0.7%"  0.1+0.6%

Within a column, values with different superscript letters are significantly different (p < 0.05).
A=Difference between yI values at different time points.
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Table 2: Interfacial composition of phytosterols and protein as a function of phytosterol concentration
in bulk oil phase

Bulk Interfacial Interfacial

Bulk Total Phytosterols ~ Bulk Protein  Interfacial COMPosition  Composition |nteraction
Concentration Concentration Concentration Tension ~ PNYIOSIerols  protein Xp  parameter
(Wt%) Ws (wt%) Wp (Wt%) (mN/m)  Xs (mol%)  (mol%) B

3 2 1 54 54 46 -2.90

4 3 1 3.5 69 31 -5.05

5 4 1 2.2 77 23 -6.74

6 5 1 2.3 82 18 -5.64

7 6 1 2.6 88 12 -4.42

The interface with 1% phytosterol and 1% bulk protein was not included as it did not converge with the
Rosen and Hau model (Rosen & Hua, 1982). Interfacial tension measurements were taken after 30 min
at 60°C.
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Figure Captions.

Figure 1. Particle size distribution of emulsions with 10% milk fat: 1% protein: 89% H>O
with different phytosterol-enrichment (PE) levels: (£) 0.0% PE emulsion (the control), (@)

0.3% PE emulsion, (#) 0.6% PE emulsion.

Figure 2. Polarized light micrograph (partially uncrossed polar filters) of 0.6% w/w
phytosterol emulsion showing elongated birefringent crystals associated with fat droplets

(arrows) at 20°C and 50°C. Scale bar = 10 um. PC = phytosterol crystal.

Figure 3. Confocal laser scanning images of phytosterol-enriched (PE) emulsions at 3 and 5x
magnification, superscripted as ‘a’ and ‘b’, respectively. Emulsions are labelled as (1) 0.0%
PE emulsion (control), (2) 0.3% PE emulsion, and (3) 0.6% PE emulsion. Images show the
distribution of fat and protein, with fat represented in green and protein in red. Image 3b
shows an enlarged section of a protein only-scan of PE emulsion droplets with phytosterol
crystals. Scale bar = 10 um. Note: crystalline phytosterols both at the interface and within fat

droplets are made visible by negative contrast (white arrows). PC = phytosterol crystal.

Figure 4. Cryo-scanning electron micrographs of cross sections of emulsions with different
levels of phytosterol enrichment. Emulsions are labelled as (1) 0.0% PE emulsion (control),
(2) 0.3% PE emulsion and (3) 0.6% PE emulsion. Enlarged section highlights the presence of

crystal-like material inside of emulsion droplets. Scale bar = 10 pm.
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Figure 5. (a) Dynamic interfacial tension measurements of samples over 30 min at 60 °C. All
interfaces contained water (aqueous phase) and MCT (oil) but some phases were enriched
with either whey protein and/or phytosterol, respectively. Interfaces are denoted as (A)
water/MCT, (@) water/3% phytosterol, (m) water/6% phytosterol, (A) 1% protein/MCT, (m)
1% protein/3% phytosterol, and (@) 1% protein/6% phytosteral. (b) Dynamic interfacial
tension measurements of samples containing 1% protein and different concentrations of
phytosterols dissolved into MCT; (@) 1% , (A) 2%, (m) 3%, ( ) 4% phytosterol, (A ) 5%, (¢

) 6%

Figure 6. Interfacial tension in weight percentages after 30 min at 60 °C; interfaces are (m)
water/(1-6%) phytosterols, (®;0.5-3%) protein/MCT and (#) 1% protein/(1-6% phytosterols).
There is a synergistic effect between the protein and phytosterols adsorbed at the oil-water
interface which results in a decrease of interfacial tension in mixed interfaces (represented by

dashed lines).

Figure 7. Isotherm fitting to equilibrium interfacial tensions (measured after 30 min at 60
°C). Langmuir and Frumkin isotherms best fit the interfacial tensions for protein (@) and
phytosterols (m) respectively. The Langmuir adsorption isotherm was fitted with parameters:
adsorption rate constant b = 5.46*10" I/mmol, Area, ®o = 3.6*10° m?/mol. Frumkin
adsorption isotherm was with parameters: adsorption rate constant b = 9.13*10* I/mmol,

Area, mo = 5*10* m?/mol and interaction parameter o = 2.

