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ABSTRACT

Simulation of Chemical Reactions

Using Stochastic Petri Nets

Mahsa Dadar

The recent breakthroughs in biological experiments have enabled the re-
searchers to measure the quantities of different chemicals that build biological
units such as cells. This type of information can be used to build models that can
explain and predict the behaviour of the system. Such models can later be used
to design control mechanisms that can influence the behaviour of the system in
a desired way. With the help of medicine and biology researchers, the designed
control mechanisms can be translated into drugs that can control or cure major

diseases.

Biological systems usually consist of complex networks of biological compo-
nents that function through various reactions. In order to affect the behaviour of
the system efficiently, the chemicals that have the highest influence on the system
behaviour have to be found using a sensitivity analysis. Such chemicals, regarded

as inputs, will be the targets for drug design (or other control actions).

Various modeling tools have been empolyed to capture the behaviour of bio-
logical systems. Perhaps the most widely used models are the ordinary differential
equations (ODEs). In this thesis, an alternative model is propposed for the study

of the chemical reactions based on stochastic Petri nets, one type of discrete event

iii



systems. It is shown that the proposed method can be used to find the changes
of the chemical reactants. The advantage of the proposed method is that it is
amenable to implementation on computing systems with parallel processors. This
in turn reduces the (time) computational complexity (compared with ODE based
simulations). The Petri net based simulations are also used to perform sensitiv-
ity analysis. The proposed method is illustrated using the Caspase Apoptosis

network.
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All models are wrong, but some are useful.

George E. P. Box
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Chapter 1

Introduction

Protein reaction networks are one of the building blocks of many biological sys-
tems. Various types of interactions are linked and orchestrated to achieve different
objectives. From a control engineering point of view, protein networks can be con-
sidered as dynamical systems whose behaviour can be studied and analyzed using
various analytical methods. Using control systems theory, proper controllers can
be designed to influence the behaviour of a system in a specific way. To be able to
do so, one first needs to model the system using a modeling formalism suitable for
the specific system and the desired application. The next step would be to analyze
the behaviour of the system using the tools provided by the selected formalism.
Using the information obtained from the analysis methods, one may design control
mechanisms to change the behaviour of the system to a desired one. The designed

control mechanism can later be constructed and connected to the real system.

A chemical reaction network is a network modeling the reactions between



different chemicals in a system composed of a set of reactants, a set of products
(that can also be reactants in other reactions), and a set of reactions. Chemical re-
action networks are usually complicated networks typically including a very large
number of interactions which make modeling and analysis tasks more difficult due
to their computational complexity. Furthermore, the knowledge of interactions
between different entities may not be completely available. Therefore, some mod-
eling methods may fail to model relatively large networks with desirable accuracy
and speed. In such cases, choosing the proper modeling formalism and analysis

methods is of importance.

Using Petri nets for modeling chemical reaction networks provides the ana-
lyst with certain advantages. Petri net models consider events in a discrete manner,
i.e. each event will modify the state of the system. In addition, the events that
may occur simultaneously are modeled randomly. This allows the biologists to in-
fer the workings of the system in a more transparent and biologically meaningful
way, rather than to be forced to interpret the actions in terms of Ordinary Dif-
ferential Equations (ODEs). The concentrations of various molecular species can
be altered in the model to provide different what-if scenarios. The transitions de-
termine the strength or concentration levels required before activating next state;
this allows the internal workings of the model to be observed. Moreover, using
discrete event system tools to model a system can improve the computation time
immensely. As a result, one might be able to perform simulations that were not

possible due to the computational expense of ODE formalism.



1.1 Problem Statement and Motivation

Because of the large number of interactions in chemical reaction networks, a sys-
tematic representation of the model is highly desirable. Many of the mathematical
models of the intra-cellular biological systems are often based on systems of non-
linear ordinary differential equations [2-7]. While ODE models have proven to
be very useful, the computational complexity of the nonlinear ODE model grows
rapidly as the number of proteins and interactions increase, which makes it ex-
tremely hard, or in some cases even impossible, to analyze an entire chemical
reaction network using ODE based analysis methods. The ODEs are usually too
complex to have closed solutions and are numerically solved by iterative computa-
tions in small steps. Furthermore, the information necessary to build such models

are not always available or are expensive in terms of time and cost to obtain.

One of the alternatives that can be used to allow more flexibility in modelling
is to use discrete event models or a combination of ODEs and discrete event
systems (i.e. hybrid models) to incorporate the advantages of the two formalisms.

[8-15).

Numerous diseases are caused by perturbations that drive the biological sys-
tem out of its usual trajectory or steady state. Sufficiently accurate yet compu-
tationally manageable models for biological systems could greatly facilitate the

design of drugs and therapy mechanisms for curing and preventing such diseases.



1.2 Research Objectives

In this thesis, a discrete event system modeling (DES) framework is developed to
represent and analyze biological systems for which ordinary differential equations
are available (e.g. protein interaction networks). This DES model should take
into account all the important functions and behaviours of the biological system.
This model will then be used to simulate the behavoiur of the system in different
situations. Test cases are used to evaluate the speed of the resulting simulation

algorithm.

Omne of the challenges of designing drugs (which can be regarded as one
form of control mechanism) is choosing the appropriate target chemical. As was
mentioned before, biological networks are usually very large. Therefore, it would
be difficult and expensive to design control mechanisms without first knowing
which input chemicals have the highest influence on the output chemicals. The
simulation algorithms developed in this thesis can be used to carry out sensitivity

analysis to determine the most potent input chemicals of interaction networks.

1.3 Literature Review

This section contains a brief overview of the concepts that form the foundation of
this thesis. The central goal of this thesis is to propose a discrete event method

for modeling and then performing sensitivity analysis on biological systems. First,



sytems biology and ordinary differential equation models are reviewed as a com-
monly used method for modeling biological systems. Then, sensitivity analysis
and Petri nets (the selected discrete event model formalism) are reviewed with

more emphasis on the specific type of Petri nets that have been used in this thesis.

1.3.1 Systems Biology

Systems biology is a growing field which mainly studies the interactions within
biological systems. Systems Biology originated from the molecular biology and
genomic biology revolutions. The prospect of being able to analyze and under-
stand how biological systems function by integrated operation of their component
parts and considering their interactions (rather than simply focusing on individ-
ually isolated components) is of essential importance in medical applications, as
well as many other applications such as the environment, materials and manu-
facturing [16]. Such study of biological systems has an important impact on the
better understanding of living systems which in turn, leads to advances in di-
agnosis, treatment, prevention and relieving of diseases. The ability to collect
comprehensive data on system performance and the underlying molecules enables
us to obtain a system level understanding of biological phenomena which was not

possible before. For a brief review, see [17, 18].

Biochemical systems analysis focuses on the integrated functioning of the
intact system rather than the chemical and physical properties of the individually

isolated components that build the system. It approaches biochemical systems as



a combination of interacting components that can be studied as a whole using dif-
ferent mathematical methods. Everything outside of this whole will be considered

as the environment of the system [19].

Cellular processes can be repressented as systems of chemical reactions which
can be used to create models of the system. These models were traditionally deter-
ministic ordinary differential equations. But in the case of modelling a cell, usually
assumptions such as high levels of key chemicals of the reaction do not hold. As a
result, the system behaves more stochastically rather than deterministically [20].
So, using a stochastic method to model the reactions may be more appropriate
than a deterministic one. For a review on stochastic methods of modeling bio-

chemical reactions, see [20].

Understanding how the model behaves in response to changes in its inputs
is of fundamental importance. Sometimes, the exact values of some variables or
parameters are unknown due to measuring difficulties or insufficient precision [21].
In such cases, one needs to know whether the output of the system is sensitive
to an imprecise parameter and if variations in a parameter value has negligible
effect on the output. On the other hand, one might want to find the parameters
that have the highest influence on the output (to be able to manipulate them to
influence the output in a desirable manner). One of the important tools used in
analysis, design, and optimization of a system is sensitivity analysis. Sensitivity
analysis is concerned with how changes in the output of a model (system) can be

affected by changes in the inputs of the model.



Biological systems are usually robust against changes in environmental con-
ditions. However, in every system including biological systems, there might be
certain parameters that are subject to tight control for which even small pertur-
bations may result in the malfunction or even the death of the system. Examples
for such parameters include the operating temperature of the human brain and
blood glucose levels [22]. By using a systems perspective, after structural and
dynamical analysis of the system, one might be able to make useful predictions
of unknown interactions and behaviours and design control mechanisms to foresee

and prevent such malfunctions.

1.3.2 Modeling Biological Systems Using Ordinary Differ-

ential Equations

ODEs have been commonly used to model and describe the behaviour of biological
systems such as regulatory networks. Some of the efforts that have been made in
this area are mainly focused on the qualitative aspects of the model (e.g. [2]).
Other methods have used ODEs to perform quantitative simulations (e.g. [4]).

For a review, see [23].

In some more recent works, researchers have tried to integrate ODEs with
other modeling methods and combine the advantages of both models. For example,
in [3], Petri nets and ODEs have been combined to create a modeling formalism
that can perform quantitative analysis taking into account timing information in

order to be able to model real system behaviours. In [6], ODEs have been combined



with discrete events that model the switching between the domains of attraction
of different steady states in a model to present a methodology for the dynamic

analysis and control of mode transitions in biological networks.

1.3.3 Parallel Computaions in Ordinary Differential Equa-

tions

In recent years, the availability of parallel processing systems has attracted inter-
ested reasearchers to computation approaches that are able to exploit such systems
to speed up calculations. In the case of ODEs, researchers have tried to find suit-
able splittings of the ODE problem whose solution would be equal to the iterative
solution of the ODEs [24]. The need for increasing computational speed in ODE
based calculations arises in cases where the ODE function is expensive to evaluate,
the number of equations is relatively large, the interval of integration is long, or

the ODEs need to be solved repetitively [25].

Parallel computing methods that are used in ODE problems can be divided
to two classes, parallelism across time or solution space (or a combination of both)
[25]. One of the main concerns in such methods is the need for the synchronization
in cases where one processor receives information from another [25]. For a review,

see [25].



1.3.4 Sensitivity Analysis

Sensitivity analysis is an important tool in studying the dependence of systems on
different inputs or parameters. Studying the sensitivity relationships in stoichio-
metric networks has been addressed by Biochemical Systems Theory (BST) [19],
and Metabolic Control Analysis (MCA) [26-28]. MCA is a theory concerned with
the analysis of the distribution of control within a network and dependence of the

behaviour of the system on the properties of the components.

The MCA literature usually considers networks in steady state. However,
in some applications, it is necessary to investigate sensitivities along non-steady
trajectories. In many systems such as signal transduction and cell cycle regulation
networks, the transient or oscillatory behaviour of the network is important and
cannot be discarded. Some studies have focused on extensions of MCA for non-
steady behaviour (mostly special cases of dynamical behaviour such as periodic
behaviour or trajectories near a stable steady state.) [29-35]. In [36], these results
have been extended by measuring time varying sensitivities along arbitrary tra-
jectories. Using such analysis methods, “one can determine the sensitivity to the
perturbation throughout the time evolution of the system, regardless of the nature
of the trajectory” [36]. This method is particularly useful when studying systems
in which transient behaviour plays a key role in the operation of the system. For

a review, see [37, 3§]

Researchers have also tried to transform the problem of calculating the sensi-

tivities to equivalent problems that can be solved in parallel to reduce computation



speed. In [39], parallel solutions have been proposed for the ODE based sensitivity

analysis methods with a moderate number of state variables.

