
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 

 

King’s Research Portal 
 

DOI:
10.1109/TMI.2019.2905770

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Kuijf, H. J., Biesbroek, J. M., De Bresser, J., Heinen, R., Andermatt, S., Bento, M., Berseth, M., Belyaev, M.,
Cardoso, M. J., Casamitjana, A., Collins, D. L., Dadar, M., Georgiou, A., Ghafoorian, M., Jin, D., Khademi, A.,
Knight, J., Li, H., Llado, X., ... Biessels, G. J. (2019). Standardized Assessment of Automatic Segmentation of
White Matter Hyperintensities and Results of the WMH Segmentation Challenge. IEEE transactions on medical
imaging, 38(11), 2556-2568. https://doi.org/10.1109/TMI.2019.2905770

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 26. Oct. 2023

https://doi.org/10.1109/TMI.2019.2905770
https://kclpure.kcl.ac.uk/portal/en/publications/fa791772-c615-432f-b981-cecda3060911
https://doi.org/10.1109/TMI.2019.2905770


1

Standardized Assessment of Automatic
Segmentation of White Matter Hyperintensities;
Results of the WMH Segmentation Challenge

Hugo J. Kuijf, J. Matthijs Biesbroek, Jeroen de Bresser, Rutger Heinen, Simon Andermatt, Mariana Bento,
Matt Berseth, Mikhail Belyaev, M. Jorge Cardoso, Adrià Casamitjana, D. Louis Collins, Mahsa Dadar,
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Université Paris-Saclay, France, and the Huazhong University of Science
and Technology, China. G. Zeng and G. Zheng are with the Institute for
Surgical Technology & Biomechanics, University of Bern, Bern, Switzerland.
J. Zhang is with the University of Dundee. C. Chen is with the Memory
Aging and Cognition Center, NUHS, Singapore. W. van der Flier is with
the Alzheimer Center, VU Amsterdam, the Netherlands. F. Barkhof is with
the Department of Radiology & Nuclear Medicine, VU University Medical
Center, Amsterdam, the Netherlands and the UCL institutes of Neurology and
Healthcare Engineering, London, UK.

Abstract—Quantification of cerebral white matter hyperinten-
sities (WMH) of presumed vascular origin is of key importance
in many neurological research studies. Currently, measurements
are often still obtained from manual segmentations on brain
MR images, which is a laborious procedure. Automatic WMH
segmentation methods exist, but a standardized comparison of the
performance of such methods is lacking. We organized a scientific
challenge, in which developers could evaluate their method
on a standardized multi-center/-scanner image dataset, giving
an objective comparison: the WMH Segmentation Challenge
(https://wmh.isi.uu.nl/).

Sixty T1+FLAIR images from three MR scanners were rele-
ased with manual WMH segmentations for training. A test set
of 110 images from five MR scanners was used for evaluation.
Segmentation methods had to be containerized and submitted
to the challenge organizers. Five evaluation metrics were used
to rank the methods: (1) Dice similarity coefficient, (2) modified
Hausdorff distance (95th percentile), (3) absolute log-transformed
volume difference, (4) sensitivity for detecting individual lesions,
and (5) F1-score for individual lesions. Additionally, methods
were ranked on their inter-scanner robustness.

Twenty participants submitted their method for evaluation.
This paper provides a detailed analysis of the results. In brief,
there is a cluster of four methods that rank significantly better
than the other methods, with one clear winner. The inter-scanner
robustness ranking shows that not all methods generalize to
unseen scanners.

The challenge remains open for future submissions and pro-
vides a public platform for method evaluation.

Index Terms—Magnetic resonance imaging (MRI), Brain, Eva-
luation and performance, Segmentation

I. INTRODUCTION

White matter hyperintensities (WMH) of presumed vascular
origin are one of the main manifestations of cerebral small
vessel disease and play a key role in stroke, dementia, and
ageing [1], [2]. On T2-weighted and fluid-attenuated inversion
recovery (FLAIR) brain MR images, WMH are clearly visible

Copyright (c) 2019 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.
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as hyperintense regions within the white matter [3]. An exam-
ple image is shown in Figure 1, with the manual segmentation
shown in Figure 1(c).

Quantification of WMH is of importance in clinical research
studies, where measures of WMH volume, shape, and location
are obtained from detailed segmentations. These measures are
associated with the presence and severity of clinical symptoms,
such as cognitive impairment and gait disturbances, and are
likely to find their way into daily clinical practice, supporting
diagnosis, prognosis, and treatment monitoring [2], [4]. Ho-
wever, manual delineation of WMH is a time-consuming and
observer-dependent procedure.

Automatic WMH segmentation methods have been develo-
ped, but a review by Caligiuri et al. [5] revealed a key issue:
it is hard to compare the various methods that are described in
the literature. Each proposed segmentation method has been
evaluated on a different ground truth (different number of
subjects, different experts, different protocols), using different
evaluation criteria.

A further challenge of automatic WMH segmentation met-
hods is the deployment of such a method within a new institute
that might have different scanners or imaging protocols. Many
(deep) machine learning methods require some form of trans-
fer learning or fine-tuning on the target images [6], which in
practice is not always feasible.

These issues are not unique to the task of automatic WMH
segmentation, but occur in many medical image analysis tasks.
Organizing a scientific challenge is a way to address this,
having a number of competing methods perform the same
task on the same data. This has been successfully applied to
various tasks, such as liver segmentation [7], image registration
[8], coronary calcium scoring [9], or gland segmentation in
histology images [10]. In the past, a number of challenges
have been organized that included abnormalities on brain MR
images, such as the multiple sclerosis (MS) lesions [11], [12],
tumour [13], or tissue [14] segmentation challenges1. However,
none of these challenges focuses on WMH of presumed vas-
cular origin (although MS lesions share some characteristics
with such WMH; and the brain tissue segmentation challenge
included WMH lesions, but not as a separate task).

The WMH Segmentation Challenge described in this paper
provides a standardized assessment of automatic methods for
the segmentation of WMH. The task for the challenge was
defined as: “the segmentation of white matter hyperintensities
of presumed vascular origin on brain MR images”2 [3]. Key
features of the challenge include: Participants have to submit
their method to the organizers for independent evaluation on
a test set. The test set includes data from two additional
scanners not in the training data, to evaluate generalizability
of segmentation methods across scanners. The dataset was
derived from patients with various degrees of ageing related
degenerative and vascular pathologies, which is important for
the generalizability since segmentation methods should be able
to deal with this variation. Evaluation is performed using five

1For a more complete overview, visit: https://grand-challenge.org/
challenges/

2https://wmh.isi.uu.nl/details/

TABLE I
OVERVIEW OF THE NUMBER OF IMAGES AVAILABLE FOR TRAINING (TR.)

AND TEST (TE.).

Institute Scanner Tr. Te.

UMC Utrecht 3 T Philips Achieva 20 30
NUHS Singapore 3 T Siemens TrioTim 20 30
VU Amsterdam 3 T GE Signa HDxt 20 30

1.5 T GE Signa HDxt 0 10
3 T Philips Ingenuity (PET/MR) 0 10

different metrics and participants are ranked relative to each
other.

In this paper, the organization of the challenge, its results,
and a detailed evaluation are presented.

II. METHODS

A. Training and test data

A total of 60 training and 110 test images were used in this
challenge. Imaging data was acquired from five different scan-
ners, from three different vendors, in three different institutes:
the University Medical Center (UMC) Utrecht, VU University
Medical Centre (VU) Amsterdam, both in the Netherlands, and
the National University Health System (NUHS) in Singapore.
For each subject, a 3D T1-weighted and a 2D multi-slice
FLAIR image were provided.

