17 research outputs found

    Molecular and brain volume changes following aerobic exercise, cognitive and combined training in physically inactive healthy Late-Middle-Aged Adults: The Projecte Moviment Randomized Controlled Trial

    Get PDF
    Behavioral interventions have shown promising neuroprotective effects, but the cascade of molecular, brain and behavioral changes involved in these benefits remains poorly understood. Projecte Moviment is a 12-week (5 days per week—45 min per day) multi-domain, single-blind, proof-of-concept randomized controlled trial examining the cognitive effect and underlying mechanisms of an aerobic exercise (AE), computerized cognitive training (CCT) and a combined (COMB) groups compared to a waitlist control group. Adherence was > 80% for 82/109 participants recruited (62% female; age = 58.38 ± 5.47). In this study we report intervention-related changes in plasma biomarkers (BDNF, TNF-α, HGF, ICAM-1, SDF1-α) and structural-MRI (brain volume) and how they related to changes in physical activity and individual variables (age and sex) and their potential role as mediators in the cognitive changes. Our results show that although there were no significant changes in molecular biomarker concentrations in any intervention group, changes in ICAM-1 and SDF1-α were negatively associated with changes in physical activity outcomes in AE and COMB groups. Brain volume changes were found in the CCT showing a significant increase in precuneus volume. Sex moderated the brain volume change in the AE and COMB groups, suggesting that men may benefit more than women. Changes in molecular biomarkers and brain volumes did not significantly mediate the cognitive-related benefits found previously for any group. This study shows crucial initial molecular and brain volume changes related to lifestyle interventions at early stages and highlights the value of examining activity parameters, individual difference characteristics and using a multi-level analysis approach to address these questions

    Effects and Mechanisms of Cognitive, Aerobic Exercise, and Combined Training on Cognition, Health, and Brain Outcomes in Physically Inactive Older Adults : The Projecte Moviment Protocol

    Get PDF
    Altres ajuts: It has also been rewarded with three pre-doctoral fellowships ( FPU014/01460, FI-2016, and FI-2018).Introduction: Age-related health, brain, and cognitive impairment is a great challenge in current society. Cognitive training, aerobic exercise and their combination have been shown to benefit health, brain, cognition and psychological status in healthy older adults. Inconsistent results across studies may be related to several variables. We need to better identify cognitive changes, individual variables that may predict the effect of these interventions, and changes in structural and functional brain outcomes as well as physiological molecular correlates that may be mediating these effects. Projecte Moviment is a multi-domain randomized trial examining the effect of these interventions applied 5 days per week for 3 months compared to a passive control group. The aim of this paper is to describe the sample, procedures and planned analyses. Methods: One hundred and forty healthy physically inactive older adults will be randomly assigned to computerized cognitive training (CCT), aerobic exercise (AE), combined training (COMB), or a control group. The intervention consists of a 3 month home-based program 5 days per week in sessions of 45 min. Data from cognitive, physical, and psychological tests, cardiovascular risk factors, structural and functional brain scans, and blood samples will be obtained before and after the intervention. Results: Effects of the interventions on cognitive outcomes will be described in intention-to-treat and per protocol analyses. We will also analyze potential genetic, demographic, brain, and physiological molecular correlates that may predict the effects of intervention, as well as the association between cognitive effects and changes in these variables using the per protocol sample. Discussion: Projecte Moviment is a multi-domain intervention trial based on prior evidence that aims to understand the effects of CCT, AE, and COMB on cognitive and psychological outcomes compared to a passive control group, and to determine related biological correlates and predictors of the intervention effects. Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT03123900

    A large, curated, open-source stroke neuroimaging dataset to improve lesion segmentation algorithms.