The main concerns in choosing a method for computing sensitivities are its
accuracy, computational cost, and in certain cases where the system is very large

or complex, ease of implementation [40].

1.3.5 Petri Nets

Petri nets (PNs) historically originate from the dissertation of Carl Adam Petri, a
German mathematician and computer scientist, for the purpose of representing the
actual physical flow of information in the solution of a recursive problem [41]. Petri
nets are an excellent modeling formalism for describing and studying systems that
are characterized as being concurrent, asynchronous, distributed, parallel or non-
deterministic. Due to their firm mathematical foundation, Petri nets are applied in
practice in many fields, such as asynchronous circuit design, communication pro-
tocols, distributed computing, production systems, flexible manufacturing, trans-
portation, and systems biology. Particularly in systems biology, different classes
of Petri nets have been used to model a large variety of biological systems. In
[42], Petri nets have been compared with other similar methods to evaluate their

suitability for representing and simulating biological processes.

The Petri net formalism combines an intuitive graphical notation with ad-
vanced analysis techniques. Classical Petri net analysis techniques are structural

analysis techniques that study the properties of the system by investigating the

10



structure of the corresponding Petri net. Such studies do not investigate the
changes in the state of system (marking) during the evolution of the Petri net.
In some cases, the initial marking (state) is also considered. Several studies have
used Petri nets for qualitative analysis of biochemical networks to avoid the com-
putational expense and lack of data [43-45]. Petri net models have been widely
used for qualitative analysis of logical properties of biological systems such as the
presence of system deadlocks or live-locks, invariants, relationships between events
(causality, mutual exclusion, concurrency), and boundedness of the system state
space [46-49]. Such qualitative methods are independent of the parametric infor-
mation of the system (such as rate constants and cooperativity indices in biological

systems).

On the other hand, in other analysis techniques, the reachability graph of
the Petri net or its simulation is used for the verification of the qualities of the
system properties. This type of analysis of Petri nets is based on investigating
the possible markings (states). Some studies have tried to reduce the size of the

model to be able to perform simulations [50, 51].

The PN semantic does not state which of multiple simultaneously enabled
transitions fires first, so a PN analysis must either examine every possible firing
order or find a way to find the trajectories that are specific to its application. The
firing of transitions in each step of the Petri nets is random. So, one cannot deter-
mine what trajectory the system will follow starting from a specific initial point.
The Petri net models that have been used for analyzing biological systems so far

addressed this problem by calculating all the possible trajectories that may occur

11



from the initial point (the reachability tree of the Petri net) and studying these
trajectories as a group [35]. Other studies using Petri nets have only focused on
the structural properties of the Petri nets that can be analyzed without comput-
ing the trajectories (such as studying invariants, deadlocks, livelocks, reachability,
controllability, etc.) to avoid the computation expense caused by calculating all
the trajectories [46-49]. Furthermore, most of the trajectories that are calculated
in the reachability tree never occur in the real system and its ODE model equiva-
lent. So, it is of great value to be able to find a way to find the trajectories that
really occur using a Petri net model. In [52], a comprehensive review on the recent

research on Petri nets is presented.

1.3.6 Stochastic Petri nets

Many extensions of PNs have been proposed to increase either the class of problems
that can be represented or their capability to deal with the common behaviours
of real systems. Stochastic Petri nets are a form of Petri nets that have been
extensively used due to their ability to capture timing and uncertainty in the
models [53-55]. In [56], “Modeling Power” is defined as the ability of the PN
formalism to capture the details of a system by allowing different types of firing
distributions. “Logical Constructs” are defined as Petri nets that change the firing
rule of the transitions to achieve a goal, and “Stochastic Constructs” as Petri nets
that associate a stochastic interpretation to the evolution of the Petri net [56].

The second category can be divided into two groups:

12



O Probability Distribution for the Firing Times of the Transitions: There

are many different choices for the distribution types and other features.

(1 Relative Probability of Firing for Conflicting Transitions: When several
transitions are enabled simultaneously, the transition to be fired can be selected
according to some firing rule. The Petri nets that have been used in this thesis

are of this type.

Petri nets do not include time concepts in their original definitions. By using
stochastic Petri nets (SPNs), the modeling power can be increased by associating
random firing times with the transitions. A transition’s firing time represents the
amount of time required by the activity associated with the transition [57]. Tem-
poral specification in PN models were introduced later with different approaches,
first based on the use of deterministic timing and later based on stochastic timing.
Particularly in SPNs, transition firing delays are exponentially distributed random
variables [58], i.e., a random firing delay is associated to each transition 7; whose

probability density function is a negative exponential with a rate \;.

The semantics of SPNs is described by a race model: when several transitions
are enabled in a given state, all activities associated with these transitions are
assumed to be executed in parallel and the change of state is caused by the firing
of the transition with the minimal firing delay, i.e., the transition with minimal
delay wins the race. The firing of the winning transition models the completion of
the represented activity and the behaviour of the losing transitions can be specified

by different policies [59].

13



When the set of enabled transitions T, .eq(M) in marking (state) M con-
tains more than one element, the probability that transition 7; actually fires can

be obtained as:

P(TIM) = —2 Aj (1)

Tj eTenabled(M)

The PNs that have been used in this thesis are also stochastic PNs, but the
definition of the probability function is different from the one mentioned in (1.1).

The subject will be discussed thoroughly in Chapter 3.

1.4 Contributions of the Thesis

In this work, discrete event models (specifically, Petri nets) have been developed to
represent biological systems (more specifically, protein networks) using the avail-
able biological data. The goal is to define a discrete model of the biological system
using the currently available ODE model or its parameters. This model will later
be used to calculate a measure of sensitivity. Within the proposed framework the

following key contributions have been made:

e Defining of a new type of stochastic Petri net that can produce the same
results as the ODE model: We have proposed a method in which single trajectories
of the ODE model can be calculated from the expected values of the trajectory of

a suitably defined stochastic Petri net.

14



e Evaluating of the proposed method by calculating the mean and variance
of the values and showing that the expected value of the results of the Petri net

model is equal to the results of the ODEs.

e Studying the effect of quantization (of converting a continuous ODE to a

discrete Petri net) on the proposed model.

e Applying parallel computation in order to achive a higher computational

speed (compared with ODE simulations).

e Defining an efficient sensitivity measure suitable for the proposed discrete

model and developing an algorithm to calculate it.

e Developing MATLAB code for performing the simulations and visualizing

the desired outputs.

1.5 Organization of the Thesis

The rest of this thesis is organized as follows. Chapter 2 covers the necessary
background on Petri nets, sensitivity analysis, chemical reaction networks, and
the basic biological knowledge needed to follow the concepts in the thesis. In
Chapter 3, the main ideas of the thesis are developed and the results are derived.
In chapter 4, the apoptotis protein network which has been used in the thesis as
case study is examined and the simulation results verifying the results obtained in
Chapter 3 are presented. The thesis concludes in Chapter 5 by summarizing our

work and discussing some directions that future researches may take.
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Chapter 2

Background

This chapter covers the background material necessary for the development of the
thesis. First, a brief overview of protein reaction networks and the pathway that
has been studied throughout the thesis is provided. Then, Petri nets are introduced
with more emphasis on the specific concepts that are used in this thesis. Chemical
reactions and their ordinary differential equation models are reviewed. Finally,
sensitivity analysis is breifly reviewed and the sensitivity analysis method that

has been used in this study is explained.

2.1 Protein Reaction Networks

One of the popular areas of research in systems biology is the study of protein
reaction networks and their properties. Protein reaction networks usually involve
metabolic networks or cell signaling networks. A protein pathway (also called

metabolic pathway) is a pathway consisted of a set of proteins or chemicals and a
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series of chemical reactions that occur within a cell and modify the chemicals in
the pathway. Various chemicals can be involved in a pathway. As a result, protein
pathways are usually very complex. A large number of pathways can coexist within

a cell. These sets of pathways are called protein networks.

In a chemical reaction, the chemicals that begin the reaction and are con-
verted to a new set of chemicals (called products) through the reaction are called
reactants. The chemical reactions in a pathway can be (and usually are) reversible,
i.e. in the course of the reaction, the products are also converted to their producing
reactants. Chemical reactions are usually heavily dependent on the availability of

different groups of reactant proteins.

Proteins are large biological molecules that form most of the mass of an or-
ganism’s cell and dictate its entire chemistry, as well as its form and behaviour.
Proteins carry out many vital functions in the cell, such as maintaining cell struc-
ture, catalyzing reactions inside the cell, replicating DNA, responding to stim-
uli, and selectively transporting molecules from one location to another. Various
groups of larger proteins are assembled in the cell to carry out discrete sets of

functions [60, 61].

Studying protein pathways and their functions and properties can help us
gain invaluable information about the cells of living organisms. Being able to
model and predict the behaviour of a specific pathway can enable us to understand
the nature of the cell better and design control mechanisms that can change the

behaviour of the pathway.
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The main objective of this thesis is to develop an analysis methodology for the
behaviour of biological systems based on discrete-event models, more specifically,
Petri nets. While the discussion of biological details have been avoided as much

as possible, a basic understanding of some aspects is necessary.

The pathway that is studied in this thesis is called the Cell Apoptosis Pathway
[62]. Apoptosis is the internally executed process of cell death that occurs in multi-
cellular organisms. Various proteins interact together in this pathway to create a
signal that brings about cell suicide. The Apoptosis pathway will be reviewed in

more details in Chapter 4.

2.2 Petri Nets

Petri nets are an excellent modelling formalism for describing and studying the
characteristics of biologicals systems due to their intuitive graphical notation and
firm mathematical foundations. Petri nets are applied in many different fields such
as software design, workflow management, process modeling, discrete process con-
trol, transportation, and systems biology. Particularly in systems biology, several
different classes of Petri nets have been used to model a large variety of biological
systems. Petri nets provide rich mathematically founded analysis techniques that

can be used to study the structural and behavioural properties of the system.

A Petri net is a bipartite directed graph that contains two types of nodes:
places and transitions. Places are signified by circles and model passive system

elements such as resources, conditions, and signals. Transitions are signified by
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bars and usually represent active system elements such as events, actions, or chem-
ical reactions [63]. In the context of biological systems, places typically represent
chemicals such as proteins and transitions represent chemical reactions. More

details will be provided in Chapter 4.

No two places or transitions are connected directly. Places can be connected
to transitions via directed (weighted) arcs that describe which places are pre/post
conditions for which transitions. Such connections model the causal relationship
between the active and passive elements of the system. A place is connected to a
transition (pre place) if the firing of that transition is conditional on the state of
that place. Similarly, a transition is connected to a place if its firing changes the

state of that place (post place).