The training data consisted of sixty images: twenty 3 T
images of a single scanner of each institute. The test set
included ninety images (three times thirty) of those same
scanners and additionally twenty images (two times ten) of
scanners that were not in the training data set. An overview
of the data set is given in Table I.

Subjects included from UMC Utrecht and VU Amsterdam
were selected from the memory clinic patients of both insti-
tutes [15].

Subjects included from the NUHS Singapore were selected
from the Memory Ageing and Cognition Centre Cohort re-
cruited from the memory clinics of the National University
Hospital and St. Luke’s Hospital in Singapore [16].

For each scanner, subjects were randomly picked from all
subjects and randomly placed into the training or test sets.

1) MRI parameters: All 3D sequences were acquired in
the sagittal direction and all 2D multi-slice sequences in the
transversal direction.

UMC Utrecht, 3 T Philips Achieva: 3D T1-weighted
sequence (192 slices, voxel size: 1.00 × 1.00 × 1.00 mm3,
repetition time (TR)/echo time (TE): 7.9/4.5 ms), 2D FLAIR
sequence (48 slices, voxel size: 0.96 × 0.95 × 3.00 mm3,
TR/TE/inversion time (TI): 11, 000/125/2, 800 ms)

NUHS Singapore, 3 T Siemens TrioTim: 3D T1-weighted
sequence (voxel size: 1.00 × 1.00 × 1.00 mm3, TR/TE/TI:
2, 300/1.9/900 ms), 2D FLAIR sequence (voxel size: 1.00×
1.00× 3.00 mm3, TR/TE/TI: 9, 000/82/2, 500 ms)

VU Amsterdam, 3 T GE Signa HDxt: 3D T1-weighted se-
quence (176 slices, voxel size: 0.94×0.94×1.00 mm3, TR/TE:
7.8/3.0 ms), 3D FLAIR sequence (132 slices, voxel size:
0.98× 0.98× 1.20 mm3, TR/TE/TI: 8, 000/126/2, 340 ms)
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(a) T1-weighted image (b) FLAIR image (c) Manual WMH segmentation

Fig. 1. Example brain MR images of a subject with white matter hyperintensities (WMH) of presumed vascular origin. On the T1-weighted image (a), WMH
show as hypointense regions within the white matter. On the FLAIR image (b), WMH are clearly visible as hyperintense regions within the white matter. The
corresponding manual WMH segmentation is shown in (c).

VU Amsterdam, 1.5 T GE Signa HDxt: 3D T1-
weighted sequence (172 slices, voxel size: 0.98 × 0.98 ×
1.50 mm3, TR/TE: 12.3/5.2 ms), 3D FLAIR sequence
(128 slices, voxel size: 1.21 × 1.21 × 1.30 mm3, TR/TE/TI:
6, 500/117/1, 987 ms)

VU Amsterdam, 3 T Philips Ingenuity (PET/MR):
3D T1-weighted sequence (180 slices, voxel size: 0.87 ×
0.87× 1.00 mm3, TR/TE: 9.9/4.6 ms), 3D FLAIR sequence
(321 slices, voxel size: 1.04 × 1.04 × 0.56 mm3, TR/TE/TI:
4, 800/279/1, 650 ms)

All 3D FLAIR sequences were resampled into the transver-
sal direction with slices of 3 mm thickness for two reasons:
(1) to save time on the manual annotation of WMH and (2)
to become more similar to the 2D multi-slice sequences.

An example FLAIR image of each scanner is shown in
Appendix A Figure 73.

2) Data pre-processing: All images were bias-corrected
using SPM12 [17]. Using the elastix toolbox for image re-
gistration [18], the 3D T1-weighted images were aligned with
the (resampled) FLAIR images. The transformation parameters
were provided with the data. The faces of the subjects were
manually removed from all sequences and the masks used for
that were provided as well.

Data before and after preprocessing is provided on the
challenge website for registered participants: https://wmh.isi.
uu.nl/data/.

3) Manual reference standard: WMH and other pat-
hologies (i.e. lacunes and non-lacunar infarcts, (micro)
hemorrhages) were manually segmented in accordance with
the STandards for ReportIng Vascular changes on nEuroi-
maging (STRIVE) criteria [3]. The outline of WMH and
other pathology was delineated using a contour drawing
technique by an expert observer (O1). This observer had
extensive prior experience with the manual segmentation of
WMH and had segmented 1000+ cases before this dataset.
Manual delineations were peer-reviewed by a second expert
observer (O2) with eleven years of experience in quantitative
neuroimaging and clinical neuroradiology. In case of mistakes,

3Available in the supplementary files / multimedia tab.

errors, or delineations that were not according to the STRIVE
criteria, O1 corrected the manual segmentation in a consensus
meeting with O2. Hence, the provided reference standard is
the corrected segmentation of O1, after peer review by O2.

The contours were converted to binary masks, whereby all
voxels whose volume was within the manual delineation for
>50 %, were considered WMH. Background received label 0
and WMH label 1. Other pathology was converted to binary
masks as well, receiving label 2. These masks were dilated
by 1 pixel in-plane (with a 3 × 3 × 1 voxel kernel). In case
of overlap between labels 1 and 2 (after dilation), label 1 was
assigned.

Two additional observers segmented the sixty training ima-
ges to obtain inter-observer agreement measures. Observer O3
was trained for WMH segmentation, but had no extensive prior
experience. Observer O4 was trained for WMH segmentation
and had prior experience.

B. Set-up of the challenge

Participants could register on the challenge website and do-
wnload the training data. Methods had to be containerized with
Docker4 [19] and submitted for evaluation. Containerization
eases deployment of methods and guarantees that the method
will produce identical output when run on a different platform.
To ensure this, the output of the containerized method on
the first training subject was sent back to the participants for
verification.

During testing, the containerized method was run on each
test subject one by one. No identifiers were present that
would indicate from which of the five scanners the current
subject originated. After processing a subject, the container
was completely destroyed and reloaded. Full details on how
the containers would be run, including a Python and MATLAB
example container, were provided on the challenge website5.

An NVIDIA Titan Xp GPU was available for methods that
needed one.

4https://www.docker.com/
5https://wmh.isi.uu.nl/methods/
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C. Participants

