29 research outputs found

    Simulation of Chemical Reactions Using Stochastic Petri Nets

    Get PDF
    The recent breakthroughs in biological experiments have enabled the researchers to measure the quantities of different chemicals that build biological units such as cells. This type of information can be used to build models that can explain and predict the behaviour of the system. Such models can later be used to design control mechanisms that can influence the behaviour of the system in a desired way. With the help of medicine and biology researchers, the designed control mechanisms can be translated into drugs that can control or cure major diseases. Biological systems usually consist of complex networks of biological components that function through various reactions. In order to affect the behaviour of the system efficiently, the chemicals that have the highest influence on the system behaviour have to be found using a sensitivity analysis. Such chemicals, regarded as inputs, will be the targets for drug design (or other control actions). Various modeling tools have been empolyed to capture the behaviour of biological systems. Perhaps the most widely used models are the ordinary differential equations (ODEs). In this thesis, an alternative model is propposed for the study of the chemical reactions based on stochastic Petri nets, one type of discrete event systems. It is shown that the proposed method can be used to find the changes of the chemical reactants. The advantage of the proposed method is that it is amenable to implementation on computing systems with parallel processors. This in turn reduces the (time) computational complexity (compared with ODE based simulations). The Petri net based simulations are also used to perform sensitivity analysis. The proposed method is illustrated using the Caspase Apoptosis network

    Structural Brain Alterations Associated with Rapid Eye Movement Sleep Behavior Disorder in Parkinson’s Disease

    Get PDF
    Characterized by dream-enactment motor manifestations arising from rapid eye movement (REM) sleep, REM sleep behavior disorder (RBD) is frequently encountered in Parkinson’s disease (PD). Yet the specific neurostructural changes associated with RBD in PD patients remain to be revealed by neuroimaging. Here we identified such neurostructural alterations by comparing large samples of magnetic resonance imaging (MRI) scans in 69 PD patients with probable RBD, 240 patients without RBD and 138 healthy controls, using deformation-based morphometry (p < 0.05 corrected for multiple comparisons). All data were extracted from the Parkinson’s Progression Markers Initiative. PD patients with probable RBD showed smaller volumes than patients without RBD and than healthy controls in the pontomesencephalic tegmentum, medullary reticular formation, hypothalamus, thalamus, putamen, amygdala and anterior cingulate cortex. These results demonstrate that RBD is associated with a prominent loss of volume in the pontomesencephalic tegmentum, where cholinergic, GABAergic and glutamatergic neurons are located and implicated in the promotion of REM sleep and muscle atonia. It is additionally associated with more widespread atrophy in other subcortical and cortical regions whose loss also likely contributes to the altered regulation of sleep-wake states and motor activity underlying RBD in PD patients

    Spontaneous neural activity changes after bariatric surgery : a resting-state fMRI study

    Get PDF
    Background: Metabolic disorders associated with obesity could lead to alterations in brain structure and function. Whether these changes can be reversed after weight loss is unclear. Bariatric surgery provides a unique oppor- tunity to address these questions because it induces marked weight loss and metabolic improvements which in turn may impact the brain in a longitudinal fashion. Previous studies found widespread changes in grey matter (GM) and white matter (WM) after bariatric surgery. However, findings regarding changes in spontaneous neural activity following surgery, as assessed with the fractional amplitude of low frequency fluctuations (fALFF) and regional homogeneity of neural activity (ReHo), are scarce and heterogenous. In this study, we used a longitu- dinal design to examine the changes in spontaneous neural activity after bariatric surgery (comparing pre- to post-surgery), and to determine whether these changes are related to cardiometabolic variables. Methods: The study included 57 participants with severe obesity (mean BMI = 43.1 ± 4.3 kg/m 2 ) who under- went sleeve gastrectomy (SG), biliopancreatic diversion with duodenal switch (BPD), or Roux-en-Y gastric bypass (RYGB), scanned prior to bariatric surgery and at follow-up visits of 4 months ( N = 36), 12 months ( N = 29), and 24 months ( N = 14) after surgery. We examined fALFF and ReHo measures across 1022 cortical and subcor- tical regions (based on combined Schaeffer-Xiao parcellations) using a linear mixed effect model. Voxel-based morphometry (VBM) based on T1-weighted images was also used to measure GM density in the same regions. We also used an independent sample from the Human Connectome Project (HCP) to assess regional differences between individuals who had normal-weight ( N = 46) or severe obesity ( N = 46). Results: We found a global increase in the fALFF signal with greater increase within dorsolateral prefrontal cortex, precuneus, inferior temporal gyrus, and visual cortex. This effect was more significant 4 months after surgery. The increase within dorsolateral prefrontal cortex, temporal gyrus, and visual cortex was more limited after 12 months and only present in the visual cortex after 24 months. These increases in neural activity measured by fALFF were also significantly associated with the increase in GM density following surgery. Furthermore, the in- crease in neural activity was significantly related to post-surgery weight loss and improvement in cardiometabolic variables, such as blood pressure. In the independent HCP sample, normal-weight participants had higher global and regional fALFF signals, mainly in dorsolateral/medial frontal cortex, precuneus and middle/inferior temporal gyrus compared to the obese participants. These BMI-related differences in fALFF were associated with the in- crease in fALFF 4 months post-surgery especially in regions involved in control, default mode and dorsal attention networks. Conclusions: Bariatric surgery-induced weight loss and improvement in metabolic factors are associated with widespread global and regional increases in neural activity, as measured by fALFF signal. These findings along- side the higher fALFF signal in normal-weight participants compared to participants with severe obesity in an independent dataset suggest an early recovery in the neural activity signal level after the surgery