During the execution of a Petri net, places hold a zero or positive discrete
number of tokens. Tokens are dynamic system elements that determine the state
(marking) of the Petri net by their distribution over different places throughout
the Petri net. A transition may fire (an action which leads to a change in the
marking of the net) whenever there are sufficient (equal to or more than the
weight of the connecting arcs) tokens in all of its preplaces. When a transition
fires, it consumes all these tokens and places them in the postplaces at the end of
the arcs. The number of tokens removed from (or added to) each place is equal
to the weight of the arc connecting that place to the fired transition. When such

firings occur, the state (marking) of the system changes.

The execution of Petri nets is nondeterministic, in the sense that when mul-

tiple transitions are enabled at the same time, any one of them may fire, hence,
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different states may be reached from a single state. If a transition is enabled, it
may fire, but it does not have to. Since firing is nondeterministic and multiple
tokens may be present anywhere in the net, Petri nets are well suited for modeling

the concurrent behavior of distributed systems.

Consider five chemicals x4, ..., x5 engaged in the following three reactions.

T 21+ 29 — T3+ 24
TQ X9 —> X4 (21)

T5: 23+ x4 —> 25

Figure 2.1 shows a simple Petri net with five places and three transitions that
can be used to represent the reactions. The initial number of tokens are chosen
in proportion to the initial concentration of the chemicals. Here it is assumed

zo = [3,5,2,1,0]T. The weights of the arcs are equal to 1.

FIGURE 2.1: A Simple Petri net with 5 Places and 3 Transitions.
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Table 2.1 shows a possible sequence of transition firings that can occur and

the change of the state of system. In step 1, all transitions are enabled since there

TABLE 2.1: A Possible Firing Sequence for Petri net 2.1

Step  Previous State  Firing Transition Next State
1 xz=13,52,1,0]" Ty T =[2,4,3,2,0/"
2z =[2,4,3,2,0T Ty 2y =1[2,4,2,1,1]7
3w =1[2,4,2,1,1T T x5 =1[2,3,2,2,1]7
4 33=102,3,221] T zq=1[1,2,3,3,1]7
5 x=11,2,3,3,1]7 Ty x5 =1[1,2,2,2,2]7
6 x5=[1,2,2,22T Ty ze =1[0,1,3,3,2]"
7 x=10,1,3,3,2]" T z7 =10,0,3,4,2]"
8 a7y =10,0,3,4,2]" 3x T3 xg =1[0,0,0,1,5]7

are enough tokens in each of their pre places. After transition 7 is fired, one token
is removed from each of places P; and P, and added to place P;. In each step, an
enabled transition is chosen to fire randomly and the new marking is calculated.
Transition T} is disabled from step 6, since place P; no longer has any tokens.
Similarly, transitions 75 and T3 become disabled in steps 7 and 8, respectively.
When the Petri net reaches states xg = [0,0,0, 1,5]7, all transitions are disabled

and the state of the Petri net can no longer change.

A Petri net is formally a four-tuple G = (P, T, F,xy) where P is a finite
set of places and T is a finite set of transitions [63]. Let Z* denote the set of
non-negative integers. F' is a set of flow relations between places and transitions

and vice versa defined as

F:(PxT)U(T x P) — Z* (2.2)

For F'(a,b) > 0 there is an arc from a to b with multiplicity (weight) F'(a, b).
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x is the marking function that gives the number of tokens in each place defined as

x: P — Z% xg is the initial marking of the Petri net.

A transition ¢ is enabled at marking x if

Vp € P:xz(p) > F(p,t) (2.3)

A transition ¢ from a marking z to a marking z’ is denoted by x LN « , where

x (p) =xz(p) — F(p,t) + F(t,p) Vp e P (2.4)

Let A = [a;;] is a p x N matrix of integers called the incidence matrix where p is
the number of transitions and NV is the number of places. The a;;’s entry is given
by a;; = a:; — a;; where a:; is the weight of the arc from transition ¢ to its output

place j and a;; is the weight of the arc to transition ¢ from its input place j.

The reachability set of a Petri net R,, is the set of states (markings) that

can be reached from a specific initial condition .

Petri nets can be characterized by some important structural and behavioural
properties. Examining these properties is usually a key step in the analysis of Petri

nets. Some of these important characteristics are [63]:

O Reachability: Reachability is fundamental for studying the dynamic be-
haviour of Petri nets. It is concerned with whether a certain state can be reached

from an initial state.
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[] Boundedness: Starting from an initial marking, if the number of tokens in
all the places of a net remain bounded, the net is bounded. If the net is bounded

for any initial marking, it is called structurally bounded.

[ Liveness: Liveness describes the possibility for a transition to be enabled

and fire infinitely often. If each transition of a net is live, the net is live.

(1 Reversibility: Reversibility describes the possibility of a net being able to
go back to a previous state. If a Petri net can reach its initial marking again from

any reachable marking, the net is reversible.

O Invariants: A T-invariant is a nonzero vector u € (Z7)” which satisfies the
equation u.A = 0. A T-invatiant represents a set of transitions which altogether (if
executable) have a zero effect on the marking. T-invariants show the possible cyclic
system behaviour. A T-invariant is called realisable, if a marking is reachable, such
that all transitions of the T-invariant are able to fire in some order. Analogously, a
P-invariant is defined as a non-zero vector = € (Z%)" which satisfies the equation
A.x = 0. A P-invariant characterises a token conservation rule for a set of places,
over which the weighted sum of tokens is constant, independent from any firing of

transitions.
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2.3 Chemical Reactions

A chemical reaction is a process in which a set of chemical substances is transfor-

mated to another. A simple bimolecular reaction is represented as:

aA+bB % cC + dD (2.5)

where A and B are the reactants and C' and D are the products and k; is the
reaction rate, and the lower case letters represent the coefficients of the balanced
equation. Normally an elementary reaction involves no more than two (or at most

3) reactant molecules.

2.3.1 Multiple Reversible Reactions

The following formula can be used to represent p elementary reactions that have

a forward and reverse step, i.e. the reactions are reversible [64].

N N
vl = e i=12,p (2.6)
J=1 J=1

where v]fi (v};) represents the absolute value of the stoichiometric coefficient of

species ¢; in the i" forward (reverse) (or f (r)) reaction.
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2.3.2 Law of Mass Action

The rate of an elementary chemical reaction is proportional to the product of the
concentrations of the reactants. Let k! (k7) be the rate constant for the it" forward
(reverse) reaction. Hence, the rate of progress of the i*" reaction (the change in

concentration over the change in time) will be [64]

::]2

j — kY Hc (2.7)

where ¢; is also used to represent the concentration of species ¢;. The net rate

R, = dc] of production of species j is
p
Rj = Zvﬁqi (28)
=1
Here vj; is the net stoichiometric coeffiecient for species j in reaction <.
Vj; = Uy — vl (2.9)

A very common method of analyzing chemical reactions is using Ordinary Dif-
ferential Equations (ODEs) to calculate the concentrations of each molecule over
time. So, in order to solve a system of chemical reactions, the above relations will

be translated to the following set of ODEs [64]

N

P N
1) Zvﬂqz S ok [[o@% i [[e®™)  @10)
i=1 j j=1
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2.3.3 Equilibrium (Steady State)

If reaction ¢ is at equilibrium, then its rate of progress is ¢; = 0. This means that

the forward and reverse reaction rates are equal [64].

N o f
ij
f N vf N ol kf jl:ll Cj il ) EQ
I I ij r I I ij i = I I ij
ki ij = ki ij — ? = N " = ij = Ki (211)
j=1 j=1 ¢ I Cjiﬂ' j=1
j=1

Here K is the equilibrium constant which is a function of temperature.

2.4 Sensitivity Analysis

Sensitivity analysis is the study of how changes in the output of a system or
mathematical model are apportioned to the changes in its inputs. When the system
under study has several input variables (which is usually the case in chemical

reaction networks), sensitivity analysis is essential for model analysis.

Sensitivity analysis can be useful for a range of purposes, including the fol-

lowing [65].

[0 Understanding the relationships between the different input and output

variables in the system and identifying the sensitive or important variables.

O Searching for errors in the model: Detecting the unexpected relationships

between inputs and outputs.
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O Simplifying the model: removing parts of the model (connections with

inputs) that do not have any significant effect on the output.

0 Reducing uncertainty in the model: in some models, some inputs cause
significant uncertainty in the output. Such inputs should be studied and focused

on if robustness is to be increased.

There are several commonly used methods of sensitivity analysis. The choice
of method is usually affected by a number of problem constraints or settings. Some

of them include the following:

O Computational expense: Sensitivity is usually measured by sampling-
based methods which rely on generating and exploring a mapping from the inputs
to the outputs (which requires running the model several times). Such approaches
can pose problems when a single run of the model takes a relatively significant

amount of time [38].

O The curse of dimensionality: Sensitivity analysis requires exploring the
multidimensional input space. The volume of the input space can increase ex-
ponentially by increasing the number of inputs. This can pose serious problems

when the model has a large number of inputs [66].

O Nonlinearity: Some sensitivity analysis methods are only accurate when

the model is linear with respect to its inputs [66].

0 Model interactions: Sometimes the simultaneous perturbation of two or
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more inputs causes a greater change in the output compared with that of perturb-
ing each of the inputs alone. Such interactions cannot be recognized by one-at-a-

time (OAT) perturbation methods when the model is nonlinear [66].

Therefore designing a sensitivity analysis method that is suitable for a specific
application can be of great importance. Various sensitivity analysis methods have
been applied to biological systems. They can provide useful information about
how the biological system changes in response to different inputs and about the
inputs that are the key factors in the system. One of the methods that has been
widely applied to chemical reaction network systems evaluates sensitivity based
on the trajectory of the output in the solution region. This method has also been

implemented to perform sensitivity analysis in SimBiology toolbox of MATLAB

[1].

2.4.1 Sensitivity Analysis Based on Trajectories of the So-

lution

This section reviews the sensitivity analysis method proposed in [36] which is

applied for sensitivity analysis in MATLAB’s SimBiology.

Given the (IV x 1) vector of initial conditions (the initial concentrations of
the proteins) ¢(0) = ¢p and the (r x 1) set of parameter values py (other parameters
of the protein pathways such as reaction rates), which together form a vector g,

the time-varying concentration sensitivity coefficients are defined as the elements
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of the N x (N + r) matrix function S¢(.) given by [36]:

Jc(t, q) ) c(t, qo + Aq) — c(t, qo)
c _ _ > .
S, (t) 8([ ’q—qo - lZmAq—>0 A q Vit = 0 (2 12)

q

These time varying sensitivity coefficients can be interpreted similar to the stan-
dard steady state sensitivity coefficients of MCA. Using this method, the response
to a perturbation along an entire trajectory is considered rather than at a partic-
ular steady state. As time tends to infinity, each trajectory will converge to its
steady state, and the sensitivity coefficient Sg(¢) will converge to the steady state

response of MCA [36].

Note that the response coefficient S¢(.) is a function of the particular param-

eters py and a particular initial condition cq.

In order to obtain a single sensitivity coefficient for each parameter, a time

integral of S5(.) can be measured throught the simulation time [36].

5= / ' SC(t)dt (2.13)

The sensitivity analysis method used in this thesis is based on and similar to this
approach. More details on how the sensitivities are calculated using the Petri net

model simulations will be provided in Chapter 3.