Twenty teams submitted their method before the deadline
and participated in the challenge. A brief summary of each
method is given below, in alphabetical order.
achilles a neural network similar to HighResNet [20] and
DeepLab v3 [21], utilizing atrous (dilated) convolutions,
atrous spatial pyramid pooling, and residual connections.
The network is trained only on the FLAIR images, taking
random 713 sized patches, and applying scaling and rotation
augmentations [22].
cian a network based on multi-dimensional gated recurrent
units (MD-GRU) was trained on 3D patches using data
augmentation techniques including random deformation,
rotation and scaling [23]–[25].
hadi a random forest classifier trained on multi-modal image
features. These include intensities, gradient, and Hessian
features of the original images, after smoothing, and of
generated super-voxels [26].
ipmi-bern a two-stage approach that uses fully convolutional
neural networks to first extract the brain from the images
and second identifies WMH within the brain. Both stages
implement long and short skip connections. The second stage
produces output at three different scales. Data augmentation
was applied, including rotations and mirroring [27].
k2 a 2D fully convolutional neural network with an
architecture similar to U-Net [28]. A number of models were
trained for the whole dataset, as well as for each individual
scanner. During application, first the type of scanner was
predicted and next that specific model was applied together
with the model trained on all data [29].
knight a voxel-wise logistic regression model that is fitted
independently for each voxel in the FLAIR image. Images
were transformed to the MNI-152 standard space [30] for
training and at test time the parameter maps were warped to
the subject space [31], [32].
lrde a modification of the pre-trained 16-layer VGG network
[33], where the FLAIR, T1, and a high-pass filtered FLAIR
are used as multi-channel input. The VGG network had its
fully connected layers replaced by a number of convolutional
layers [34]–[37].
misp a 3D convolutional neural network with 18 layers using
patches of 27 × 27 × 9 voxels. The first eight layers were
trained separately for the FLAIR and T1 images and had
skip-connections [38] [39].
neuro.ml a neural network using the DeepMedic [40]
architecture, having two parallel branches that process the
images at two different scales. The network used 3D patches,
which were sampled such that 60 % of the patches contained
a WMH [41].
nic-vicorob a 10-layer 3D convolutional neural network
architecture previously used to segment multiple sclerosis
lesions [42]. A cascaded training procedure was employed,
training two separate networks to first identify candidate
lesion voxels and next to reduce false positive detections.
A third network re-trains the last fully connected layer to
perform WMH segmentation [43].
nih cidi a fully convolutional neural network modified from

the U-Net architecture [28] was used to segment WMH on the
FLAIR images. Next, another network was trained to segment
the white matter from T1 images, and the segmented white
matter mask is applied to remove false positives from the
WMH segmentation results. The original U-Net architecture
was trimmed to keep only three pooling layers [44].
nist a random descision forest classifier trained on location
and intensity features [45]–[47].
nlp logix a multiscale deep neural network similar to [48],
with some minor modifications and no spatial features. The
network was trained in ten folds and the three best performing
checkpoints on the training data were selected. These were
applied on the test set and the results averaged [49].
scan a densely connected convolutional network using dilated
convolutions [50], [51]. In each dense block, the output is
concatenated to the input before passing it to the next layer.
Two classifiers were trained: one to apply brain extraction
and the second to find lesions within the extracted brain [52].
skkumedneuro an intensity-based thresholding method with
region growing approach to segment periventricular and
deep WMH separately, and two random forest classifiers
for false positive reduction. Per imaging modality, 19
texture and 100 “multi-layer” features were computed. The
“multi-layer” features were computed using a feed-forward
convolutional network with fixed filters (e.g. averaging,
Gaussian, Laplacian); consisting of two convolutional, two
max-pooling, and one fully connected layer [53].
sysu media a fully convolutional neural network similar to
U-Net [28]. An ensemble of three networks was trained with
different initializations. Data normalization and augmentation
was applied. To remove false positive detections, WMH in
the first and last 1

8 th slices was removed [54], [55].
text class a random forest classifier trained primarily on
texture features. Features include local binary pattern,
structural and morphological gradients, and image intensities
[56], [57].
tig a three-level Gaussian mixture model, slightly adapted
from [58]. The model is iteratively modified and evaluated,
until it converges. After that, candidate WMH is selected and
possible false positives are pruned based on their location
[59].
tignet a neural network with the HighResNet architecture
[20]. The network was trained on 2, 660 images segmented
using the previous method of team tig [58], [60].
upc dlmi a neural network modified from the V-Net
architecture [61]. An additional network with convolutional
layers is trained on upsampled images and then concatenated
with the output of the V-Net [62].

Detailed information on each method can be found online
at https://wmh.isi.uu.nl/results/results-miccai-2017/.

D. Evaluation and Ranking

Methods were evaluated according to five criteria: (1) the
Dice Similarity Coefficient (DSC), (2) a modified Hausdorff
distance (95th percentile; H95), (3) the absolute percentage
volume difference (AVD), (4) the sensitivity for detecting
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individual lesions (recall), and (5) F1-score for individual
lesions (F1). For recall and F1, individual lesions are defined
as 3D connected components within an image. The exact
implementation of each metric was put online6 beforehand
and could be used by participants for self-evaluation during
development. During evaluation of the results, it was disco-
vered that the AVD metric had a slight flaw. A method could
undersegment WMH by at most 100%, but could oversegment
WMH almost infinitely. Therefore, in this manuscript, the
AVD metric was replaced by the absolute log-transformed
volume difference (lAVD, (1)).

lAVD = | log segmented volume
true volume

| (1)

The final ranking was based on the five metrics and each
method received a rank relative to the performance of all
methods. This was computed in a number of steps. First, each
metric was averaged over all test scans per method. For each
metric, the methods were sorted from best to worst. Next, the
best method received a rank of 0 and the worst method a rank
of 1; all other methods were ranked relatively in the range
(0, 1). Finally, the five ranks were averaged into the overall
rank.

95% confidence intervals on each individual metric and the
final ranking were computed using bootstrapping. The boot-
strap distribution included 2, 000 samples taken randomly from
the test set with replacement. Non-overlapping confidence
intervals indicate a significant difference between methods,
with α = 0.05.

It is expected that methods might have more difficulties
detecting and segmenting small lesions compared to large le-
sions. For each subject, the recall will be computed separately
for individual lesions smaller than or equal to the median
lesion size and for lesions larger than the median lesion size.

Additionally, a ranking was computed based solely on the
inter-scanner differences. This ranking highlights which met-
hods have the most robust performance across various scan-
ners. For each method and scanner, the median performance
of each metric was computed. Next, the standard deviation of
those medians per scanner was averaged; giving a single value
per metric: the standard deviation of the median per scanner.
Methods were then ranked based on this value: first per metric
and then averaged over all five metrics. A lower standard
deviation across the median performance on all scanners (for
all metrics) indicates a better inter-scanner robustness.

Finally, the Simultaneous Truth And Performance Level Es-
timation (STAPLE) algorithm [63] was applied to all methods
and to the top-ranking methods. STAPLE takes multiple seg-
mentations as input and produces a combined segmentation,
which was evaluated and ranked separately. It has been shown
for other applications, e.g. brain tumour segmentation [13],
that fusing the output of multiple methods can outperform all
individual methods.

III. RESULTS

The subjects included in the challenge were (mean ± sd)
70.1± 9.3 years old and 50 % were male. The WMH volume

6https://github.com/hjkuijf/wmhchallenge/blob/master/evaluation.py

Fig. 2. Histogram showing the WMH volume distribution throughout the
dataset. The ticks on the x-axis represent each individual subject.

Fig. 3. Histogram showing the WMH count distribution throughout the da-
taset. The ticks on the x-axis represent each individual subject. An individual
lesion is defined as a 3D connected component within an image.

in the dataset was (mean ± sd): 16.9±21.6 ml (min: 0.78 ml,
Q1: 3.24 ml, median: 11.18 ml, Q3: 23.00 ml, max: 195.15 ml;
see Figure 2). The WMH count in the dataset was (mean ±
sd): 62± 35 lesions (min: 12 lesions, Q1: 36 lesions, median:
57 lesions, Q3: 81 lesions, max: 194 lesions; see Figure 3).
The distribution of lesions throughout the dataset is shown in
the top row of Figure 4. There were no significant differences
between the training and test sets for age (p = 0.45), gender
(p = 0.87), WMH volume (p = 0.74), WMH count (p =
0.75), the presence of lacunes (p = 0.86), nor for the volume
of other pathology (p = 0.62). Tests for age and volumes
were performed using Welch’s unequal variances t-test [64].
Tests for gender and presence of lacunes were performed using
Fisher’s exact test.