    Neuroanatomical changes in white and grey matter after sleeve gastrectomy

    Get PDF
    Background: MRI studies show that obese adults have reduced grey matter (GM) and white matter (WM) tissue density as well as altered WM integrity. Bariatric surgery can lead to substantial weight loss and improvements in metabolic parameters, but it remains to be examined if it induces structural brain changes. The aim of this study was to characterize GM and WM density changes measured with MRI in a longitudinal setting following sleeve gastrectomy, and to determine whether any changes are related to inflammation and cardiometabolic blood markers. Methods: 29 participants with obesity (age: 45.9 ​± ​7.8 years) scheduled to undergo sleeve gastrectomy were recruited. High-resolution T1-weighted anatomical images were acquired 1 month prior to as well as 4 and 12 months after surgery. GM and WM densities were quantified using voxel-based morphometry (VBM). Circulating lipid profile, glucose, insulin and inflammatory markers (interleukin-6, C-reactive protein and lipopolysaccharide-binding protein) were measured at each time point. A linear mixed effect model was used to compare brain changes before and after SG, controlling for age, sex, initial BMI and diabetic status. To assess the associations between changes in adiposity, metabolism and inflammation and changes in GM or WM density, the mean GM and WM densities were extracted across all the participants using atlas-derived regions of interest, and linear mixed-effect models were used. Results: As expected, weight, BMI, waist circumference and neck circumference significantly decreased after SG compared with baseline (p ​< ​0.001 for all). A widespread increase in WM density was observed after surgery, particularly in the cerebellum, brain stem, cerebellar peduncle, cingulum, corpus callosum and corona radiata (p ​< ​0.05, after FDR correction). Significant increases in GM density were observed 4 months after SG compared to baseline in several brain regions such as the bilateral occipital cortex, temporal cortex, postcentral gyrus, cerebellum, hippocampus and insula as well as right fusiform gyrus, right parahippocampal gyrus, right lingual gyrus and right amygdala. These GM and WM increases were more pronounced and widespread after 12 months and were significantly associated with post-operative weight loss and the improvement of metabolic alterations. A linear mixed-effect model also showed associations between post-operative reductions in lipopolysaccharide-binding protein, a marker of inflammation, and increased WM density. To confirm our results, we tested whether the peak of each significant region showed BMI-related differences in an independent dataset (Human Connectome Project). We matched a group of individuals who were severely obese with a group of individuals who were lean for age, sex and ethnicity. Severe obesity was associated with reduced WM density in the brain stem and cerebellar peduncle as well as reduced GM density in cerebellum, regions that significantly changed after surgery (p ​< ​0.01 for all clusters). Conclusions: Bariatric surgery-induced weight loss and improvement in metabolic alterations is associated with widespread increases in WM and GM densities. These post-operative changes overlapped with baseline brain differences between participants who were severely obese and those who were normal-weight in a separate dataset, which may suggest a recovery of WM and GM alterations after bariatric surgery

    Network structure and transcriptomic vulnerability shape atrophy in frontotemporal dementia

    Get PDF
    Connections among brain regions allow pathological perturbations to spread from a single source region to multiple regions. Patterns of neurodegeneration in multiple diseases, including behavioural variant of frontotemporal dementia (bvFTD), resemble the large-scale functional systems, but how bvFTD-related atrophy patterns relate to structural network organization remains unknown. Here we investigate whether neurodegeneration patterns in sporadic and genetic bvFTD are conditioned by connectome architecture. Regional atrophy patterns were estimated in both genetic bvFTD (75 patients, 247 controls) and sporadic bvFTD (70 patients, 123 controls). First, we identified distributed atrophy patterns in bvFTD, mainly targeting areas associated with the limbic intrinsic network and insular cytoarchitectonic class. Regional atrophy was significantly correlated with atrophy of structurally- and functionally-connected neighbours, demonstrating that network structure shapes atrophy patterns. The anterior insula was identified as the predominant group epicentre of brain atrophy using data-driven and simulation-based methods, with some secondary regions in frontal ventromedial and antero-medial temporal areas. We found that FTD-related genes, namely C9orf72 and TARDBP, confer local transcriptomic vulnerability to the disease, modulating the propagation of pathology through the connectome. Collectively, our results demonstrate that atrophy patterns in sporadic and genetic bvFTD are jointly shaped by global connectome architecture and local transcriptomic vulnerability, providing an explanation as to how heterogenous pathological entities can lead to the same clinical syndrome.</p

    Standardized Assessment of Automatic Segmentation of White Matter Hyperintensities and Results of the WMH Segmentation Challenge

    Get PDF
    Quantification of cerebral white matter hyperintensities (WMH) of presumed vascular origin is of key importance in many neurological research studies. Currently, measurements are often still obtained from manual segmentations on brain MR images, which is a laborious procedure. The automatic WMH segmentation methods exist, but a standardized comparison of the performance of such methods is lacking. We organized a scientific challenge, in which developers could evaluate their methods on a standardized multi-center/-scanner image dataset, giving an objective comparison: the WMH Segmentation Challenge. Sixty T1 + FLAIR images from three MR scanners were released with the manual WMH segmentations for training. A test set of 110 images from five MR scanners was used for evaluation. The segmentation methods had to be containerized and submitted to the challenge organizers. Five evaluation metrics were used to rank the methods: 1) Dice similarity coefficient; 2) modified Hausdorff distance (95th percentile); 3) absolute log-transformed volume difference; 4) sensitivity for detecting individual lesions; and 5) F1-score for individual lesions. In addition, the methods were ranked on their inter-scanner robustness; 20 participants submitted their methods for evaluation. This paper provides a detailed analysis of the results. In brief, there is a cluster of four methods that rank significantly better than the other methods, with one clear winner. The inter-scanner robustness ranking shows that not all the methods generalize to unseen scanners. The challenge remains open for future submissions and provides a public platform for method evaluation
    corecore