30



2.5 Conclusion

In this chapter, a basic background on systems biology, Petri net models and sen-
sitivity analysis was provided. The current method that is used for performing
sensitivity analysis in protein networks is based on the solution of the ODEs of
the system which is a complicated and computationally expensive task due to the
usually large size of the equations in the equavalent ODE model of the protein net-
works. In the rest of this thesis, we will show that discrete event system models
(more specifically, Petri nets) can be used to calculate the same solution trajecto-
ries as ODEs (apart from the notion of time). Using these solutions, we are able
to perform sensitivity analysis for the Petri net models and obtain similar results
to those of ODEs. Due to the discrete and stochastic nature of the solutions, we

are able to use parallel processing to increase the computational speed.
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Chapter 3

Solving Ordinary Differential

Equations Using Petri Nets

In this chapter, we will explain how a set of ordinary differential equations can be
solved using Petri nets. We will then use the proposed method to study the be-
haviour of a general protein reaction network using a Petri net. A simple example
is used to clarify the method. A more detailed case study is provided in the next

chapter.

3.1 Problem Statement and Motivation

Consider the following set of p x N ODEs with the following polynomial form:

N
des(t) -, be j=1,2,.,N 3.1
—Za]znck(t) J =L 4. ( : )
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in which a;; and byj; are constants. The parameters by;; are integers. Without loss
of generality, it is assumed that each equation in (3.1) has p terms and that aj;s
are integers. This specific form is used for the ODEs because it is similar to the
form of the ODEs that model protein reaction networks (with N chemicals and p
reactions). In a chemical reaction network, a;;s and by ;s represent the rates of the
reactions and the coefficients of the balanced equations. Later it will be shown

that the results obtained here apply to larger sets of ODEs.

The solution of equation (3.1) can be approximated with Euler method as

the following (for small At,s):

P N
Acj(tn) = ¢j(tny1) —c(tn) = Z aji H cr(tn)™iAt,  j=1,2,..N (3.2)
=1 k=1

3.2 Constructing a Petri net Model from a Set

of Ordinary Differential Equations

A system described by equation (3.1) can be modeled by a Petri net model G

with (at most) p x N transitions and N places. Each term ¢; in the equations is

modelled with a place z; in the Petri net. The Petri net equivalent of a set of ODEs

has a transition for each If[ ¥ term in the ODEs. If there are two (or more)
=1

equal terms in the ODEs, a single transition can be used to model them. Each

transition is connected to a place z; with an arc with weight a;; if it is equivalent

to the i*" term in the j* equation. The direction of the arc is determined by the

sign of a;;. If aj; is positive, the place will be a post place for the arc. If a;; is
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negative, the place will be a pre place for the arc in the Petri net. The initial state
of the Petri net (i.e. the number of tokens in each place of the Petri net) is chosen
proportional to the initial value of the chemical concentrations, i.e. z; = [v¢;| (| ]

is the floor function). We refer to 7 as the scaling factor.

3.2.1 Simple Example

In order to illustrate the concepts, the theories in each section are described using

a simple running example. Consider the following set of ODEs with polynomial

form:
dCl(t) .
dt = —C (t)CQ(t)
dCQ(t) . .
= —alte() + o) (3.3)
ng(t)
dt = Cl(t)CQ(t) — Cg(t)

Following the procedure outlined in the previous section, we construct the following
Petri net.

P1 T1

O .

T2

FiGURE 3.1: A Simple Petri net with 3 Places and 2 Transitions.

As we can see in the equations, there are two distinct terms ¢ (¢)co(t) and

c3(t) in the ODEs and as a result, two transitions in the Petri net model. Transition
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T7 models term ¢ (t)cy(t) and transition 75 models term c3(f). Since aq; is a
negative number (-1), place ¢;(t) is an input place for transition 7. The other

arcs can be explained similarly.

As we can see in the equations, ﬂﬁ Mfétﬂ which means that the absolute
value of the changes in the values of cy(t) and c3(t) are equal. In the equivalent
Petri net model, when 17 fires, a token is removed from z, and added to zs.
Similarly, when T3 fires, a token is removed from z3 and added to zs. So, the

token change of x5 and x3 will also be equal.

In the Petri net model, the token count of a place changes if and only if a
transition that has an input or output arc connected to that place fires. So, for

each step during the evolution of the Petri net,we can write:

$](n+l —IE] +Zw]1f ]za 5 ]: 1,2,...,N

:>ij( )—x](n—l—l —LE] Zw]lf jir T

in which z;(n) is the token count of the j"* place at the n'* step during the
evolution of the Petri net, and wy; is the weight of the arc that connects the ;%
place to the i'" transition. T}; is the transition modeling the i*" term in the ;%
equation in the ODEs. If a place is an output place for the firing transition 77,
w;; will be a positive integer since the place gains tokens after 7}; fires. If the place
is an input place, wj; will be a negative integer since the place loses tokens after
transition firing. The wj;s are constant and will be determined later. f(7j;,n) is

a function that is equal to 1 if transition 7}; of the Petri net fires in step n and 0
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otherwise.

The Petri net that is used here is a stochastic Petri net, i.e. in each step
n of the evolution of the Petri net, each of the enabled transitions may fire with
a probability. The token count of the places x and the firing function f are thus
random variables and are shown in bold from here on. Now, if each transition
T;; fires with probability P(1};,) = P(f(T};, = 1)) in step n, then the function f
will be equal to 1 with probability P(7};,) and 0 with probability (1 — P(7}i,))-
Hence, the expected value of f can be calculated as

E(f(T;;,n)) = P(Tjin) x 14+ (1 = P(Tj,)) x 0= P(T},) (3.5)

J

Now, we can use the results of equation (3.5) to calculate the expected value of

the token count for each place in the Petri net model.

X](n—i-l) :X](n) +E(zp:’wﬂf(T]“?’L)) s j = 1,2,,N (36)

=1

X; is the expected value of x; (X; = E(x;)). In order to compare the results of
the Petri net model with the ODE equations, we can use the expected value of

the change in the token count in each step:

AX;(n) = B(Ax;(n)) = EQ wuf(Tj;,n)) ,  j=1,2,..,N
= , (3.7)
= ZwﬁE(f(Tji, n)) = ijiP(Tji,n)

By comparing equations (3.1) or (3.2) and (3.7), we can easily note a similarity
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between the two sets of equations. It is the probability functions P(T};,,) that will
determine the result of the Petri net solution. In order to be able to use Petri net
results instead of ODE simulations, it is desired to assign the probabilities in such
a way that the result of the Petri net network simulations will be similar to the
results of ODEs. Note that there is no notion of time in Petri nets. So, the Petri
net results X;(n) contain the information about the state, not the time the state

is reached.

Given the similarity between equations (3.2) or (3.1) and (3.7), let us define

7ji(z) and wj; according to

N bpis
I1 =~
P(Tylx =2) = 5+ Nk m if Tj; is enabled at x
Wﬂ(m):: g%giilm "
3.8
0 otherwise (3:8)
Wj; = Aj;
The probabilities of course have to be normalized so that,
P N
D mla) =1 (3.9)
i=1 j=1
Using the results of equation (3.8), we can write
P(Tjin) = Y P(Tjialx(n) = 2)P(x(n) = z)
zER,
=" mi(z)P(x(n) = z) (3.10)

zER,

= E(m;i(x(n)))
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Here, R, is the set of states reachable with n transition firings (from ;). Using

eqution (3.7), we can write

Mm

E(Ax;(n a;; E(m;i(x(n))) (3.11)

=1

Now, if we write the Taylor expansion of 7j;(x) around X = E(x), we will have

5(0) = M (X) + (X) (= X) o n(X)(x = X +
= Bln(x)) = B(ra(X)) + B(rs(X)(x — X)) + BGra(X)(x— X)) +

= (X)X Bl — X) 4 5m(X)E((x — X)) +
(3.12)

Since E(x — X) = 0 and E((x — X)?) = var(x), we have
E(m(x)) = m5(X) + %W;/i(X)var(x) 4. (3.13)

If the variance is small and the higher terms of the expansion equation are negli-

gible, then E(mj;(x)) ~ m;;(X) and so

n) = ZaﬁE(Wﬁ(X(n))) = Zajﬂji(X n

X (n)es (3.14)

i
="

el
Il

1

p
- Z aji p
1=1 Z

i=1j

M=
—=

Xk(n)bkji

<.
I
—
el
Il

1

With this probability distribution, it will be shown in the following theorem that
the expected state trajectory of the Petri net will be the same as (the scaled version

of) the state trajectory of the ODE.
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Theorem. Suppose the initial marking of the Petri net is Xy = v¢q. Let
X;(n) n= 0,1, ... be the expected value of the trajectory of the stochastic Petri
net G. Then there exist ¢y < t; < ... < t,, such that v¢;(t,) = X(n) where ¢;(t,)

is the numerical solution using FEuler’s method.
Proof.

From equations (3.2) and (3.14) we can write

P N
Aci(ty) = azi [[eltn) ™At j=1,2,..,N

i=1 k=1

N

o knl Xk(n)bkji (315)
AX;(n) = ay e j=1,2,.,N

= 3030 T Xi(n)twr

i=1j=1k=1

By assumption, we select the initial state of the Petri net X (0) = v¢(0). We prove
using induction. Suppose X (n) = v¢(t,,) for some ¢, and prove that X(n + 1) =

ve(tni1) for some t,,.1 > t,. From equation (3.15), we have

(tn))"

—=
e
=
3
=
—=
=)
9]
el

>
2
S
Il
=
IS
v
>
Il
i
Il
=
IS
<
>
Il
i

> 5> 5 T1 (ren(t)
x (3.16)
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From comparing the results of equation (3.16) and the first equation of (3.15),

N
> b
k=1

- , then we will have AX;(n) =

we can see that if At, =
N brji N by

> k=t [T (ex(tn)) o
1j=1 k=1

M~
M=

y

i
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vAc;(t,) and
Xi(n+1)=X,(n)+ AX;(n) = vye(tn) + vAci(tn) = ve(tnir) (3.17)

So, the result of the Petri net will be equivalent to the numerical solution of the
ODEs with the defined At,s. If the step size At,, is sufficiently small, the computed
approximation will be close to the exact solution. It has been proven that for a
wide class of nonlinear problems, the global truncation error of Euler method (the
difference between the exact solution and the approximated value) is proportional
to the step size [67]. Euler method has second order local truncation error O(At2)
(the error committed in a single step) and first order global truncation error O(At).
We can decrease At, by increasing the scaling factor v and get more accurate

results.

Remark 1: Note that the ODEs do not necessarily have to be in polyno-
mial form, as long as differential equations are in the form of % = iaﬁ fji(e) in
which ¢ = [¢1, ¢, ..., en]" and f;(c) is any positive nonlinear function that satisfies
fii(ye) = 4™ f;;(c) in which m can be any real number. The probability distri-
bution in the equivalent Petri net will be in the form of 7;;(x) = — i) Ao,
¢;s should be positive in all the solution region, (or if they are negative, should

stay negative in all the solution region). Any set of ODEs with this form can be

modelled using the proposed method.