The bottom row of Table II shows the inter-observer
agreement of observers O3 and O4 compared with the manual
reference standard of the sixty training images. Additionally,
the associated positions of O3 and O4 with respect to all
methods in the ranking is provided. This is the position these
observers would have achieved if they had participated as
method in the challenge.

The mean performance of each participating method on each
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Fig. 4. The MNI-152 standard brain template [30], showing different overlays. Top row: WMH distribution throughout the dataset, where the colour indicates
the percentage of subjects that have a lesion in that specific voxel. Middle row: false negative rate, showing the percentage of lesions that were missed in a
specific voxel. Bottom row: false positive rate, showing the percentage of false positives in a specific voxel. All voxels where only one subject has a lesion
are shown half translucent.

individual metric is shown in Table II, together with the 95%
confidence intervals. The method of sysu media performed
best on the DSC, H95, and recall metrics. The method of cian
performed best on the lAVD metric. The method of nlp logix
performed best on the F1 metric. Figure 5 shows boxplots of
all results of each method on each metric.

The final ranking is shown in Table III, together with the
95% confidence intervals.

The middle and bottom rows of Figure 4 show spatial maps
of the false negative rate and false positive rate, respectively,
of all methods combined. Appendix C Figures 8–277 show
these spatial maps per method, ordered by their final ranking.

Figure 6 shows the (relative) difference in recall between
small and large lesions. All methods perform worse in recal-
ling small lesions compared to large lesions. For example, the
method of sysu media has a recall for large lesions of 94%
and a recall for small lesions of 76%, resulting in a relative
difference of −20%. Overall, the drop in recall ranges from
−20% (sysu media) to −87% (text class), as indicated by
the solid lines in the figure.

Table IV highlights various properties of all methods, sor-
ted by their final ranking. The top 11 methods all employ
some form of deep learning, with a U-Net-like architecture
[28] being the overall most common. Amongst the non-deep
learning methods, the use of a random forest classifier is most
common. Almost all methods apply various kinds of pre-

7Available in the supplementary files / multimedia tab.

processing, where normalizing intensities of an image to a
standardized range is applied by most methods. Some methods
apply post-processing techniques, mainly aimed at reducing
the number of false positive detections. The H95 and F1
metrics are most sensitive to false positive detections, but
the methods that apply post-processing do not have a notable
better score on these metrics than nearby ranking methods.
When considering only deep learning methods, most use
data augmentation to generate more training samples. Scaling,
rotating, and mirroring an image are quite common, but the
top 2 methods also apply shearing or non-linear deformations.
The last columns of Table IV highlight some properties of deep
learning methods, in which a few clusters can be distinguished.
Top ranking methods have applied dropout during training,
some form of hard negative mining, and use an ensemble
of networks. Three methods use dilated convolutions, but
these cluster in the middle of the ranking. Most methods
that use 3D convolutions appear to rank at the bottom. Using
batch normalization, multi scale approaches, or learning rate
schedules does not seem to influence the ranking; and neither
does the choice of loss function.

The inter-scanner robustness was determined as follows:
Appendix C Figures 8–27 show the median performance of
each method per metric per scanner (the line in the individual
boxplots). Per metric, the standard deviation of the median
values per scanner is computed. Next, methods are ranked
based on those values, where a lower standard deviation
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TABLE II
MEAN PERFORMANCE AND 95 % CONFIDENCE INTERVALS OF EACH PARTICIPATING METHOD ON EACH INDIVIDUAL METRIC. METRICS INCLUDE: (1)

DICE SIMILARITY COEFFICIENT (DSC), (2) MODIFIED HAUSDORFF DISTANCE (95TH PERCENTILE; H95), (3) ABSOLUTE OF THE PERCENTAGE VOLUME
DIFFERENCE (AVD), (4) SENSITIVITY FOR DETECTING INDIVIDUAL LESIONS (RECALL), AND (5) F1-SCORE FOR INDIVIDUAL LESIONS (F1). BOLD

INDICATES THAT A METHOD HAS THE BEST SCORE ON THAT METRIC. METHODS ARE SORTED BASED ON THE FINAL RANKING AS SHOWN IN TABLE III.
THE BOTTOM ROWS INCLUDE THE RESULTS OF THE SIMULTANEOUS TRUTH AND PERFORMANCE LEVEL ESTIMATION (STAPLE) ALGORITHM APPLIED

ON ALL METHODS AND ON THE TOP 4 RANKING METHODS, AND THE RESULTS OF OBSERVERS O3 AND O4, TOGETHER WITH THE ASSOCIATED
POSITIONS IN THE RANKING IF STAPLE, O3, AND O4 WOULD HAVE PARTICIPATED IN THE CHALLENGE. NOTE THAT O3 AND O4 SEGMENTED THE

SIXTY TRAINING IMAGES.

# Team DSC H95 (mm) lAVD Recall F1

1 sysu media 0.80 (0.78 - 0.82) 6.30 (4.75 - 7.93) 0.193 (0.165 - 0.224) 0.84 (0.82 - 0.86)∗ 0.76 (0.73 - 0.78)†

2 cian 0.78 (0.76 - 0.80) 6.82 (4.92 - 9.22) 0.193 (0.162 - 0.228) 0.83 (0.81 - 0.84)∗ 0.70 (0.67 - 0.73)‡

3 nlp logix 0.77 (0.75 - 0.80) 7.16 (5.61 - 8.82) 0.219 (0.174 - 0.271) 0.73 (0.71 - 0.76)∗∗ 0.78 (0.76 - 0.80)†

4 nic-vicorob 0.77 (0.74 - 0.79) 8.28 (6.60 - 10.06) 0.248 (0.201 - 0.303) 0.75 (0.73 - 0.77)∗∗ 0.71 (0.68 - 0.73)‡

5 k2 0.77 (0.74 - 0.79) 9.79 (7.72 - 12.28) 0.246 (0.187 - 0.310) 0.59 (0.56 - 0.61) 0.70 (0.68 - 0.72)‡

6 misp 0.72 (0.69 - 0.75) 14.88 (10.52 - 19.41) 0.258 (0.167 - 0.388) 0.63 (0.60 - 0.65) 0.68 (0.65 - 0.70)‡

7 lrde 0.73 (0.70 - 0.76) 14.54 (10.32 - 19.31) 0.309 (0.218 - 0.442) 0.63 (0.60 - 0.66) 0.67 (0.65 - 0.69)‡

8 nih cidi 0.68 (0.65 - 0.70) 12.82 (10.54 - 15.16) 0.281 (0.200 - 0.394) 0.59 (0.56 - 0.62) 0.54 (0.51 - 0.57)
9 ipmi-bern 0.69 (0.67 - 0.72) 9.72 (7.98 - 11.56) 0.225 (0.178 - 0.275) 0.44 (0.42 - 0.46) 0.57 (0.55 - 0.58)

