836 research outputs found

    Optical Spectroscopy of K-selected Extremely Red Galaxies

    Full text link
    We have obtained spectroscopic redshifts for 24 red galaxies from a sample with median Ks=18.7 and F814W - Ks > 4, using the Keck telescope. These EROshave high resolution morphologies from HST (Yan & Thompson 2003). Among the 24 redshifts, the majority (92%) are at 0.9<z<1.5 0.9 < z < 1.5. We derived the rest-frame J-band luminosity function at zmedian=1.14z_{median} =1.14. Our result suggests that the luminosity evolution between bright EROs at z∼1z\sim 1 and the present-day >>L∗^* massive galaxies is at most about 0.7 magnitude. Combining the morphologies and deep spectroscopy revealed the following properties: (1) 86% of the spectra have absorption features from old stars, suggesting that the dominant stellar populations seen in the rest-frame UV are old stars. 50% of the sources have pure absorption lines, while the remaining 50% have emission lines, indicating recent star formation. We conclude that the color criterion for EROs is very effective in selecting old stellar populations at z∼1z \sim 1, and a large fraction of these systems with prominent old stellar populations also have recent star formation. (2) The 12 emission line systems have the same number of disk and bulge galaxies as in the remaining 12 pure absorption line systems. We conclude that spectral classes do not have a simple, direct correspondence with morphological types. (3) Three EROs could be isolated, pure passively evolving early-type galaxies at z∼1z\sim 1. This implies that only a small fraction (10%--15%) of early-type galaxies are formed in a rapid burst of star formation at high redshifts and evolved passively since then. (Abridged).Comment: 27 pages, 8 figures. Accepted for publication in Astronomical Journal, issue March 200

    The contribution of starbursts and normal galaxies to infrared luminosity functions at z < 2

    Get PDF
    We present a parameter-less approach to predict the shape of the infrared (IR) luminosity function (LF) at redshifts z < 2. It requires no tuning and relies on only three observables: (1) the redshift evolution of the stellar mass function for star-forming galaxies, (2) the evolution of the specific star formation rate (sSFR) of main-sequence galaxies, and (3) the double-Gaussian decomposition of the sSFR-distribution at fixed stellar mass into a contribution (assumed redshift- and mass-invariant) from main-sequence and starburst activity. This self-consistent and simple framework provides a powerful tool for predicting cosmological observables: observed IR LFs are successfully matched at all z < 2, suggesting a constant or only weakly redshift-dependent contribution (8-14%) of starbursts to the star formation rate density. We separate the contributions of main-sequence and starburst activity to the global IR LF at all redshifts. The luminosity threshold above which the starburst component dominates the IR LF rises from log(LIR/Lsun) = 11.4 to 12.8 over 0 < z < 2, reflecting our assumed (1+z)^2.8-evolution of sSFR in main-sequence galaxies.Comment: 7 pages, 4 figures & 1 table. Accepted for publication in ApJL. Minor typos corrected in v2 following receipt of proof

    Near-IR bright galaxies at z~2. Entering the spheroid formation epoch ?

    Full text link
    Spectroscopic redshifts have been measured for 9 K-band luminous galaxies at 1.7 < z < 2.3, selected with Ks < 20 in the "K20 survey" region of the Great Observatories Origins Deep Survey area. Star formation rates (SFRs) of ~100-500 Msun/yr are derived when dust extinction is taken into account. The fitting of their multi-color spectral energy distributions indicates stellar masses M ~ 10^11 Msun for most of the galaxies. Their rest-frame UV morphology is highly irregular, suggesting that merging-driven starbursts are going on in these galaxies. Morphologies tend to be more compact in the near-IR, a hint for the possible presence of older stellar populations. Such galaxies are strongly clustered, with 7 out of 9 belonging to redshift spikes, which indicates a correlation length r_0 ~ 9-17 h^-1 Mpc (1 sigma range). Current semianalytical models of galaxy formation appear to underpredict by a large factor (about 30) the number density of such a population of massive and powerful starburst galaxies at z ~ 2. The high masses and SFRs together with the strong clustering suggest that at z ~ 2 we may have started to explore the major formation epoch of massive early-type galaxies.Comment: accepted on June 17. To appear on ApJ Letter