Remark 2: In the steady state, the ODE variables ¢;(t) are constant, i.e.

dej _

7= = 0. Assuming the quantization error (large gamma) to be small, we can also
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assume AX;(n) ~ 0. Using equation 3.1 for the ODEs or from combining the

results of equations (3.7) and (3.8) for Petri nets, we have:

=1 7=1

S (3.18)
S a [ =0
i=1 7j=1

c¢;, and z;, denote ¢; and z; in steady-state.

Remark 3: If y¢(0) is not an integer (as assumed in theorem), then

X(0) = [1¢(0)] = 7¢(0) — 6 =A(c(0)— 2)  0<s<1  (319)

Thus, the expected value of the Petri net solution would be equal to the solution
of the ODEs for the initial condition ¢(0) — %. By increasing 7y, this solution
converges to the solution of ODEs (times 7) for the initial condition ¢(0) and the

result of theorem will still hold.

3.2.2 Simple Example (Continued)

For the Petri net model of Figure 3.1, we have:

x1(n+1) =xz1(n) — f(T1,n)
zo(n + 1) = 23(n) — f(T1,n) + f(T,n) (3.20)

z3(n +1) = x3(n) + f(T1,n) — f(T2,n)
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The probability functions for the firings of 77 and 75 in the equivalent stochastic

Petri net are (when both T} and T3 are enabled)

_ xl(n)$2(n)
P(Ti|z) = 21(n) a2 (n) + z3(n) (3.21)
P(Tyl) = z3(n)

x1(n)xa(n) + x3(n)

When one of the transitions is disabled, the firing probability of the other transition
will be equal to 1. The execution of the Petri net stops when both transitions are

disabled.

Now, in order to show how a Petri net can be simulated with the probability
distributions defined in equation (3.8), we run the Petri net with a relatively small
initial marking set: 2(0) = [3,2,1]7. The scaling factor 7 is equal to 1. Table 3.1

shows the results:

TABLE 3.1: Simulation Steps of a Simple Petri net

Step (n) z(n) = [x1(n), za(n), z3(n)]"  P(n) = [Pi(n), P(n)]" Transition to Fire
0 3.2.1]" [0.857,0.143] T,
1 [2,1,2]" [0.5,0.5]T T,
2 2,2,1)7 0.8,0.2]" T
3 1,1,2]" [0.333,0.667]" T
4 1,2,1]" [0.667,0.333]" T,
5 [0,1,2]" [0,1)" T,
6 [0,2,1)" [0,1)" T,
7 [0,3,0]” - -

Figure 3.2 shows the 8 step Petri net simulation results.

Figure 3.4 shows the expected values (Xs) for the same problem obtained by
simulation. As we can see by comparing Figures 3.3 and 3.4, the expected values

(X;s) are similar to the results of the ODE simulations, even with a very small
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Simulation Steps of a Simple Petri net
T T T T

— ]

— X2
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No. of Tokens
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FIGURE 3.2: Simulation Results for the Simple Petri net.

ODE Resullts for a Simple Example

— X1
— D

25F

s X3

ODE Variable Values
&

0.5

F1GURE 3.3: Simulation Results for the Simple ODE Model.

number of tokens in the Petri net. In order to get finer results, we can increase

the scaling factor (e.g. the initial condition can be z(0) = [300, 200, 100]7).
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Expected Values

F1GURE 3.4: Expected Values Obtained by Simulation for the Simple Petri net.

3.3 Calculating the Variance

As was mentioned before, the result of the proposed stochastic Petri net is non-
deterministic in its nature. In order to be able to have a better discription of the
distribution of the solutions, we need to know how far the actual results may spread
out from the calculated mean (expected value). In order to have an estimate of
the distribution of the results, the variance of the change in the token count is
calculated in this section.

var(Ax;(n)) = E(Ax;(n)?* — BE(Ax;(n))?)
(3.22)

— B(Ax;(n)*) — E(Ax;(n))?
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We have already calculated AX;(n) in (3.7). For E(Ax;(n)?), using equation

(3.4), we have:

E(Ax;(n Z w;if(Tji,n

Z’LU fTﬂ,n +Z Z w]zw]ka]lvn)f(T]kv ))

i=1 k=1,k#i

(3.23)

Now, since we know that in each step during the evolution of the Petri net, only
one transition can fire, we know that if k& # 4, one of the terms f(7};,n) and
f(Ty, n) will always be zero. So, the term f(7};, n)f(Tji, n) and subsequently the
second term in (3.23) will always be equal to zero. Also, since f(T};,n) is always

equal to 0 or 1, f(Tj;,n)? = f(Tj;,n). Using these results, we will have:

- Z w?, E(f(Tji,n)) (3.24)

So, from (3.22), (3.7) and (3.24), we will have:

’UCLT(AX]‘ (TL)) = Z ]z n Z w]z ]z n (325)

3.3.1 Simple Example (Continued)

Figure 3.5 shows the variance values for the simple example. We expected the

variance to be high since the quantization of the Petri net was relatively coarse.
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FIGURE 3.5: Variance of the Solution for the Simple Petri net.

3.4 Using Petri Nets to Model Chemical Reac-

tion Networks

This section illustrates how the results of section 3.1. can be applied to chem-

ical reaction networks. A network of chemical reactions with N proteins and p
reactions is represented as

N N
J . r I
E V5,6 = V565 1=1,2,...,p
j=1 j=1

(3.26)
The set of ODEs modeling this system are:

dej(t) & ’ a / a
# =Y wvigi = Y vak! [[e; 0 =k [[es®%) G =12,.,N
i=1 i=1 j=1 j=1

(3.27)

The Petri net equivalent of a set of chemical reactions assigns a transition to each
reaction. For the reversible equations, 2 transitions will be used to model the
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forward and reverse reactions. Note that due to the nature of chemical reaction
networks, it will not be necessary to use p x N transitions to model the networks
(since there are multiple repetitions in the terms of the equations). So, the equiv-
alent Petri net model will have N places and 2p transitions (T and 77 represent
the transitions modeling the forward and reverse part of the i** reaction). For

each step during the evolution of the Petri net, we can write:

2l 1) = () + QST m) = v (T

i Z v, (3.28)
=30

In which x;(n) is the token count of the j* place modeling the concentration of
the j'* protein. f(7},n) is a function that will be equal to 1 if transition T} of

the Petri net fires in step n and 0 otherwise. v;;

and v7; are the weights of the
arcs that connect transition ¢ to place j equivalent to the parameters of the mass

action equation in (3.26).

The token count of a place can change if the transitions modeling the for-
P P
ward or reverse reactions fire. The terms (D v;if(Tif, n)—>y. vfif(ﬂ-f, n)) and
i=1 i=1
p
(Do v f(T7,n) — Z vj T F(Tr,n)) account for the change in the number of tokens if
i=1

transition T/ or T/ fires (each equation in (3.28) models the effect of two transi-

tions equivalent to the forward and reverse reaction).

Suppose a place is the input place of a transition. It will have vf less tokens

after that transition fires if it is a forward transition, and v7; less tokens if it is a
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reverse transition. Similarly, for an output place to which the transition transferes
tokens by its firing, it will have v]fi more tokens after that transition fires if is a

forward transition and v7; more tokens if it is a reverse transition.

Now, if each transition T; fires with probability P(7;,,) in step n, then the
function f will be equal to 1 with probability P(T;,) and 0 with probability

(1 — P(T;,)). Hence, the expected value of f can be calculated as:
B(f(Tin)) = P(T) x 14+ (1= P(T,)) x 0= P(T,)  (3.29)

We use equation 3.29 to calculate the expected value of the concentrations for each

protein in the Petri net model

Xi(n+1) = X;(n) + E(Z(UL— — o )(F(T] . n) = F(T7,n))) (3.30)

For the expected value of the change in the concentrations in each step we have

(vji = v = v};)

AX;(n) = Zvﬁ(Pf(Tm)) — P'(Tin)) (3.31)

As was mentioned before, it is the definition of the probability functions that will
determine the result of the Petri net solution. For example, if we assign equal
values to the probability functions (i.e. uniform distribution), then the Ax;s will
be functions of the difference between the number of arcs that are entering and
exiting their equivalent places. So, the concentrations will change with a constant
rate untill a place is empty of tokens and the transitions that depend on its tokens

to fire are disabled. As we know from the evidence, that is not the case. The more
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of the reactants there is, the more product will be made. So, we need to assign the
probability functions in a way that the transitions whose input places have more

tokens, would be more likely to fire than the ones that have less tokens.

From equations (3.26) and (3.31), we can see that the following probability
functions (for enabled transitions) will lead to the same results for the Petri net

networks as the ODEs.

N . f
ka HI:EJ“
f _ J=
L) =3 N N
S TL" + k7 [T )
i= j= j=
Vo (3.32)
k! Hlxj“
T — =
PiT) =3 P N
(ki IT " + k7 IT 25)")
=1 7j=1 7j=1

As we can figure out from equation (3.32), with such probability distributions, the
probability of firing of a transition will depend on the current concentrations of its
input places as well as the rate of the reactions. The simulation results for both

probability distributions will be provided in Chapter 4 for comparison.

3.4.1 Algorithm 1

Using the results of equation (3.32), we can now propose an algorithm for calcu-

lating the trajectories of the protein concentrations using the Petri net model.

[0 Algorithm 1.
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Stepl. Set the initial marking 2(0) using the initial protein concentration

values and the scaling factor . Set i = 1;
Step2. Using Petri net equations, find the enabled transitions.

Step3. Calculate the probabilities for the transition firings of the enabled

transitions using equation (3.32).

Step4. Choose a random transition to fire using the probability distribution
calculated in the previous step. Fire the selected transition and calculate the new

marking (7). Set i =i+ 1;

Step5. Return to step 2 and continue until there is no enabled transition

left or another preset condition is satisfied.

The algorithm stops when a preset condition such as a maximum number of
steps is satisfied or all the transitions are disabled in the final marking. Adding the
preset condition helps in cases that the Petri net has a periodic behaviour (rather
than a constant steady state). In such cases, one can either use a maximum for
number of steps to stop the algorithm or add another condition (e.g. maximum

for the number of times a certain state is visited).

3.5 Sensitivity Analysis

One of the main questions that arises after building a model of a biological system

is how the system can be manipulated to achieve a desired behaviour (control
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objective). To address this question clearly, first we need to determine the inputs

and outputs of the system so that the control objective can be defined.

Biological systems are naturally stabled by multiple feedback loops that reg-
ulate the entire system and ensure that biological entities maintain homeostasis.
In case of a malfunction of one or a series of such regulatory mechanisms, diseases
may occur. In such cases, control strategies (drugs) may be considered to force

the system back to its normal behaviour.

In order to help design drugs that control the behaviour of a system, we
need to know the cause-effect relationships between system elements, in the case
of protein interactions, which protein(s) have a higher influence on the desired
output protein(s). So, the inputs and outputs of the system will be proteins or
places in the Petri net model. The question of the degree of influence translates
into a sensitivity analysis in such networks. The researcher would like to know
perturbing which protein(s) can result in a more significant change in the output

protein concentration. Such proteins will offer possible targets for drug design.