10 scan 0.63 (0.59 - 0.66) 14.34 (12.25 - 16.50) 0.277 (0.223 - 0.336) 0.55 (0.52 - 0.58) 0.51 (0.48 - 0.53)
11 achilles 0.63 (0.60 - 0.66) 11.82 (9.80 - 13.94) 0.276 (0.226 - 0.331) 0.45 (0.42 - 0.47) 0.52 (0.50 - 0.53)
12 skkumedneuro 0.58 (0.54 - 0.61) 19.02 (16.64 - 21.58) 0.384 (0.292 - 0.503) 0.47 (0.44 - 0.49) 0.51 (0.48 - 0.54)
13 tignet 0.59 (0.56 - 0.63) 21.58 (18.15 - 25.33) 0.533 (0.450 - 0.623) 0.46 (0.41 - 0.51) 0.45 (0.42 - 0.49)
14 tig 0.60 (0.56 - 0.63) 17.86 (15.57 - 20.20) 0.400 (0.333 - 0.474) 0.38 (0.36 - 0.41) 0.42 (0.40 - 0.44)
15 knight 0.70 (0.67 - 0.72) 17.03 (14.48 - 19.88) 0.352 (0.290 - 0.427) 0.25 (0.22 - 0.27) 0.35 (0.32 - 0.38)
16 upc dlmi 0.53 (0.48 - 0.58) 27.01 (22.25 - 31.99) 0.612 (0.481 - 0.762) 0.57 (0.53 - 0.60) 0.42 (0.38 - 0.46)
17 nist 0.53 (0.49 - 0.57) 15.91 (14.44 - 17.42) 0.581 (0.469 - 0.695) 0.37 (0.34 - 0.40) 0.25 (0.22 - 0.27)
18 neuro.ml 0.51 (0.45 - 0.56) 37.36 (33.70 - 40.89) 1.033 (0.836 - 1.241) 0.71 (0.68 - 0.75)∗∗ 0.21 (0.19 - 0.24)
19 text class 0.50 (0.45 - 0.54) 28.23 (24.15 - 32.68) 0.605 (0.492 - 0.724) 0.27 (0.25 - 0.29) 0.29 (0.26 - 0.31)
20 hadi 0.23 (0.19 - 0.27) 52.02 (49.25 - 54.82) 1.685 (1.448 - 1.939) 0.58 (0.52 - 0.63) 0.11 (0.09 - 0.12)

4 STAPLE (all) 0.77 (0.74 - 0.80) 5.74 (4.26 - 7.43) 0.315 (0.249 - 0.393) 0.77 (0.75 - 0.79) 0.74 (0.71 - 0.76)
2 STAPLE (top 4) 0.80 (0.78 - 0.82) 6.43 (4.48 - 8.81) 0.171 (0.144 - 0.201) 0.80 (0.78 - 0.82) 0.76 (0.74 - 0.78)

5 O3 0.77 (0.74 - 0.80) 6.79 (5.32 - 8.54) 0.176 (0.135 - 0.222) 0.65 (0.62 - 0.69) 0.74 (0.71 - 0.76)
4 O4 0.79 (0.76 - 0.81) 7.22 (5.36 - 9.36) 0.195 (0.148 - 0.245) 0.66 (0.63 - 0.70) 0.76 (0.73 - 0.78)

∗ sysu media and cian perform significantly better on the recall metric than all other teams.
∗∗ nic-vicorob, nlp logix, and neuro.ml perform significantly better on the recall metric than all remaining teams.
† nlp logix and sysu media perform significantly better on the F1 metric than all other teams.
‡ nic-vicorob, k2, cian, misp, and lrde perform significantly better on the F1 metric than all remaining teams.

indicates better inter-scanner performance. The result of this
inter-scanner ranking is shown in the last column of Table III,
together with the new position of that method in the ranking.
The method of ipmi-bern achieves the highest inter-scanner
rank and sysu media is just behind on the second rank. The
methods of achilles and knight enter the top 4 of the ranking.

STAPLE was applied on all methods and on the top 4
ranking methods, since these rank significantly higher than
all other methods. The results are shown on the bottom rows
of Table II and in Appendix C Figures 28 and 29. STAPLE on
all methods would rank fourth in the challenge and achieves
the best H95. STAPLE on the top 4 ranking methods would
rank second in the challenge and achieves the best DSC and
lAVD. When re-computing the inter-scanner robustness, both
STAPLE methods outperform all other methods. STAPLE
compared with the top 3 methods in the inter-scanner ranking
is shown separately in Table V, because the relative ranking
values change when including STAPLE.

Finally, it could be hypothesized that low ranking methods
suffer from training set overfitting [65] or poor generalization.

This was evaluated by applying all submitted methods to the
training data and comparing the performance on the training
data to the performance on the test data. This analysis shows
excellent correlation (R-squared: 0.94, with p < 0.001),
suggesting that there is no indication for overfitting of methods
on the training data.

IV. DISCUSSION

We have presented a standardized assessment of automatic
methods for the segmentation of white matter hyperintensities
of presumed vascular origin. This assessment was performed
in the context of the WMH Segmentation Challenge, hosted at
the 20th International Conference on Medical Image Compu-
ting and Computer Assisted Intervention (MICCAI) in 2017,
Québec City, Quebec, Canada.

The manual reference standard was created in consensus
by two skilled observers with extensive prior experience in
WMH segmentation, which resulted in high quality WMH
segmentations. Two additional observers individually segmen-
ted the sixty training images, without a consensus reading, to
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Fig. 5. Boxplots showing all five metrics per method. The box indicates
the interquartile range (IQR) with a line at the median. The whiskers extend
up to 1.5 times the IQR and the fliers indicate the remaining data points.
Note for the Hausdorff distance that hadi did not produce any output for 10
subjects and hence their boxplot is based on only 100 subjects (see Appendix
C Figure 27 for full details). Note for the log-transformed volume difference
that for visibility purposes, this figure is clipped at 3.0. Teams hadi, lrde,
misp, neuro.ml, nih cidi, nist, skkumedneuro, text class, and upc dlmi
have lAVD values above 3.0. For full details, see Appendix C Figures 27, 14,
13, 25, 15, 24, 19, 26, and 23, respectively.

determine inter-observer agreement. The top-ranking methods
achieve similar or superior performance as these two indivi-
dual observers, which suggests that automatic methods might
be able to replace individual observers in WMH segmentation.
The moderate recall of the individual observers is mainly
caused by not segmenting or missing small WMH. The F1

TABLE III
FINAL RANKING OF THE METHODS THAT PARTICIPATED IN THE

CHALLENGE. THE COLUMN RANK SHOWS THE RELATIVE PERFORMANCE
OF EACH METHOD, BASED ON ALL FIVE METRICS LISTED IN TABLE II,

TOGETHER WITH THE 95 % CONFIDENCE INTERVALS. THE COLUMN
INTER-SCANNER RANK SHOWS THE RANKING WHEN IT IS COMPUTED

SOLELY BASED ON INTER-SCANNER ROBUSTNESS. THE SYMBOLS
BETWEEN BRACKETS INDICATE WHETHER A TEAM IS RANKED ON THE

SAME POSITION (−), LOWER (∨), OR HIGHER (∧) COMPARED WITH THE
ORIGINAL RANKING; WITH THE NEW POSITION INDICATED AS WELL.

DOTTED LINES INDICATE CLUSTERS OF METHODS THAT RANK
SIGNIFICANTLY DIFFERENT FROM METHODS RANKED ABOVE/BELOW,

BECAUSE OF NON-OVERLAPPING CONFIDENCE INTERVALS.