    The Subillimeter Properties of Extremely Red Objects in the CUDSS Fields

    Full text link
    We discuss the submillimeter properties of Extremely Red Objects (EROs) in the two Canada-UK Deep Submillimeter Survey (CUDSS) Fields. We measure the mean submillimeter flux of the ERO population (to K < 20.7) and find 0.4 +/- 0.07 mJy for EROs selected by (I-K) > 4.0 and 0.56 +/- 0.09 mJy for EROs selected by (R-K) > 5.3 but, these measurements are dominated by discrete, bright submillimeter sources. We estimate that EROs produce 7-11% of the far-infrared background at 850um. This is substantially less than a previous measurement by Wehner, Barger & Kneib (2002) and we discuss possible reasons for this discrepancy. We show that ERO counterparts to bright submillimeter sources lie within the starburst region of the near-infrared color-color plot of Pozzetti & Mannucci (2000). Finally, we claim that pairs or small groups of EROs with separations of < 10 arcseconds often mark regions of strong submillimeter flux.Comment: 9 pages, 8 figures, accepted for publication in Ap

    A wide area survey for high-redshift massive galaxies. I. Number counts and clustering of BzKs and EROs

    Full text link
    We have combined deep BRIz' imaging over 2x940 arcmin^2 fields obtained with the Suprime-Cam on the Subaru telescope with JKs imaging with the SOFI camera at the New Technology Telescope to search for high-redshift massive galaxies. K-band selected galaxies have been identified over an area of ~920 arcmin^2 to K_Vega=19.2, of which 320 arcmin^2 are complete to K_Vega=20. The BzK selection technique was used to obtain complete samples of ~500 candidate massive star-forming galaxies (sBzKs) and ~160 candidate massive, passively-evolving galaxies (pBzKs), both at 1.4 5 criterion we also identified ~850 extremely red objects (EROs). The surface density of sBzKs and pBzKs is found to 1.20+/-0.05 arcmin^{-2} and 0.38+/-0.03 arcmin^{-2}, respectively. Both sBzKs and pBzKs are strongly clustered, at a level at least comparable to that of EROs, with pBzKs appearing more clustered than sBzKs. We estimate the reddening, star formation rates (SFRs) and stellar masses (M_*) of the sBzKs, confirming that to K_Vega~20 median values are M_*~10^{11}M_sun, SFR 190M_sun yr^{-1}, and E(B-V)~0.44. The most massive sBzKs are also the most actively star-forming, an effect which can be seen as a manifestation of downsizing at early epochs. The space density of massive pBzKs at z~1.4-2 is 20%+/-7% that of similarly massive early-type galaxies at z~0, and similar to that of sBzKs of the same mass. We argue that star formation quenching in these sBzKs will result in nearly doubling the space density of massive early-type galaxies, thus matching their local density.Comment: 19 pages, 13 figures, accepted by ApJ. While checking the proofs we became aware of a material mistake of non-trivial scientific relevance. In the original it was reported that the comoving volume density of passive BzK-selected galaxies with =1.7 and more massive than 10^{11}M_sun was 45%+/-15% of the local number density of similarly massive early-type galaxies. This fraction actually turns out to be 20%+/-7%. Section 6.4, point 5 in section 7, and the abstract have been modified accordingl

    The contribution of starbursts and normal galaxies to IR luminosity functions and the molecular gas content of the Universe at z<2

    Get PDF
    We present a parameter-less approach capable of predicting the shape of the infrared luminosity function at redshifts z ≤2. It relies on three observables: (1) the redshift evolution of the stellar mass function for star-forming galaxies, (2) the evolution of the specific star formation rate of main-sequence galaxies, and (3) the double-Gaussian decomposition of the specific star formation rate distribution at fixed stellar mass into the contributions (assumed to be redshift- and mass-invariant) from main-sequence and starburst activity. Using this self-consistent and simple framework, we identify the contributions of main-sequence and starburst activity to the global infrared luminosity function and find a constant or only weakly redshift-dependent contribution (8–14%) of starbursts to the star formation rate density at z ≤2. Over the same redshift range, we also infer the evolution of the cosmic abundance of molecular gas in star-forming galaxies, based on the relations between star formation rate and molecular gas mass followed by normal and starburst galaxies