As was explained in Chapter 2, one of the commonly used methods of
sensitivity analysis for chemical reaction networks is calculating the sensitivities
throughout the trajectories of the solution. As was mentioned in section 2.4.1., the

sensitivities for the ODE model can be calculated using the following equations

erp — 9c(t,q) : c(t, qo + Aq) — c(t, o)
= = >
Se(t) 94 lg=qo = liMag—0 Ag vVt >0

q
T
s = /0 SC(t)dt
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Using a similar notion, we define the sensitivity measures for the equivalent Petri
net model. Here, sensitivity is defined as the average range (along an entire trajec-
tory) over which the tokens representing the output protein fluctuate given certain

excitation at the initial condition of the Petri net.

No
T ];1 |per (k) — 2705 (K)]

[%her (0) = 2 (0)]

s(z', 2%, 1) = (3.34)

where s(x’, 2° 1) is the sensitivity of output z° to input z* while the initial con-

dition is xgy. x°

ver and a7, are vectors of the trajectories of the perturbed and

reference outputs, respectively. No is the length of the trajectories (the number
of steps for which both trajectories reach steady state or a maximum limit). The
simulation results for the Apoptosis network will be provided in Chapter 4. The
results of a sensitivity analysis method performed based on ODEs in MATLAB’s

SimBiology will also be provided for comparison.

3.5.1 Algorithm 2

Using Algorithm 1 and the results of equation (3.34), we can now propose an
algorithm for calculating the sensitivities of a protein selected as the output of the
system to other proteins in the Petri net. Algorithm 2 calculates the sensitivity of

the output z° with respect to input z* with the initial condition z(0) = z.

[0 Algorithm 2.
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Stepl. Set the initial marking x(0) and calculate the unperturbed trajectory

Zyep using Algorithm 1. Set § *.

Step2. Replace the initial state of the Petri net with z¢ + de; where e; is a

vector whose " element is equal to 1, and all its other elements are equal to zero.

o
per

Calculate the perturbed trajectory x¢_. for input ¢ using Algorithm 1.

Step3. Use equation (3.34) to calculate the sensitivity measure s(z’, 2°, x)

for input 2. If i < N, set 4 = i + 1 and return to Step 2.

*§ is the amount of perturbation of the input. It should be set according
to the value of the initial markings. Choosing a very small § (compared with
the standard deviation) will lead to insignificant results in the sensitivity analysis
since the trajectories are calculated stochastically and are never exactly the same.
Increasing ¢ should result in more significant changes in the output of the system.
On the other hand, if § is chosen too large, it will change the state of the Petri net
and the trajectory entirely and it can no longer be considered as a perturbation.
Usually, 1 or 2 percent of the average initial marking of the places is a reasonable

value for 4.

The length of the trajectories (No) should be chosen so that both trajectories

reach the steady state.
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3.6 Scaling Effect

The token counts in the Petri net places are always positive integers while the
values of z;; in the ODEs are (non-negative) real numbers. So, the equivalent
Petri net model only works for studying ODEs that only have solutions in the
positive region (or satisfy the conditions explained above). The accuracy of the
solution of the Petri net model is determined by its scaling factor ~, which basically
determines how many tokens represent a concentration unit in the ODE equation.
While this scaling is inevitable due to the fact that Petri nets are discrete tools in
their nature, determining a good scaling factor can get us any desirable precision
at the cost of increasing computation time. So, there is a trade off between lower
error and shorter computation time. In order to show the effect of scaling on the
solutions, the simulations have been performed with various scaling factors and

will be provided in Chapter 4.

The initial condition of the Petri net only needs to be proportionate to the

initial condition set of the ODE system,

zo = |vco) (3.35)

in which xg and ¢y are the initial conditions for the Petri net and ODE system
respectively, and v is a positive integer, |yco| is the floor of ¢y, i.e. the largest
positive integer that is lower than ~cy. This leaves us with a degree of freedom

in choosing a reasonable scaling factor that would result in desirable accuracy as
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well as acceptable computation time. The effect of scaling of concentration values

will be examined in Section 4.5.

3.7 Parallel Computing

One of the methods that can be used to improve the accuracy of the solution
without significantly increasing the computation time is parallel computing. We
can use parallel computing to simulate several independent Petri nets with the
same parameters and average the results of these simulations in order to get a
more accurate solution. For example, instead of increasing the scaling factor, we
can run several parallel simulations and average the results to obtain a much better
solution as well as avoiding a major increase in computation time. The simulation

results will be provided in Chapter 4 for comparison.

3.8 Summary

In this chapter, a method was presented to solve a system of ordinary differential
equations of polynomial form by building and simulating their “equivalent stochas-
tic” Petri net models. Next, it was shown how this approach can be applied to the
simulation of chemical reactions. These Petri net models may later be used for
performing sensitivity analysis. This approach will be applied in the next chapter

to illustrate the results on a case study. It will be shown that the simulations can
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be done significantly faster compared to a numerical solution of ODE if parallel

processing capabilities are available.
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Chapter 4

Case Study

In this chapter, the proposed method of Chapter 3 is applied to the Apoptosis pro-
tein network example. The results are then compared with the ODE simulations

and the differences and advantages of each method are discussed.

4.1 Cell Apoptosis

The pathway selected as an example in this study is the Caspase Apoptosis path-
way [1]. Apoptosis is the process of programmed cell death that occurs in response
to a stress and brings about cell suicide. This process is controlled by a diverse
range of either extra-cellular or intra-cellular signals that trigger or inhibit Apop-

tosis (positive or negative regulation).

When the normal functioning of the apoptotic pathway is disrupted in a way

that the cell would not be able to undergo Apoptosis anymore, several types of
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diseases may occur. Such diseases are a result of cells that live past their “use-by-
date” and are able to replicate and pass on any faulty machinery to their replicates.
These malfunctions increase the likelihood of the cell becoming cancerous or dis-

eased [68, 69].

Excess Apoptosis (losing control of the rate of cell death) can also lead to
neurodegenerative diseases (such as Alzheimer, Huntington and Parkinson dis-
ease), hematologic diseases, and tissue damage. For example, the progression of

HIV is directly linked to excess and unregulated Apoptosis [70].

The Caspase proteins are the main building blocks of the Apoptotic pathway.
There are two types of Apoptotic Caspases: initiator Caspases such as Caspase
2, 8, 9, and 10, and effector Caspases such as Caspase 3, 6, and 7 [71]. Initiator
Caspases are only activated when binded to specific proteins. After activation,
the initiator Caspases activate the effector Caspases. Then, the activated effector
Caspases degrade a host of intracellular proteins to perform Apoptosis and carry

out the cell death program [72].

XIAP (X-linked inhibitor of Apoptosis protein) is a protein that stops apop-
totic cell death [73]. XIAP stops apoptotic cell death that is induced either by viral
infection or by overproduction of Caspases. XIAP is a member of the inhibitors of
apoptosis family of proteins (IAP) [74-76]. It has a domain that inhibits the ac-
tivity of different types of Caspases. XIAP inhibits Caspase 3 activity by binding
to the active-site where a protein would normally bind during apoptosis, blocking
it access [77, 78]. As a result, the protein will no longer be able to bind and trigger

apoptosis.
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Caspases 3 and 8 are proteins that interact during the apoptosis procedure.
The sequential activation of these Caspases plays a central role in the execution-
phase of cell apoptosis. Caspase 3 is activated in the apoptotic cell both by
extrinsic and intrinsic pathways. Control of caspase 3 is necessary in this process

because if unregulated, Caspase activity would kill cells in an uncorolled way.

Caspase 3* is a protein that lices certain critical proteins at specific amino
acid residuals in the cell. When the cell encounters a trigger, the level of Caspase 3*
activation in the cell goes up, which means that the death signal (Apoptotic signal)

is directly proportional to the levels of Caspase 3* activation in the cell [1].

Figure 4.1 shows the network of Caspase cascade together with XIAP and a
possible drug control mechanism that has been obtained by analyzing the differ-

ential equations of the chemical reactions and added to the system later [1].

The blue-coloured section that is distinguished as the tissue shows the set of
proteins which interact to carry out the procedure of apoptosis. As was explained
before, Casp3* (Caspase 3*) is the output of the system since the changes in its
level are proportional to the rate of apoptosis. All other proteins are considered
as the inputs of the system which can be targeted and triggered in order to induce
a change in the behaviour of the system. The circles that are connected to the
proteins by arrows show the chemical reactions between the proteins, i.e. which
proteins interact to produce which protein. The arrows specify the direction of the
chemical reaction. The circles with two arrows above them specify the reactions

that are reversible, i.e. occur in both ways.
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FIGURE 4.1: Apoptosis Pathway Diagram [1].

Considering the importance of biological processes such as Apoptosis, it is of

great value to model and analyze their underlying pathways and try to understand
the behaviours that arise from the structural properties of such pathways. This

information can later be used in the design of control mechanisms with the aim of

finding drugs to regulate the behaviour of these processes.

4.2 Modelling Apoptosis Network Using Petri

Nets

This section covers the problem formulation of the Apoptosis protein network
that has been used throughout the thesis for case study. The aim is to provide a
systematic framework for creating discrete-event models (more specifically, Petri

net models) based on the ODE based models of protein-protein interactions and
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calculate protein concentrations and perform sensitivity analysis based on theses

Petri net models.

Apoptosis pathway has been extensively studied, and the equations govern-
ing the dynamics of Apoptosis can be found in literature [79]. In particular it has
been studied using SimBiology for MATLAB. The resulting simulation and sensi-
tivity analysis results will later be used for comparison with those of our proposed

technique.

The chemical reactions modeling the Apoptosis network are

Reaction 1 : [Casp3*] + [Casp8] <— [Casp8 : Casp3”]

Reaction 2 : [Casp8 : Casp3*] — [Casp8*| + [Casp3”]

Reaction 3 : [Casp8*| + [Casp3] <— [Casp3 : Casp87] 1)
Reaction 4 : [Casp3 : Casp8*] — [Casp8*] + [Casp3*] |

Reaction 5 : [Casp3*] + [XIAP] <— [Casp3™: XIAP]

Reaction 6 : [Casp3* : XIAP| — [XIAP]+ [Casp3™ : ub]

All reactions have mass action kinetics. [A] is the concentration of protein A (for
example in moles per liter). Each reaction i has a forward reaction rate k; and

a reverse reaction rate kd; if it is reversible. From the above chemical reaction
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equations, we can write the following ODE equations:

d[C(Cl;]B ] = kds[Casp3* : XIAP] — ks[Casp3*|][XTAP] + kd,[Casp8 : Casp3*]
— k1[Casp3*][Casp8] + kds[Casp3 : Casp8] + kdo[Casp8 : Casp3”]
d[CcCl;pég ] = kds[Casp3 : Casp8*] — k3[Casp8*|[Casp3] + kds[Casp3 : CaspS*]

+ kdy[Casp8 : Casp3|

% = kdz[Casp3 : Casp8*] — k3[Casp8*][Casp3]
% = kd,[Casp8 : Casp3*] — ky[Casp3*][Casps]
% = kds[Casp3* : XIAP] — ks[Casp3*][XIAP] + kdg[Casp3* : XIAP]
d[Casp?)d:tCaspS*] = —kds[Casp3 : Casp8*| + k3[Casp8*|[Casp3] .