34



References

Acevedo, N. C., & Franchetti, D. (2016). Analysis of co-crystallized free phytosterols with
triacylglycerols as a functional food ingredient. Food Research International, 85, 104-
112. doi:http://dx.doi.org/10.1016/j.foodres.2016.04.012

Andrade, J., & Corredig, M. (2016). Vitamin D3 and phytosterols affect the properties of
polyglycerol polyricinoleate (PGPR) and protein interfaces. Food Hydrocolloids, 54,
Part B, 278-283. doi:http://dx.doi.org/10.1016/j.foodhyd.2015.10.001

Auty, M.A.E., Twomey, M., Guinee, T.P. and Mulvihill, D.M. (2001). Development and
application of confocal scanning laser microscopy methods for studying the distribution
of fat and protein in selected dairy products. Journal of Dairy Research, 68, 417-427.

Berger, A., Jones, P. J. H., & Abumweis, S. S. (2004). Plant sterols: factors affecting their
efficacy and safety as functional food ingredients. Lipids Health and Disease, 3(5),
907-9109.

Campbell, 1. J. (1989). The role of fat crystals in emulsion stability (pp. 272-282): The Royal
Society of Chemistry: Cambridge.

Campbell, S. D., Goff, & Rousseau, D. (2001). Relating bulk-fat properties to emulsified
systems: Characterization of emulsion destabilization by crystallizing fats. In N.
Widlak, R. Hartel, & S. Narine (Eds.), Crystallization and solidification properties of
lipids. (pp. 176-189). Champaign, Illinois: AOCS Press.

Carden, T. J., Hang, J., Dussault, P. H., & Carr, T. P. (2015). Dietary plant sterol esters must
be hydrolyzed to reduce intestinal cholesterol absorption in hamsters. The Journal of
Nutrition.

Carr, T. P., Krogstrand, K. L. S., Schlegel, V. L., & Fernandez, M. L. (2009). Stearate-enriched
plant sterol esters lower serum LDL cholesterol concentration in normo-and
hypercholesterolemic adults. The Journal of nutrition, 139(8), 1445-1450.

Cercaci, L., Rodriguez-Estrada, M. T., Lercker, G., & Decker, E. A. (2007). Phytosterol
oxidation in oil-in-water emulsions and bulk oil. Food Chemistry, 102(1), 161-167.

Chen, X.-W., Guo, J., Wang, J.-M., Yin, S.-W., & Yang, X.-Q. (2016). Controlled volatile
release of structured emulsions based on phytosterols crystallization. Food
Hydrocolloids, 56, 170-179. doi:http://dx.doi.org/10.1016/j.foodhyd.2015.11.035

Clifton, P. (2007). Plant sterols and Stanols as Functional Ingredients in Dairy Products (M.
Saarela Ed. Vol. 2). Oxford, UK Elsevier.

Corliss, G., Finley, J. W., Basu, H. N., Kincs, F., & Howard, L. (2000).

Courthaudon, J.-L., Dickinson, E., Matsumura, Y., & Williams, A. (1991). Influence of
emulsifier on the competitive adsorption of whey proteins in emulsions. Food
Structure, 10(2), 1.

Damodaran, S., Parkin, K. L., & Fennema, O. R. (2007). Fennema's food chemistry. Boca
Raton, FL: CRC press.

Dickinson, E. (1999). Food Emulsions and Foams. Witney, UK: Elsevier Applied Science
Publishers Ltd.

Drapala, K. P., Auty, M. A. E., Mulvihill, D. M., & O'Mahony, J. A. (2015). Influence of
lecithin on the processing stability of model whey protein hydrolysate- based infant
formula emulsions. International Journal of Dairy Technology, 68(3), 322-333.

Engel, R., & Schubert, H. (2005). Formulation of phytosterols in emulsions for increased dose
response in functional foods. Innovative Food Science & Emerging Technologies, 6(2),
233-237.