# Team Rank (95 % CI) Inter-scanner rank

1 sysu media 0.0068 (0.0019 - 0.0161)† 0.0375 (∨ 2)
2 cian 0.0357 (0.0248 - 0.0539)‡ 0.0831 (∨ 5)
3 nlp logix 0.0520 (0.0365 - 0.0744)‡ 0.1111 (∨ 7)
4 nic-vicorob 0.0785 (0.0577 - 0.1045)‡ 0.1629 (∨ 11)
5 k2 0.1437 (0.1188 - 0.1711) 0.1174 (∨ 8)
6 misp 0.1740 (0.1356 - 0.2273) 0.1915 (∨ 12)
7 lrde 0.1782 (0.1395 - 0.2290) 0.3510 (∨ 17)
8 nih cidi 0.2376 (0.2131 - 0.2680) 0.1570 (∨ 10)
9 ipmi-bern 0.2537 (0.2391 - 0.2727) 0.0345 (∧ 1)

10 scan 0.2836 (0.2631 - 0.3099) 0.2252 (∨ 14)
11 achilles 0.3058 (0.2896 - 0.3276) 0.0714 (∧ 3)
12 skkumedneuro 0.3649 (0.3325 - 0.4044) 0.1105 (∧ 6)
13 tignet 0.4090 (0.3765 - 0.4481) 0.2969 (∨ 15)
14 tig 0.4097 (0.3795 - 0.4454) 0.1289 (∧ 9)
15 knight 0.4320 (0.4082 - 0.4598) 0.0785 (∧ 4)
16 upc dlmi 0.4429 (0.3903 - 0.5016) 0.7415 (∨ 20)
17 nist 0.5040 (0.4724 - 0.5404) 0.3052 (∧ 16)
18 neuro.ml 0.5615 (0.5193 - 0.6084) 0.6110 (∨ 19)
19 text class 0.5961 (0.5539 - 0.6430) 0.2117 (∧ 13)
20 hadi 0.8886 (0.8687 - 0.9103) 0.4974 (∧ 18)

† sysu media ranks significantly higher than all other participants.
‡ cian, nlp logix, and nic-vicorob rank significantly higher than all remaining
participants.

is higher than the recall, which is opposite for most automatic
methods, and indicates that both O3 and O4 have hardly
segmented any false positive WMH.

The organizers have chosen not to disclose the test set, con-
trary to what is common in medical image analysis challenges.
By keeping the test set secret, a high reliability of the results
can be ensured because it obviates the possibility of (visual)
self-evaluation by participants.

The rapidly increasing popularity of (deep) neural networks
as methodology of choice for analysing medical images [66]
is noticeable in this challenge as well. Fourteen of the twenty
submitted methods employ some form of (deep) neural net-
works, including all methods in the top ten. Nevertheless, the
use of deep learning methodology is not a guaranteed recipe
for success, since a number of low-ranking methods use it as
well.

Ensemble methods appear to do very well in this challenge.
The methods of sysu media (# 1), nlp logix (# 3), and k2
(# 5) use an ensemble of separately trained neural networks
to achieve top-ranking results. Furthermore, the STAPLE algo-
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TABLE IV
OVERVIEW OF VARIOUS PROPERTIES OF ALL METHODS. METHODS ARE SORTED BASED ON THE FINAL RANKING AS SHOWN IN TABLE III.

Neural network features5

# Team Pre1 Method Post2 Data DL3 Aug4 Loss function Dim Dil BN Drop MS LR HN Ens

1 sysu media I,R U-Net SL T,F X H,R,S DSC 2D X

2 cian F,I MDGRU T,F X D,R,S multinom. log. 2D† X

3 nlp logix I,S CNN T,F X cross-entropy 2D X X X X X

4 nic-vicorob CNN SM T,F X M,R cross-entropy 3D X X X

5 k2 I,R,S U-Net T,F X M DSC 2D X X X

6 misp I,R CNN T,F X mean sq. error 3D X X X

7 lrde F,I VGG-16 T,F X R,S multinom. log. 2D X

8 nih cidi S U-Net G T,F X M,R cross-entropy 2D X X

9 ipmi-bern I,S U-Net T,F X M,R cross-entropy 2D X X X

10 scan S DenseNet T,F X cross-entropy 2D X

11 achilles I,R HighResNet F X R,S DSC 3D X X X

12 skkumedneuro I,S RF T,F
13 tignet B,I,T HighResNet T,F∗ X DSC 3D X X X

14 tig B,S,T GMM FP T,F
15 knight B,I,S,T VLR SM F∗ M,T,Y DSC
16 upc dlmi I U-Net T,F X M DSC 3D X X X

17 nist B,I,T RF T,F
18 neuro.ml DeepMedic T,F X cross-entropy 3D X X

19 text class I,R RF SM T,F
20 hadi RF T,F

1 Pre-processing: B= bias field correction, F= morphological filter to enhance small lesions, I= intensity normalization, R= resizing or resampling to a
predefined grid, S= skull stripping, and T= transformation to a standard space.
2 Post-processing: FP location based false positive reduction, G graph-based segmentation refinement, SL remove slices prone to false positives, and SM
remove small segmentation results.
3 DL indicates whether this method uses deep learning.
4 Augmentation of training data: D= non-linear deforming, H= shearing, M= mirroring, R= rotating, S= scaling, T= translating/moving, and Y= generating
synthetic lesions.
5 Features used in the neural networks. Dim: 2D or 3D convolutions. Dil: dilated convolutions. BN: batch normalisation. Drop: dropout. MS: multi scale
approaches (e.g. separate paths at different resolutions). LR: use of a learing rate schedule (e.g. reducing the learning rate during training). HN: hard negative
mining. Ens: an ensemble of multiple networks.
∗ additional data from other sources was used to train this method.
† the convolutions are 2D, but the third dimension is processed within an RNN that incorporates all dimensions.

TABLE V
THE RE-COMPUTED RESULTS OF THE INTER-SCANNER ROBUSTNESS

RANKING WHEN INCLUDING THE SIMULTANEOUS TRUTH AND
PERFORMANCE LEVEL ESTIMATION (STAPLE) ALGORITHM APPLIED ON

ALL METHODS OR ON THE TOP 4 RANKING METHODS. STAPLE
OUTPERFORMS ALL METHODS AND THEREFORE THE RELATIVE RANKING
VALUES CHANGE. HERE, STAPLE IS COMPARED TO THE TOP 3 METHODS
IN THE ORIGINAL INTER-SCANNER RANKING IN TABLE III. THE SYMBOLS

BETWEEN BRACKETS INDICATE WHETHER A TEAM IS RANKED ON THE
SAME POSITION (−), LOWER (∨), OR HIGHER (∧) COMPARED TO THE
ORIGINAL RANKING; WITH THE NEW POSITION INDICATED AS WELL.

# Team Inter-scanner rank

STAPLE (top 4) 0.0152 (1)
STAPLE (all) 0.0390 (1)

1 ipmi-bern 0.0400 (∨ 2) 0.0402 (∨ 2)
2 sysu media 0.0433 (∨ 3) 0.0434 (∨ 3)
3 achilles 0.0769 (∨ 4) 0.0768 (∨ 4)

rithm that combines all methods or the top 4 ranking methods
achieves good results as well. On the inter-scanner robustness
ranking, both results of the STAPLE algorithm outperform all

other participating methods. Combining the results of various
methods has been performed in other challenges as well, for
example in the brain tumour segmentation challenge (BRATS)
[13]. However, in that challenge the combination of methods
always outperformed all individual methods, whereas in this
challenge the method of sysu media remains the winner.
This seems to be mainly caused by the good performance
of sysu media on the recall metric compared to the STAPLE
results. Both STAPLE methods perform less well in recalling
small lesions below the median size, as can be seen in Figure 6.