— kdy[Casp3 : Casp8”]
d[Casp8 : Casp3*]

= —kd,[Casp8 : Casp3*] + ki[Casp3*][Casp8§|

dt
— kdy[Casp8 : Casp3”|
W = kds[Casp3™ : XIAP]
d[Casdet: XIAP) = —kds[Casp3” : XIAP] + k;[Casp3*][XIAP)]

— kdg[Casp3™ : XIAP)
(4.2)

These reactions are used to build the Petri net model of the Apoptosis network
in Figure 4.2. In order to be able to compare the results of the Simbiology model
with Petri net simulation results, the parameters of the system are exported from
Simbiology and the same parameters are used to build the Petri net model. Table
4.1 lists the transitions along with the corresponding reactions in the chemical

reaction network in Equation (4.1). The purple arcs in Figure 4.1 belong to the
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transitions that model the reverse reactions.

TABLE 4.1: Mappings of the Transitions of the Petri net and the Reactions of
the Protein Network.

Reaction — Transition(s)
Reaction 1 Ty, T

Reaction 2 Ty
Reaction 3 11,15
Reaction 4 T3
Reaction 5 17, Ty
Reaction 6 Ty

Casp3

Casp8:Casp3* T4

Casp3:Casp8*

T7 Casp3*:XIAP

T8
T9 Casp3*:ub

—®

FIGURE 4.2: Apoptosis Pathway Petri net.

Since we want to compare the results of the Petri net model with ODE
simulations, the same initial condition set has been chosen for the Petri net model.

Note that the token counts in the initial condition of a Petri net are always positive
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integers. The initial condition of the Petri net only needs to be proportional to
the initial condition set of the ODE system. For example, if the initial condition
of the ODE system is [1.3,2.4,0.82,3]7, the initial condition of the Petri net can
be any of the integer sets of numbers [130, 240,82, 300]7, [260, 480, 164, 600]7, ...

as long as the values are porportional to the values of the equivalent ODE model.

Starting from this initial condition set, the Petri net model is simulated to
calculate the changes in the concentration of the proteins from the initial condition

to the steady state (or until some other desired condition is satisfied).
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4.3 Steady State

From equation (3.18), for the Apoptosis network in the steady state, we can write:

kds[Casp3” : XIAP] — ks[Casp3*|[XIAP] + kd,[Casp8 : Casp3™]

— k1[Casp3*|[Casp8] + kdy[Casp3 : Casp8*] + kd2[Casp8 : Casp3™] =0
kd3|Casp3 : Casp8*| — k3[Casp8¥|[Casp3] + kds[Casp3 : Casp8”|

+ kd2[Casp8 : Casp3*] =0

kd3[Casp3 : Casp8*| — k3[Casp8*][Casp3] =0

kd,[Casp8 : Casp3*| — ki[Casp3*][Casp8] =0 (4.3)
kds[Casp3™ : XIAP] — k;[Casp3*|[XIAP] + kds[Casp3™ : XIAP] =0
k3[Casp8*][Casp3| — kd3[Casp3 : Casp8*| — kd4[Casp3 : Casp8*] =0
k3[Casp3*]|[Casp8] — kdy[Casp8 : Casp3*| — kds[Casp8 : Casp3*] =0
kdg[Casp3™ : XIAP] =0

k5[Casp3*]|[XIAP] — kds[Casp3* : XIAP] — kdg[Casp3™ : XIAP] =0
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From the above equations, we will have:

[Casp3* : XIAP] =0
[Casp3 : Casp8*] =0
[Casp8 : Casp3*™] =0
(4.4)
[Casp3*|[XIAP] =0

[Casp8¥][Casp3] =0

[Casp8][Casp3*] =0

The results are the same for both the ODEs and Petri net equations. From the
equations in (4.4), we can see that the number of the independent equations ob-
tained from the 9 equations in (4.3) is equal to the number of chemical reaction
equations. Also, we can see that the steady state values for some proteins are not
determined by the reaction rate values and will be zero independent of the change

in the reaction rates.

4.4 Ordinary Differential Equations and Petri net

Model Simulations

Figure 4.3 shows the results of Petri net simulations performed by calculating the
probabilities using Algorithm 1 in Chapter 3. Figure 4.4 shows the results of ODE
simulations in MATLAB’s SimBiology. The Petri net simulations were stopped at

the point where all the transitions were disabled. Since the initial conditions of
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the ODEs are positive integers, the same values are used for Petri net simulations
as well. The inital marking of the Petri net and the initial concentration of the

ODE variables are given in Table 4.2'.

TABLE 4.2: Initial Conditions for Petri net and ODE Simulations (v = 1)

Place  Protein Name Petri net Initial ODE Initial Condition

Condition (Tokens) (Moles)
P1 Casp8* 10000 10000
P2 Casp3* 10000 10000
P3  Casp3: Casp8* 0 0
P4 Casp8: Casp3* 0 0
P5 Casp8 9000 9000
P6  Casp3*: XIAP 0 0
pP7 XIAP 8000 8000
P8 Casp3 25000 25000
P9 Casp3* : ub 0 0
a5 x10*
Casp(8)*
sr — = = Casp(3)* i
Casp(3):Casp(8)*
Casp(8):Casp(3)*
. 25) Casp(8)
§ = = = Casp(3)*:XIAP
e Ll XIAP |
@ Casp(3)
2 Casp(3)*:ub
[
T 150 1
(§

25

x 10

FIGURE 4.3: Protein Concentrations Obtained by Petri net Simulations (y = 1).

!The values are exported from SimBiology, and the ratio of the values is important (not the
exact value of the concentrations).
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x 10* ODE Simulation Results
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FIGURE 4.4: Protein Concentrations Obtained by ODE Simulations.

By comparing the two figures, we can easily see the similarity. Note that
since the steps in the Petri net are not necessarily the same as the ODE steps,
(i.e. n is not a linear function of time ¢) the output signals of the Petri net appear
to have a warped time axis. However, the values of the protein concentrations go
through the same changes and stablize at the same values (the steady state values
are the same), i.e. for every n, there exists t,, such that z(n) = vyc(t,)(ignoring
the small quantization error). In other words, there is a transformation that can
map the time in the ODE () to the steps in the Petri net simulations (n). Figure
4.5 shows the relationship between Petri net steps (n) and ODE time (t). Each
point in Figure 4.5 represents a Petri net step and ODE time value in which the
concentration of the proteins are the same in both models. For instance, the

protein concentrations from the ODE at ¢t = 4 x 10* are (almost equal to protein
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concentrations obtained from the Petri net at n = 2 x 10°).

x 10° Petri net Steps Vs. ODE Simulation Time
4 T T T T T

data
3.5F = = = fitted curve

Petri net Steps : n
N
T

0 1 2 3 4 5 6 7
ODE Simulation Time : t (Seconds) x10*

FI1cURE 4.5: Comparison of Petri net Simulation Steps and ODE Time During
the Transient Behaviour.

To show that the protein concentrations have the same values in Petri net
and ODE simulations, we plotted a phase diagram for two of the variables. Figure
4.6 shows the phase diagram for C'asp3* and Casp3* : XTI AP obtained from the
above Petri net and ODE simulation results (y = 1). As it is clear from the figure,
the values have gone through the same trajectories for both models, i.e. have equal

phase diagrams.

In order to show how the results may change by changing the probability
functions, we have also performed the same simulations with uniform probability
distributions for all transitions. Figure 4.7 shows the results of these simulations.
As we expected, all the enabled transitions fire with equal probabilities at first
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Phase Diagram
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FIGURE 4.6: Phase Diagram of Casp3* and Casp3* : XIAP for Petri net and
ODE Simulations.

(all the lines have equal slopes since the tokens are removed from/added to the
places with constant equal rates) until a transition is disabled and can no longer
fire. Then, all the other transitions which are still enabled, fire with new proba-
bilities which are again equal, so the slopes change, but still remain equal until no

transition can fire anymore.

Figure 4.8 shows the phase diagram of the same proteins for the ODEs and
the Petri net with uniform probability distributions. As we can see in the figure,
choosing a different probability distribution will lead to a trajectory completely

different from that of the ODE.
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FIGURE 4.7: Protein Concentrations Obtained by Petri net Simulations with
Uniform Probability Distributions (v = 0.1).
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FIGURE 4.8: Phase Diagram of Casp3* and Casp3* : XI AP for Petri net with
Uniform Probability Distributions and ODE Simulations.

73



4.5 Scaling Factor

As was discussed in Chapter 3, the Petri net simulations can be performed with
different scaling factors that would result in different accuracies and computation
times. Figures 4.9, 4.10, 4.11, 4.12, 4.13, and 4.14 show the simulation results for

6 different scaling factors.

x 10

35 T T T T T T I
Casp(8)*
8r Casp(3)*
Casp(3):Casp(8)*
Casp(8):Casp(3)*
2.5 Casp(8)
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© 2r Casp(3)
£ Casp(3)*:ub
[
§ 157 1
c
o
o
1 | |
| v nr v v 117 mr1 1 mT Tr 1N
0.5 i
o)L P RN I W I DU N N Y L N DN L . D
0 500 1000 1500 2000 2500 3000 3500

Steps

FIGURE 4.9: Effect of Scaling Factor - Petri net Simulation Results (v = 0.001).

In order to be able to see the effect of increasing scaling factor better, the
phase diagram of the same variables were plotted for all the simulations with
different scaling factors. As is clear from Figure 4.15, the phase diagrams get

more accurate as scaling factor is increased.

In order to be able to compare the results of the Petri net and ODE solutions

directly, we defined an error measure based on the phase diagrams of the solution.
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FIGURE 4.10: Effect of Scaling Factor - Petri net Simulation Results (y =
0.003).
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FIGURE 4.11: Effect of Scaling Factor - Petri net Simulation Results (y =
0.005).
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FIGURE 4.12: Effect of Scaling Factor - Petri net Simulation Results (v = 0.01).
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FIGURE 4.13: Effect of Scaling Factor - Petri net Simulation Results (y = 0.1).
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FIGURE 4.14: Effect of Scaling Factor - Petri net Simulation Results (y = 1).
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FIGURE 4.15: Phase Diagram of Casp3* and Casp3* : XIAP for Petri nets
with Different Scaling Ratios and ODE Simulations.