35


http://dx.doi.org/10.1016/j.foodhyd.2015.11.035

Heertje, 1. (1993). Microstructural studies in fat research. Food structure, 12(1), 10.

Henson, S., Cranfield, J., & Herath, D. (2010). Understanding consumer receptivity towards
foods and non- prescription pills containing phytosterols as a means to offset the risk
of cardiovascular disease: an application of protection motivation theory. International
Journal of Consumer Studies, 34(1), 28-37.

Herrera, M. L., & Hartel, R. W. (2000). Effect of processing conditions on crystallization
kinetics of a milk fat model system. Journal of the American Oil Chemists' Society,
77(11), 1177-1188. doi:10.1007/s11746-000-0184-4

Jandacek, R. J., Webb, M. R., & Mattson, F. H. (1977). Effect of an aqueous phase on the
solubility of cholesterol in an oil phase. Journal of Lipid Research, 18(2), 203-210.

Jones, P.J. H., & AbuMweis, S. S. (2009). Phytosterols as functional food ingredients: linkages
to cardiovascular disease and cancer. Current Opinion in Clinical Nutrition &
Metabolic Care, 12(2), 147-151.

Jones, P. J. H., MacDougall, D. E., Ntanios, F., & Vanstone, C. A. (1997). Dietary phytosterols
as cholesterol-lowering agents in humans. Canadian Journal of Physiology and
Pharmacology, 75(3), 217-227. doi:10.1139/y97-011

Jumaa, M., & Miller, B. W. (1998). The effect of oil components and homogenization
conditions on the physicochemical properties and stability of parenteral fat emulsions.
International Journal of Pharmaceutics, 163(1), 81-89.

Keri Marshall, N. (2004). Therapeutic applications of whey protein. Alternative Medicine
Review, 9(2), 136-156.

Krog, N., & Larsson, K. (1992). Crystallization at interfaces in food emulsions—a general
phenomenon. Lipid/Fett, 94(2), 55-57.

Li, M., Auty, M. A., O'Mahony, J. A., Kelly, A. L., & Brodkorb, A. (2016). Covalent labelling
of B-casein and its effect on the microstructure and physico-chemical properties of
emulsions stabilised by f-casein and whey protein isolate. Food Hydrocolloids.

Lopez, C., Bourgaux, C., Lesieur, P., & Ollivon, M. (2007). Coupling of time-resolved
synchrotron X-ray diffraction and DSC to elucidate the crystallisation properties and
polymorphism of triglycerides in milk fat globules. Le Lait, 87(4-5), 459-480.

Maher, P. G., Auty, M. A. E., Roos, Y. H., Zychowski, L. M., & Fenelon, M. A. (2015).
Microstructure and lactose crystallization properties in spray dried nanoemulsions.
Food Structure, 3(0), 11. doi:http://dx.doi.org/10.1016/j.foostr.2014.10.001

Mao, L., Xu, D., Yang, J., Yuan, F., Gao, Y., & Zhao, J. (2009). Effects of small and large
molecule emulsifiers on the characteristics of B-carotene nanoemulsions prepared by
high pressure homogenization. Food Technology and Biotechnology, 47(3), 336-342.

McClements, D. J. (2004). Protein-stabilized emulsions. Current Opinion in Colloid &
Interface Science, 9(5), 305-313. doi:http://dx.doi.org/10.1016/j.cocis.2004.09.003

McClements, D. J. (2012). Crystals and crystallization in oil-in-water emulsions: Implications
for emulsion-based delivery systems. Advances in Colloid and Interface Science, 174,
1-30.

McClements, D. J. (2015). Food emulsions: principles, practices, and techniques. Boca Raton,
FL: CRC press.

Mikes, V., Milat, M.-L., Ponchet, M., Panabiéres, F., Ricci, P., & Blein, J.-P. (1998). Elicitins,
Proteinaceous Elicitors of Plant Defense, Are a New Class of Sterol Carrier Proteins.
Biochemical and Biophysical Research Communications, 245(1), 133-139.
doi:https://doi.org/10.1006/bbrc.1998.8341

Mobius, D., Miller, R., & Fainerman, V. B. (2001). Surfactants: chemistry, interfacial
properties, applications (Vol. 13): Elsevier.