    Hydrodynamic coupling and rotational mobilities near planar elastic membranes

    Get PDF
    We study theoretically and numerically the coupling and rotational hydrodynamic interactions between spherical particles near a planar elastic membrane that exhibits resistance towards shear and bending. Using a combination of the multipole expansion and Faxen's theorems, we express the frequency-dependent hydrodynamic mobility functions as a power series of the ratio of the particle radius to the distance from the membrane for the self mobilities, and as a power series of the ratio of the radius to the interparticle distance for the pair mobilities. In the quasi-steady limit of zero frequency, we find that the shear- and bending-related contributions to the particle mobilities may have additive or suppressive effects depending on the membrane properties in addition to the geometric configuration of the interacting particles relative to the confining membrane. To elucidate the effect and role of the change of sign observed in the particle self and pair mobilities, we consider an example involving a torque-free doublet of counterrotating particles near an elastic membrane. We find that the induced rotation rate of the doublet around its center of mass may differ in magnitude and direction depending on the membrane shear and bending properties. Near a membrane of only energetic resistance toward shear deformation, such as that of a certain type of elastic capsules, the doublet undergoes rotation of the same sense as observed near a no-slip wall. Near a membrane of only energetic resistance toward bending, such as that of a fluid vesicle, we find a reversed sense of rotation. Our analytical predictions are supplemented and compared with fully resolved boundary integral simulations where a very good agreement is obtained over the whole range of applied frequencies.Comment: 14 pages, 7 figures. Revised manuscript resubmitted to J. Chem. Phy

    Evidence for Infrared-Faint Radio Sources as z > 1 Radio-Loud AGN

    Get PDF
    Infrared-Faint Radio Sources (IFRSs) are a class of radio objects found in the Australia Telescope Large Area Survey (ATLAS) which have no observable mid-infrared counterpart in the Spitzer Wide-area Infrared Extragalactic (SWIRE) survey. The extended Chandra Deep Field South now has even deeper Spitzer imaging (3.6 to 70 micron) from a number of Legacy surveys. We report the detections of two IFRS sources in IRAC images. The non-detection of two other IFRSs allows us to constrain the source type. Detailed modeling of the SED of these objects shows that they are consistent with high redshift (z > 1) AGN.Comment: 10 pages, 7 figures, accepted for publication in Ap

    The K20 survey. VI. The Distribution of the Stellar Masses in Galaxies up to z~2

    Full text link
    We present a detailed analysis of the stellar mass content of galaxies up to z=2.5 in the K20 galaxy sample, that has a 92% spectroscopic completeness and a complete UBVRIzJKsUBVRIzJK_s multicolor coverage. We find that the M/L ratio decreases with redshift: in particular, the average M/L ratio of early type galaxies decreases with zz, with a scatter that is indicative of a range of star--formation time-scales and redshift of formation. More important, the typical M/L of massive early type galaxies is larger than that of less massive ones, suggesting that their stellar population formed at higher z. The final K20 galaxy sample spans a range of stellar masses from M*=10^9Msun to M*=10^12Msun, with massive galaxies ($M*>10^11Msun) detected up to z~2. We compute the Galaxy Stellar Mass Function at various z, of which we observe only a mild evolution (i.e. by 20-30%) up to z~1. At z>1, the evolution of the GSMF appears to be much faster: at z~2, about 35% of the present day stellar mass in objects with M*~10^11Msun appear to have assembled. We also detect a change in the physical nature of the most massive galaxies, since at z>1 a population of massive star--forming galaxies progressively appears. We finally analyze our results in the framework of Lambda-CDM hierarchical models. First, we show that the large number of massive galaxies detected at high z does not violate any fundamental Lambda-CDM constraint based on the number of massive DM halos. Then, we compare our results with the predictions of renditions of both semianalytic and hydro-dynamical models, that range from severe underestimates to slight overestimates of the observed mass density at z<~2. We discuss how the differences among these models are due to the different implementation of the main physical processes. (Abridged)Comment: Accepted for publication on Astronomy & Astrophysic

    The influence of institutional pressures on climate mitigation and adaptation strategies

    Get PDF
    Starting from institutional theory, this study aims to explore the effects of coercive, normative and mimetic pressures on businesses climate change mitigation and adaptation strategies. In order to test these hypotheses, the study relies on an econometric model by using data from 487 Italian manufacturing companies collected by a questionnaire-based survey. The empirical model based on a multivariate regression reveals that companies which perceive normative and mimetic pressures are more likely to have a higher climate change sensitivity. Moreover, companies with a higher climate change sensitivity are more likely to adopt both mitigation and adaptation strategies. The article provides several contributions. First the study contributes to the debate among institutional scholars by clarifying which institutional pressures exert a more incisive effect on pushing companies to adopt climate actions. Second, it highlights how internal factors play a mediating role between institutional pressures and business climate responses
    • …
    corecore