77



The phase diagrams of all the variables were calculated based on one of the vari-
ables which had a monotonically decreasing curve in the solution (Casp3*). Using
these phase diagrams, the root of the mean square of the difference between the
solutions of ODE and Petri net is calculated as the measure of error. Table 4.3
shows these root mean squared errors (RMSE) for each of the proteins in com-
parison with the results of the ODEs. Table 4.4 shows the simulation time for
each scaling factor (v) and the average RMSEs for all the protein concentraions

(the simulation time for the ODE results of MATLAB’s SimBiology was 1.6729

seconds).
TABLE 4.3: RMSE (Tokens) for Different Scaling Ratios
Scaling Ratio v —  0.001 0.003 0.005 0.01 0.1 1
Species | Fig4.9 Fig4.10 Fig4.11 Fig4.12 Fig4.13 Fig4.14
Casp8* 43337  4.0313 43337  4.1958  3.6300  0.1858

Casp3:Casp8* 4.5069 41694  4.5069  4.3718  3.7990  0.1860
Casp8:Casp3* 0.0235 0.0235  0.0235  0.0234  0.0227  0.0132

Casp8 0.2208 0.2208  0.2208  0.2199  0.2120  0.0150
Casp3*:XIAP 112.0822  42.3476  24.5974  22.9377  4.7571 0.0463
XIAP 112.0822 42.3476  24.5974  22.9377  4.7571 0.0463
Casp3 9.4702 8.7924  9.4702  9.3606  8.0021 0.2122
Casp3*:ub 108.6840 38.7770  21.1065 19.2861  6.0777  0.1230
Mean — 43.9254 175887 11.1070 10.4166  3.9072  0.1035

TABLE 4.4: Petri net Simulation Times and Average RMSEs for Different Scal-
ing Ratios (%)

Figure Scaling Factor Simulation Time Average RMSE

() (Seconds) (Tokens)
Figure 4.9 0.001 0.0213 43.9254
Figure 4.10 0.003 0.0639 17.5887
Figure 4.11 0.005 0.0925 11.1070
Figure 4.12 0.01 0.1926 10.4166
Figure 4.13 0.1 1.2374 3.9072
Figure 4.14 1 21.1901 0.1035
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4.6 Expected Values and Parallel Computing

In order to find the expected values of trajectories (as described in Section 3.2.)
we need to calculate several samples of the trajectory, and find the average result.
To speed up the calculations whenever possible, we can use parallel programming.
Figures 4.16, 4.17, 4.18, and 4.19, show the simulation results for average trajecto-
ries for various scaling factors and number of sample trajectories. Table 4.5 shows
the simulation time for each parallel simulation as well as the average RMSEs
(of z1, 29, ...,xn), and Table 4.6 compares the results of these parallel simulations
with the results of the previous simulations. The RMSE values for each protein
in each simulation, and the average RMSE for all the proteins in the network are
included in the table. As can be seen in the results, using averaging with parallel

computing can help improve the results in terms of speed and accuracy.

TABLE 4.5: Simulation Time for Different Parallel Simulations

Number of  Scaling Simulation
Figure Averaged  Factor Time per RMSE
Simulations  (y)  Processor(Seconds) (Tokens)
Figure 4.16 8 0.003 0.0639 15.0624
Figure 4.17 1000 0.003 0.0639 13.5829
Figure 4.18 8 0.01 1.2374 3.0510
Figure 4.19 1000 0.01 1.2374 2.3913
Figure 4.10 1 0.003 0.0639 17.5887
Figure 4.11 1 0.005 0.0925 11.1070
Figure 4.12 1 0.01 0.1926 10.4166
Figure 4.13 1 0.1 1.2374 3.9072
Figure 4.14 1 1 21.1901 0.1035

The phase diagram of the Caspase3* and Caspase3* : X I AP were plotted
for all the above simulations in Figures 4.20 and 4.21. As is clear from Figures

4.20 and 4.21, the phase diagrams improve and get smoother when the results are
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FIGURE 4.16: Average Concentrations Calculated with 8 Parallel Simulations
(v = 0.003).
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FIGURE 4.17: Average Concentrations Calculated with 1000 Parallel Simula-
tions (v = 0.003).

80



x 10* Average of 8 Sample Trajectories
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FIGURE 4.18: Average Concentrations Calculated with 8 Parallel Simulations
(y=0.1).
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FIGURE 4.19: Average Concentrations Calculated with 1000 Parallel Simula-
tions (y = 0.1).
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TABLE 4.6: RMSE (Tokens) for Different Scaling Factors and Parallel Simula-

tions
Scaling Factor (v) — 0.003 0.003 0.003
No. of Parallel Simulations— 1 8 1000
Species | Fig 4.10 Fig4.16 Fig4.17
Casp8* 4.0313 3.1774  3.1284
Casp3:Casp8* 4.1694  3.3507  3.2891
Casp8:Casp3* 0.0235  0.0235  0.0219
Casp8 0.2208 0.2214 0.2127
Casp3*:XIAP 42.3476  41.4997  36.3968
XIAP 42.3476 314997 26.3968
Casp3 8.7924  8.0482  8.0776
Casp3*:ub 38.7770 32.6785 31.1401
Mean — 17.5887 15.0624 13.5829
Scaling Factor (y) — 0.1 0.1 0.1
No. of Parallel Simulations— 1 8 1000
Species | Fig 4.13 Fig4.18 Fig4.19
Casp8* 3.6300 3.1803 2.2468
Casp3:Casp8* 3.7990  3.3352  2.3855
Casp8:Casp3* 0.0227  0.0198  0.0195
Casp8 0.2120 0.1838  0.1742
Casp3*:XIAP 4.7571 2.6256 1.9400
XIAP 4.7571 2.6256 1.9400
Casp3 8.0021 7.3782  6.4239
Casp3*:ub 6.0777  5.0592  4.0004
Mean — 3.9072 3.0510 2.3913

averaged. But since the expected value of the solution of the Petri net model is
equal to the Euler approximation of the ODE solution, when the scaling factor
is too small, the At, steps in the Euler approximation will be too large, and the
equivalent Euler approximation will not be an accurate approximation for the
solution of the ODEs. So, the equivalent Petri net solution will be inacurate as
well. For example, for v = 0.003 even with averaging 1000 simulations, the phase

diagrams get smooth but are still inacurate.
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FIGURE 4.20: Phase Diagram of Casp3* and Casp3* : XIAP for Petri nets
with Averaged Results and Different Scaling Ratios and ODE Simulations.
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FIGURE 4.21: Phase Diagram of Casp3* and Casp3* : XIAP for Petri nets
with Averaged Results and Different Scaling Ratios and ODE Simulations.
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4.7 Sensitivity Analysis

In this section, the result of sensitivity analysis performed by using ODE simula-
tions from SimBiology and Petri nets are compared. Since the relative magnitude
of the sensitivity numbers are important (not the exact values) the accuracy of
the trajectories is not of great importance here, and Petri net simulations with
relatively lower scaling factors can also be used for performing sensitivity analy-
sis. This way, computation time can be reduced. Figure 4.22 shows the results of
sensitivity analysis with ODE simulations obtained from SimBiology. Figures 4.23
and 4.25 show the results of sensitivity analysis performed by Petri net simulations
for 2 percent perturbation (in initial condition) and scaling factor equal to v = 0.1
and 1 percent perturbation (in initial condition) and scaling factor equal to v = 1,

respectively.

For large values of v (v = 0.1 or v = 1), the trajectory does not change
significantly in two different runs. So, we can use the results of a single run to
calculate the sensitivities. For smaller values of v, calculation of the expected

value using several runs is necessary for performing sensitivity analysis.

Note that the values do not necessarily need to be similar, as long as the
order is the same, since the scale of the simulations are different. Figures 4.24
and 4.26 show the absolute value of the change in the output for perturbation in
different inputs. As we can see in the results, perturbing XIAP has the highest

effect on the output, i.e. the output is most sensitive to XIAP.
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Change in Output for 2% Perturbation in Inputs

45 T T T T T
Casp8*
Casp3*
40r Casp3:Casp8*|]
Casp8:Casp3*
351 Casp8 |
= = = Casp3*:XIAP
XIAP
30 Casp3 b
® Casp3*:ub
(o))
& 25 E
e
&)
5
£ 20 i
>
()
151 1
101 E
5F | 7
| l !
0 - el 8 " I e
0 500 1000 1500 2000 2500 3000

Steps

Sensitivity

FIcURE 4.24: Change in

x10

Output for 2% Perturbation in Input (v = 0.1).

Sensitivity Analysis - Petri net Simulations

10 T T T

Casp8* Casp3*  Casp3:Casp8*Casp8*:Casp3*  Casp8 Casp3*:XIAP XIAP Casp3 Casp3*ub
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Perturbation in Inputs (y = 1).
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Change in Output for 1% Perturbation in Inputs
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FIGURE 4.26: Change in Output for 1% Perturbation in Input (y = 1).

As can be seen in the figures, C'asp3* : ub has the lowest sensitivity value
in all results. If we look at the Apoptosis network in Figure 4.2, we can see that
Casp3* : ub is the place in which all the tokens are accomulated and is only an
output place. So, perturbing its value has no effect on the rest of the network.

Hence, the output of the system (Casp3*) is not sensitive to Casp3* : ub.

4.8 Conclusion

In this chapter, a special type of stochastic Petri nets were used to model the
behaviour of the proteins in a simple Apoptosis network. The results of the simu-
lations were compared with the results of ODE simulations, which are one of the

most common methods used in analyzing protein networks. The same method was
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then used to perform sensitivity analysis, and the results were compared with the
results of the sensitivity analysis performed using ODE models. As was shown in
the results, Petri nets are powerful tools that can be used to model protein net-
works with desirable accuracy and due to their discrete nature, they can reduce

simulation time.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

Discrete event models have been used in modeling biological systems. In this
thesis, a type of stochastic Petri nets was proposed to model chemical reactions
that are represented with a set of ordinary differential equations. It was shown that
the Petri net model calculated correctly the changes in chemical concentrations. It
should be noted that in the output sequence generated by the Petri net, there was
no linear relationship between the sequence index n and time ¢. This meant that
while the Petri net correctly calculates the concentrations, the timing information
is not present in the output of the Petri net. This is equivalent to a distortion
(nonlinear scaling) of the time axis. The main advantage of the proposed method
however is that it can be easily implemented on a computing system with parallel
processors, and hence has lower computational cost. The model was then used to

perform sensitivity analysis.
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As our case study, a biological system was modeled and used to demonstrate
the performance of the proposed method. The same system was used to perform
sensitivity analysis using the stochastic Petri net model to determine the best

target for designing a drug control mechanism.

The results of the simulations were then compared with the ODE based sim-
ulation results obtained from the ODE model in MATLAB’s SimBiology toolbox.
The simulation results were the same (apart from the fact that the Petri net steps
and ODE time values are different in nature). The sensitivity analysis results of

the two methods were similar.

5.2 Future Research

This area of research is very new and a lot of interesting topics can be studied

based on the research line of this thesis.

Other analyses methods such as stability analysis and reachability analysis

can be performed using the proposed method.

One of the disadvantages of ODEs for modeling chemical reaction systems
is that ODEs can only model the behaviour of the reactions deterministically
if certain assumptions such as well-mixing of the chemicals, constant external
conditions, large number of reacting molecules are satisfied [5]. Regular ODE
models cannot be adjusted to take into account the changes in the behaviour of
the system if such assumptions are not satisfied. Due to the stochastic nature

of our proposed model, we can define new probability functions to consider the
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changes in the reaction rates (which are equivalent to the rates of transition firings

in the equivalent Petri net model) if such assumptions do not hold.

Another possible line of research is to focus on sensitivity analysis for systems
with multiple inputs and outputs. Sometimes, because of the internal interactions
of the model, the perturbation of two or more inputs simultaneously causes vari-
ation in the output greater than that of varying each of the inputs alone. In such
cases, the sensitivity analysis method should consider such inputs together. Since
the Petri net model is relatively fast, it can be used to perform more complicated

and computationally expensive simulations to calculate these sensitivities.
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