36


http://dx.doi.org/10.1016/j.foostr.2014.10.001
http://dx.doi.org/10.1016/j.cocis.2004.09.003
https://doi.org/10.1006/bbrc.1998.8341

Moruisi, K. G., Oosthuizen, W., & Opperman, A. M. (2006). Phytosterols/stanols lower
cholesterol concentrations in familial hypercholesterolemic subjects: a systematic
review with meta-analysis. Journal of the American College of Nutrition, 25(1), 41-48.

Norton, J. E., & Fryer, P. J. (2012). Investigation of changes in formulation and processing
parameters on the physical properties of cocoa butter emulsions. Journal of Food
Engineering, 113(2), 329-336.

Ostlund, R. E. (2002). Phytosterols in human nutrition. Annual Review of Nutrition, 22(1), 533-
549.

Ostlund, R. E., Spilburg, C. A., & Stenson, W. F. (1999). Sitostanol administered in lecithin
micelles potently reduces cholesterol absorption in humans. The American Journal of
Clinical Nutrition, 70(5), 826-831.

Pouteau, E. B., Monnard, I. E., Piguet-Welsch, C., Groux, M. J. A., Sagalowicz, L., & Berger,
A. (2003). Non-esterified plant sterols solubilized in low fat milks inhibit cholesterol
absorption. European Journal of Nutrition, 42(3), 154-164. doi:10.1007/s00394-003-
0406-6

Pradines, V., Krigel, J. r., Fainerman, V. B., & Miller, R. (2008). Interfacial properties of
mixed B-lactoglobulin— SDS layers at the water/air and water/oil interface. The Journal
of Physical Chemistry B, 113(3), 745-751.

Reddy, S., & Ghosh, P. (2010). Adsorption and coalescence in mixed surfactant systems:
Water— hydrocarbon interface. Chemical Engineering Science, 65(14), 4141-4153.

Rosen, M. J., & Hua, X. Y. (1982). Surface concentrations and molecular interactions in binary
mixtures of surfactants. Journal of Colloid and Interface Science, 86(1), 164-172.

Rosen, M. J., & Zhou, Q. (2001). Surfactant— surfactant interactions in mixed monolayer and
mixed micelle formation. Langmuir, 17(12), 3532-3537.

Rossi, L., ten Hoorn, J. W. S., Melnikov, S. M., & Velikov, K. P. (2010). Colloidal
phytosterols: synthesis, characterization and bioaccessibility. Soft Matter, 6(5), 928-
936.

Rouimi, S., Schorsch, C., Valentini, C., & Vaslin, S. (2005). Foam stability and interfacial
properties of milk protein—surfactant systems. Food Hydrocolloids, 19(3), 467-478.
doi:http://dx.doi.org/10.1016/j.foodhyd.2004.10.032

Rousseau, D. (2000). Fat crystals and emulsion stability — a review. Food Research
International, 33(1), 3-14. doi:http://dx.doi.org/10.1016/S0963-9969(00)00017-X

Rubingh, D. N. (1979). Mixed micelle solutions Solution chemistry of surfactants (pp. 337-
354): Springer.

Salager, J., Morgan, J., Schechter, R., Wade, W., & Vasquez, E. (1979). Optimum formulation
of surfactant/water/oil systems for minimum interfacial tension or phase behavior.
Society of Petroleum Engineers Journal, 19(02), 107-115.

Santas, J., Codony, R., & Rafecas, M. (2013). Phytosterols: Beneficial Effects. In K. G.
Ramawat & J.-M. Mérillon (Eds.), Natural Products (pp. 3437-3464): Springer Berlin
Heidelberg.

Spaepen, F. (1994). Homogeneous Nucleation and the Temperature Dependence of the Crystal-
Melt Interfacial Tension. In H. Ehrenreich & D. Turnbull (Eds.), Solid State Physics
(\Vol. 47, pp. 1-32): Academic Press.