The use of dropout during training is another characteristic
of top-ranking methods. Random dropouts prevent units in
neural networks from co-adapting too much [67] and intro-
duces some redundancy in the network. A larger network
trained with dropout might behave like an ensemble of smaller
networks; and ensemble methods also rank at the top. Howe-
ver, the deep learning methods trained with dropout have a
considerably lower inter-scanner rank (Table III). They drop
more in the inter-scanner ranking than methods trained without
dropout, suggesting that these methods might not generalize
well to unseen data from unseen scanners; but instead only to
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Fig. 6. Plot showing the recall of each method for small and large lesions.
The right vertical axis indicates the relative difference for small lesions with
respect to that of large lesions. Small lesions are defined as all lesions smaller
than or equal to the median lesion volume per subject. Large lesions are all
lesions larger than the median lesion volume per subject. The black and grey
squares indicate the results of STAPLE applied on the top 4 or all methods,
respectively.

unseen data from the same scanners as in the training data.
Selectively sampling WMH mimics, locations that resemble

WMH but are not, or hard negative mining appears to be
advantageous as well, since the three methods that apply it are
amongst the top-ranking methods. When comparing the false
positive maps of methods nlp logix (Appendix C Figure 10),
nic-vicorob (Appendix C Figure 11), and misp (Appendix C
Figure 13) with that of the winner, sysu media (Appendix C
Figure 8); all three methods have less false positives (data
not shown). However, this difference is not directly noticeable
in any of the metrics in Table II, so the sampling strategy
might have had a minimal influence. A common location for
false positive detections is the septum pellucidum, the area
that separates both lateral ventricles. This can be seen in the
third and fourth picture on the bottom row of Figure 4. This
area appears hyperintense on FLAIR, similar to WMH, but
is never part of a WMH as can be seen in the top row of
Figure 4. Most top-ranking methods have no false positives in
this area, whereas most lower-ranking methods do.

Implementing batch normalization, multi-scale processing,
or using a learning rate schedule does not seem to influence
the ranking of deep learning methods. The three methods that
use dilated convolutions cluster together in the middle of the
ranking, but whether that is attributable to the use of dilated
convolutions or other factors is not sure.

Most deep learning methods that use 3D convolutions
achieve a low ranking in the challenge. It could be that training
3D convolutional neural networks involved too many parame-
ters, which could not be learned from the provided training
data. Most FLAIR images were 2D multi-slice acquisitions
(approximately 1×1×3 mm voxels) with relatively few slices.
Training 2D convolutional neural networks appears to work
better in this case, but the methods of cian, nic-vicorob, and
misp demonstrate that it was feasible to train 3D networks.

Regions with the highest false negative rates are located
in regions with fewer WMH, as can be seen in the top and
middle rows of Figure 4. It appears that methods have issues
finding WMH of which there are fewer training examples.
This holds for all methods, as can be seen in the individual
maps in Appendix C. Furthermore, the regions with high false
negative rates usually have smaller WMH, for which the recall
is lower compared to larger WMH (Figure 6). It has been noted
before that smaller WMH are harder to find and the proposed
solution was to develop designated methods for small WMHs
[68]. This has been adopted by the method of nic-vicorob,
where a separate network reclassifies detected locations below
a size of 30 voxels. Additionally, a selective sampling strategy
might be used, combined with data augmentation, to provide
more examples of small lesions during training. The method
of lrde highlights small WMH as part of the pre-processing,
but does not adapt the sampling strategy. Furthermore, method
developers might need to make their methods less location-
sensitive: not rejecting a WMH because it is at a location
with low a priori probability. This might also be a strategy to
reduce the number of false positive detections. These appear
to coincide with the location of true positives, suggesting that
methods more easily segment a false positive at locations with
high a priori probability.

The inter-scanner robustness ranking in the last column
of Table III shows some remarkable changes in the ran-
king. The method of ipmi-bern becomes first, having the
best inter-scanner robustness and putting sysu media at the
second place. Furthermore, the methods of achilles, knight,
and skkumedneuro rank considerably higher. Despite the
somewhat moderate performance on the individual metrics,
these methods generalize well to unseen scanners and have
robust performance; ranking very close to the winner. The
top 10 of the inter-scanner ranking shows three non-deep
learning methods, whereas none is present in the final ranking.
The methods of nic-vicorob and lrde drop considerably in the
inter-scanner ranking. Both methods perform less well on the
images from the 3 T Philips Ingenuity (PET/MR) scanner that
was not in the training data. Since only 10/110 test images
originated from this scanner, it likely did not affect their
overall ranking that much. The inter-scanner ranking of the
tig and tignet methods shows a remarkable difference with the
overall ranking. The tignet method, a neural network trained
to replicate the results of the tig method, ranks close to the
tig method in the overall ranking. In the inter-scanner ranking,
the tignet method drops whereas the tig method rises.

No method performs best/worst on all individual metrics.
Neither on the overall rankings nor on the inter-scanner
rankings in Table III, ranking 0.0000 (overall best) nor 1.0000
(overall worst) are assigned to a method. Most room for
improvement seems to be on the recall and F1 metrics. Many
methods fail to achieve a good score on these, which seems
to be caused by methods missing small individual lesions.
Missing one or a few small lesions does not contribute to
a lower DSC, H95, nor lAVD, but does have a considerable
influence on the recall and F1 metrics. Recent evidence shows
that the presence and shape of small WMH can be of added
value to further unravel the etiology and functional impact of
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WMH [69]. Furthermore, WMH location in strategic white
matter tracts can explain cognitive dysfunctioning better than
total WMH volume [4]. Hence, evaluating the recall and F1
metrics are of increasing importance for WMH segmentation
methods.

Future developments in WMH segmentation might focus
on improving the recall for small lesions and the inter-scanner
robustness, especially on unseen data from unseen scanners.
However, the current top ranking deep learning methods can
already assist, or even replace, individual human observers in
segmenting WMH.

After the results were presented at the MICCAI conference,
a number of participants submitted an updated version of their
method: misp, neuro.ml, nih cidi, sysu media, and tig. All
methods showed an increased performance with respect to
their original submission. Updated descriptions and results are
available on the challenge website.

The WMH Segmentation Challenge remains open for new
and updated future submissions.
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APPENDIX A
EXAMPLE FIGURES

Figure 7 shows an example FLAIR image of each scanner used in this challenge.

Fig. 7. An example FLAIR image of each scanner used in this challenge. From left to right: UMC Utrecht 3 T Philips Achieva, NUHS Singpore 3 T Siemens
TrioTim, VU Amsterdam 3 T GE Signa HDxt, VU Amsterdam 1.5 T GE Signa HDxt, and the VU Amsterdam 3 T Philips Ingenuity (PET/MR).



APPENDIX B
ABSOLUTE OF THE PERCENTAGE VOLUME DIFFERENCE (AVD) METRIC

Table VI show the results on the original absolute of the percentage volume difference (AVD) metric. If the final ranking
is computed using the AVD, instead of the log-transformed volume difference (lAVD), only minor differences occur in the
ranking. The method of cian has the best lAVD score, whereas nlp logix has the best AVD score. The six methods that swap
position ranked already relatively close to each other. This also highlights the benefits of a relative ranking method, since the
relative rankings are much closer to each other than the absolute positions in the ranking.