    Get PDF
    Accurate lesion segmentation is critical in stroke rehabilitation research for the quantification of lesion burden and accurate image processing. Current automated lesion segmentation methods for T1-weighted (T1w) MRIs, commonly used in stroke research, lack accuracy and reliability. Manual segmentation remains the gold standard, but it is time-consuming, subjective, and requires neuroanatomical expertise. We previously released an open-source dataset of stroke T1w MRIs and manually-segmented lesion masks (ATLAS v1.2, N = 304) to encourage the development of better algorithms. However, many methods developed with ATLAS v1.2 report low accuracy, are not publicly accessible or are improperly validated, limiting their utility to the field. Here we present ATLAS v2.0 (N = 1271), a larger dataset of T1w MRIs and manually segmented lesion masks that includes training (n = 655), test (hidden masks, n = 300), and generalizability (hidden MRIs and masks, n = 316) datasets. Algorithm development using this larger sample should lead to more robust solutions; the hidden datasets allow for unbiased performance evaluation via segmentation challenges. We anticipate that ATLAS v2.0 will lead to improved algorithms, facilitating large-scale stroke research

    Association of Brain Age, Lesion Volume, and Functional Outcome in Patients With Stroke

    Get PDF
    BACKGROUND AND OBJECTIVES: Functional outcomes after stroke are strongly related to focal injury measures. However, the role of global brain health is less clear. In this study, we examined the impact of brain age, a measure of neurobiological aging derived from whole-brain structural neuroimaging, on poststroke outcomes, with a focus on sensorimotor performance. We hypothesized that more lesion damage would result in older brain age, which would in turn be associated with poorer outcomes. Related, we expected that brain age would mediate the relationship between lesion damage and outcomes. Finally, we hypothesized that structural brain resilience, which we define in the context of stroke as younger brain age given matched lesion damage, would differentiate people with good vs poor outcomes. METHODS: We conducted a cross-sectional observational study using a multisite dataset of 3-dimensional brain structural MRIs and clinical measures from the ENIGMA Stroke Recovery. Brain age was calculated from 77 neuroanatomical features using a ridge regression model trained and validated on 4,314 healthy controls. We performed a 3-step mediation analysis with robust mixed-effects linear regression models to examine relationships between brain age, lesion damage, and stroke outcomes. We used propensity score matching and logistic regression to examine whether brain resilience predicts good vs poor outcomes in patients with matched lesion damage. RESULTS: We examined 963 patients across 38 cohorts. Greater lesion damage was associated with older brain age (β = 0.21; 95% CI 0.04-0.38, DISCUSSION: We provide evidence that younger brain age is associated with superior poststroke outcomes and modifies the impact of focal damage. The inclusion of imaging-based assessments of brain age and brain resilience may improve the prediction of poststroke outcomes compared with focal injury measures alone, opening new possibilities for potential therapeutic targets

    Biomarkers of stroke recovery: consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable

    Get PDF
    The most difficult clinical questions in stroke rehabilitation are ‘‘What is this patient’s potential for recovery?’’ and ‘‘What is the best rehabilitation strategy for this person, given her/his clinical profile?’’ Without answers to these questions, clinicians struggle to make decisions regarding the content and focus of therapy, and researchers design studies that inadvertently mix participants who have a high likelihood of responding with those who do not. Developing and implementing biomarkers that distinguish patient subgroups will help address these issues and unravel the factors important to the recovery process. The goal of the present paper is to provide a consensus statement regarding the current state of the evidence for stroke recovery biomarkers. Biomarkers of motor, somatosensory, cognitive and language domains across the recovery timeline post-stroke are considered; with focus on brain structure and function, and exclusion of blood markers and genetics. We provide evidence for biomarkers that are considered ready to be included in clinical trials, as well as others that are promising but not ready and so represent a developmental priority. We conclude with an example that illustrates the utility of biomarkers in recovery and rehabilitation research, demonstrating how the inclusion of a biomarker may enhance future clinical trials. In this way, we propose a way forward for when and where we can include biomarkers to advance the efficacy of the practice of, and research into, rehabilitation and recovery after stroke

    Effects of aerobic exercise, cognitive and combined training on cognition in physically inactive healthy late-middle-aged adults: The Projecte Moviment Randomized Controlled Trial