Sinder, A., Scherze, I., & Muschiolik, G. (2001). Physico-chemical characteristics of oil-in-
water emulsions based on whey protein—phospholipid mixtures. Colloids and Surfaces:
Biointerfaces, 21(1-3), 75-85. doi:http://dx.doi.org/10.1016/S0927-7765(01)00186-2

Thivilliers, F., Laurichesse, E., Saadaoui, H., Leal-Calderon, F., & Schmitt, V. (2008).
Thermally induced gelling of oil-in-water emulsions comprising partially crystallized
droplets: the impact of interfacial crystals. Langmuir, 24(23), 13364-13375.

37


http://dx.doi.org/10.1016/j.foodhyd.2004.10.032
http://dx.doi.org/10.1016/S0963-9969(00)00017-X
http://dx.doi.org/10.1016/S0927-7765(01)00186-2

Toro- Vazquez, J. F., Rangel- Vargas, E., Dibildox- Alvarado, E., & Charé- Alonso, M. A.
(2005). Crystallization of cocoa butter with and without polar lipids evaluated by
rheometry, calorimetry and polarized light microscopy. European Journal of Lipid
Science and Technology, 107(9), 641-655.

Truong, T., Bansal, N., Sharma, R., Palmer, M., & Bhandari, B. (2014). Effects of emulsion
droplet sizes on the crystallisation of milk fat. Food Chemistry, 145(0), 725-735.
doi:http://dx.doi.org/10.1016/j.foodchem.2013.08.072

Waninge, R., Walstra, P., Bastiaans, J., Nieuwenhuijse, H., Nylander, T., Paulsson, M., &
Bergenstahl, B. (2005). Competitive Adsorption between -Casein or 3-Lactoglobulin
and Model Milk Membrane Lipids at Oil-Water Interfaces. Journal of Agricultural and
Food Chemistry, 53(3), 716-724. doi:10.1021/jf049267y

Widlak, N., Hartel, R. W., & Narine, S. (2001). Crystallization and solidification properties of
lipids. Champaign, IL: The American Oil Chemists Society.

Wastneck, R., Krégel, J., Miller, R., Wilde, P. J., & Clark, D. C. (1996). The adsorption of
surface-active complexes between B-casein, -lactoglobulin and ionic surfactants and
their shear rheological behaviour. Colloids and Surfaces A: Physicochemical and
Engineering Aspects, 114, 255-265.

Zawistowski, J. (2010). 17 Tangible health benefits of phytosterol functional foods. Functional
Food Product Development, 2.

Zhou, Q., & Rosen, M. J. (2003). Molecular interactions of surfactants in mixed monolayers at
the air/aqueous solution interface and in mixed micelles in aqueous media: the regular
solution approach. Langmuir, 19(11), 4555-4562.

Zychowski, L. M., Logan, A., Augustin, M. A., Kelly, A. L., O'Mahony, J. A., Conn, C. E., &
Auty, M. A. (2018). Phytosterol -crystallisation within bulk and dispersed
triacylglycerol matrices as influenced by oil droplet size and low molecular weight
surfactant addition. Food Chemistry, 264, 24-33.

Zychowski, L. M., Logan, A., Augustin, M. A., Kelly, A. L., Zabara, A., O’Mahony, J. A., ..
. Auty, M. A. (2016). Effect of Phytosterols on the Crystallization Behavior of Oil-in-
Water Milk Fat Emulsions. Journal of Agricultural and Food Chemistry, 64(34), 6546—
6554.

38


http://dx.doi.org/10.1016/j.foodchem.2013.08.072

Figures

4.5 -

Figure 1

0.1

Particle size (um)

100

39



ACCEPTED MANUSCRIPT

Figure 2

40



Figure 3

41



Figure 4

42



15 20 25 30
Time (min)

10

=
—

K]

L L] L]

SN - O v T e

(uy/Nw) A

L
NN e O

15 20 25 30

Time (min)

10

Figure 5

43



(yI (mN/m)
= 8 & = = =2

oo
1

Wp+Ws (%)

Figure 6

44



ACCEPTED MANUSCRIPT

25

(yI (mN/m)

0 1 2 3 4
Wt (%)

A
N

Figure 7

45