TABLE VI
MEAN PERFORMANCE AND 95 % CONFIDENCE INTERVALS OF EACH PARTICIPATING METHOD ON THE ABSOLUTE OF THE PERCENTAGE VOLUME

DIFFERENCE (AVD) METRIC. BOLD INDICATES THAT A METHOD HAS THE BEST SCORE. METHODS ARE SORTED BASED ON THEIR FINAL RANKING IN
CASE AVD WOULD HAVE BEEN USED INSTEAD OF THE LOG-TRANSFORMED VOLUME DIFFERENCE (LAVD). THE SYMBOLS BETWEEN BRACKETS

INDICATE WHETHER A TEAM IS RANKED ON THE SAME POSITION (−), LOWER (∨), OR HIGHER (∧) COMPARED TO THE AVD-BASED RANKING; WITH
THE NEW POSITION INDICATED AS WELL. THE BOTTOM ROWS INCLUDE THE RESULTS OF THE SIMULTANEOUS TRUTH AND PERFORMANCE LEVEL

ESTIMATION (STAPLE) ALGORITHM APPLIED ON ALL METHODS OR ON THE TOP 4 RANKING METHODS AND OBSERVERS O3 AND O4, TOGETHER WITH
THE RANKING IF THESE RESULTS WOULD HAVE BEEN INCLUDED. NOTE THAT O3 AND O4 SEGMENTED THE SIXTY TRAINING IMAGES.

# Team AVD (%) Ranking AVD Ranking lAVD

1 sysu media 21.88 (18.53 - 25.90) 0.0076 0.0068 (− 1)
2 cian 21.72 (17.62 - 26.32) 0.0366 0.0357 (− 2)
3 nlp logix 18.37 (15.39 - 21.53) 0.0485 0.0512 (− 3)
4 nic-vicorob 28.54 (22.13 - 36.67) 0.0735 0.0767 (− 4)
5 k2 19.08 (15.63 - 22.67) 0.1368 0.1420 (− 5)
6 lrde 21.71 (17.96 - 25.43) 0.1635 0.1746 (∨ 7)
7 misp 21.36 (16.80 - 26.43) 0.1659 0.1719 (∧ 6)
8 ipmi-bern 19.92 (16.11 - 24.18) 0.2498 0.2527 (∨ 9)
9 nih cidi 196.38 (21.96 - 536.97) 0.2697 0.2348 (∧ 8)

10 scan 34.67 (25.45 - 46.37) 0.2762 0.2810 (− 10)
11 achilles 24.41 (20.00 - 29.83) 0.2962 0.3032 (− 11)
12 skkumedneuro 58.54 (30.47 - 105.38) 0.3492 0.3588 (− 12)
13 tignet 86.22 (65.05 - 111.15) 0.3802 0.3982 (− 13)
14 tig 34.34 (29.27 - 39.23) 0.3858 0.4031 (− 14)
15 knight 39.99 (29.11 - 54.15) 0.4159 0.4269 (− 15)
16 upc dlmi 208.49 (101.36 - 366.18) 0.4337 0.4296 (− 16)
17 nist 109.98 (70.39 - 159.42) 0.4747 0.4917 (− 17)
18 text class 146.64 (92.07 - 215.39) 0.5725 0.5830 (∨ 19)
19 neuro.ml 614.05 (330.65 - 954.28) 0.5960 0.5349 (∧ 18)
20 hadi 828.61 (517.02 - 1205.50) 0.8886 0.8886 (− 20)

4 STAPLE (all) 54.87 (33.54 - 85.10)
2 STAPLE (top 4) 19.14 (15.53 - 23.25)

5 O3 17.27 (13.17 - 22.15)
4 O4 18.78 (14.14 - 24.48)



APPENDIX C
SUMMARIES OF RESULTS

Detailed summaries of all results per participant are given in the following appendices. All figures show the performance of
each method on the five scanners described in Section II-A1 for the following five criteria: (1) the Dice Similarity Coefficient
(DSC), (2) a modified Hausdorff distance (95th percentile; H95), (3) the absolute log-transformed volume difference (lAVD),
(4) the sensitivity for detecting individual lesions (recall), and (5) F1-score for individual lesions (F1). Next to that are two
columns that show spatial maps of the false negative rate (left) and false positive rate (right).

The figures are presented in the order of the final ranking, as shown in Table III.

Fig. 8. Detailed results of sysu media. The two columns on the right show the false negative rate (left) and false positive rate (right).



Fig. 9. Detailed results of cian. The two columns on the right show the false negative rate (left) and false positive rate (right).



Fig. 10. Detailed results of nlp logix. The two columns on the right show the false negative rate (left) and false positive rate (right).



Fig. 11. Detailed results of nic-vicorob. The two columns on the right show the false negative rate (left) and false positive rate (right).



Fig. 12. Detailed results of k2. The two columns on the right show the false negative rate (left) and false positive rate (right). Note: the H95 boxplot contains
values out of range (max = 108.18 mm).



Fig. 13. Detailed results of misp. The two columns on the right show the false negative rate (left) and false positive rate (right). Note: the H95 and lAVD
boxplots contain values out of range (max H95 = 111.09 mm; max lAVD = 5.27).



Fig. 14. Detailed results of lrde. The two columns on the right show the false negative rate (left) and false positive rate (right). Note: the H95 and lAVD
boxplots contain values out of range (max H95 = 118.57 mm; max lAVD = 5.60).



Fig. 15. Detailed results of nih cidi. The two columns on the right show the false negative rate (left) and false positive rate (right). Note: the lAVD boxplot
contains values out of range (max = 5.22).



Fig. 16. Detailed results of ipmi-bern. The two columns on the right show the false negative rate (left) and false positive rate (right).



Fig. 17. Detailed results of scan. The two columns on the right show the false negative rate (left) and false positive rate (right).



Fig. 18. Detailed results of achilles. The two columns on the right show the false negative rate (left) and false positive rate (right).



Fig. 19. Detailed results of skkumedneuro. The two columns on the right show the false negative rate (left) and false positive rate (right). Note: the lAVD
boxplot contains values out of range (max = 4.58).



Fig. 20. Detailed results of tignet. The two columns on the right show the false negative rate (left) and false positive rate (right).



Fig. 21. Detailed results of tig. The two columns on the right show the false negative rate (left) and false positive rate (right).



Fig. 22. Detailed results of knight. The two columns on the right show the false negative rate (left) and false positive rate (right). Note: the H95 boxplot
contains values out of range (max = 117.49 mm).



Fig. 23. Detailed results of upc dlmi. The two columns on the right show the false negative rate (left) and false positive rate (right). Note: the H95 and
lAVD boxplots contain values out of range (max H95 = 102.59 mm; max lAVD = 4.20).



Fig. 24. Detailed results of nist. The two columns on the right show the false negative rate (left) and false positive rate (right). Note: the lAVD boxplot
contains values out of range (max = 3.02).



Fig. 25. Detailed results of neuro.ml. The two columns on the right show the false negative rate (left) and false positive rate (right). Note: the lAVD boxplot
contains values out of range (max = 4.80).



Fig. 26. Detailed results of text class. The two columns on the right show the false negative rate (left) and false positive rate (right). Note: the H95 and
lAVD boxplots contain values out of range (max H95 = 152.66 mm; max lAVD = 3.48).



Fig. 27. Detailed results of hadi. The two columns on the right show the false negative rate (left) and false positive rate (right). Note: some output was empty
and the H95 and lAVD were not evaluated, and the lAVD boxplot contains values out of range (max = 4.83).



Fig. 28. Detailed results of STAPLE applied on all methods. The two columns on the right show the false negative rate (left) and false positive rate (right).



Fig. 29. Detailed results of STAPLE applied on the top 4 ranking methods. The two columns on the right show the false negative rate (left) and false positive
rate (right).