    Get PDF
    Background: Lifestyle interventions are promising strategies to promote cognitive health in aging. Projecte Moviment examines if aerobic exercise (AE), computerized cognitive training (CCT), and their combination (COMB) improves cognition, psychological health, and physical status compared to a control group. We assessed the moderating role of age and sex and the mediating effects of cardiorespiratory fitness (CRF), physical activity (PA), and psychological health on intervention-related cognitive benefits. Methods: This was a 12-week multi-domain, single-blind, proof-of-concept randomized controlled trial (RCT). 96 healthy adults aged 50–70 years were assigned to AE, CCT, COMB, and a wait-list control group. The per protocol sample, which completed the intervention with a level of adherence > 80%, consisted of 82 participants (62% female; age = 58.38 ± 5.47). We assessed cognition, psychological health, CRF, and energy expenditure in PA at baseline and after the intervention. We regressed change in each outcome on the treatment variables, baseline score, sex, age, and education. We used PROCESS Macro to perform the mediation and moderation analyses. Results: AE benefited Working Memory (SMD = 0.29, p = 0.037) and Attention (SMD = 0.33, p = 0.028) including the Attention-Speed (SMD = 0.31, p = 0.042) domain, compared to Control. COMB improved Attention (SMD = 0.30, p = 0.043), Speed (SMD = 0.30, p = 0.044), and the Attention-Speed (SMD = 0.30, p = 0.041) domain. CTT group did not show any cognitive change compared to Control. Sportive PA (S-PA) and CRF increased in AE and COMB. Age and sex did not moderate intervention-related cognitive benefits. Change in S-PA, but not in CRF, significantly mediated improvements on Attention-Speed in AE. Conclusion: A 12-week AE program improved Executive Function and Attention-Speed in healthy late-middle-aged adults. Combining it with CCT did not provide further benefits. Our results add support to the clinical relevance of even short-term AE as an intervention to enhance cognition and highlight the mediating role of change in S-PA in these benefits

    Functional Inhibitory Control Dynamics in Impulse Control Disorders in Parkinson’s Disease

    Get PDF
    Published online 11 November 2019ABSTRACT: Background: Impulse control disorders related to alterations in the mesocorticolimbic dopamine network occur in Parkinson’s disease (PD). Our objective was to investigate the functional neural substrates of reward processing and inhibitory control in these patients. Methods: Eighteen PD patients with impulse control disorders, 17 without this complication, and 18 healthy controls performed a version of the Iowa Gambling Task during functional magnetic resonance scanning under 3 conditions: positive, negative, and mixed feedback. Whole-brain contrasts, regions of interest, time courses, functional connectivity analyses, and brain-behavior associations were examined. Results: PD patients with impulse control disorders exhibited hyperactivation in subcortical and cortical regions typically associated with reward processing and inhibitory control compared with their PD and healthy control counterparts. Time-course analyses revealed that only PD patients with impulse control disorders exhibited stronger signal intensity during the initial versus final periods of the negative-feedback condition in bilateral insula, and right ventral striatum. Interestingly, hyperactivation of all the examined right-lateralized frontostriatal areas during negative feedback was positively associated with impulse control disorder severity. Importantly, positive associations between impulse control disorder severity and regional activations in the right insula and right inferior frontal gyrus, but not the right subthalamic nucleus, were mediated by functional connectivity with the right ventral striatum. Conclusions: During a reward-based task, PD patients with impulse control disorders showed hyperactivation in a right-lateralized network of regions including the subthalamic nucleus that was strongly associated with impulse control disorder severity. In these patients, the right ventral striatum in particular played a critical role in modulating the functional dynamics of right-lateralized inhibitory-control frontal regions when facing penalties.Basque Government. Grant Numbers: PI2016‐12, BERC 2018‐2021 Carlos III Institute of Health. Grant Numbers: PI11/02109, Rio Hortega CM16/00033 ERA‐Neuron program. Grant Number: PIM2010ERN‐00733 Spanish Ministry of Economy and Competitiveness (MINECO). Grant Numbers: PGC2018‐093408‐B‐I00, RYC‐2014‐15440, SEV‐2015‐049
    corecore