105 research outputs found

    Assessing the Impact of Bycatch on Dolphin Populations: The Case of the Common Dolphin in the Eastern North Atlantic

    Get PDF
    Fisheries interactions have been implicated in the decline of many marine vertebrates worldwide. In the eastern North Atlantic, at least 1000 common dolphins (Delphinus delphis) are bycaught each year, particularly in pelagic pair-trawls. We have assessed the resulting impact of bycatch on this population using a demographic modeling approach. We relied on a sample of females stranded along the French Atlantic and western Channel coasts. Strandings represent an extensive source of demographic information to monitor our study population. Necropsy analysis provided an estimate of individual age and reproductive state. Then we estimated effective survivorship (including natural and human-induced mortality), age at first reproduction and pregnancy rates. Reproductive parameters were consistent with literature, but effective survivorship was unexpectedly low. Demographic parameters were then used as inputs in two models. A constant parameter matrix proposed an effective growth rate of −5.5±0.5%, corresponding to the current situation (including bycatch mortality). Subsequently, deterministic projections suggested that the population would be reduced to 20% of its current size in 30 years and would be extinct in 100 years. The demographic invariant model suggested a maximum growth rate of +4.5±0.09%, corresponding to the optimal demographic situation. Then, a risk analysis incorporating Potential Biological Removal (PBR), based on two plausible scenarii for stock structure suggested that bycatch level was unsustainable for the neritic population of the Bay of Biscay under a two-stock scenario. In depth assessment of stock structure and improved observer programs to provide scientifically robust bycatch estimates are needed. Effective conservation measures would be reducing bycatch to less than 50% of the current level in the neritic stock to reach PBR. Our approach provided indicators of the status and trajectory of the common dolphin population in the eastern North Atlantic and therefore proved to be a valuable tool for management, applicable to other dolphin populations

    Fine-scale population structure and connectivity of bottlenose dolphins, Tursiops truncatus, in European waters and implications for conservation

    Get PDF
    Funding: Fyssen post-doctoral fellowship, Fondation Total, a bridge funding from the School of Biology of the University of St Andrews and People’s Trust for Endangered Species (ML).1. Protecting species often involves the designation of protected areas, wherein suitable management strategies are applied either at the taxon or ecosystem level. Special Areas of Conservation (SACs) have been created in European waters under the Habitats Directive to protect bottlenose dolphins, Tursiops truncatus, which forms two ecotypes, pelagic and coastal. 2. The SACs have been designated in coastal waters based on photo‐identification studies that have indicated that bottlenose dolphins have relatively high site fidelity. However, individuals can carry out long‐distance movements, which suggests potential for demographic connectivity between the SACs as well as with other areas. 3. Connectivity can be studied using genetic markers. Previous studies on the species in this area used different sets of genetic markers and therefore inference on the fine‐scale population structure and demographic connectivity has not yet been made at a large scale. A common set of microsatellite markers was used in this study to provide the first comprehensive estimate of genetic structure of bottlenose dolphins in European Atlantic waters. 4. As in previous studies, a high level of genetic differentiation was found between coastal and pelagic populations. Genetic structure was defined at an unprecedented fine‐scale level for coastal dolphins, leading to identification of five distinct coastal populations inhabiting the following areas: Shannon estuary, west coast of Ireland, English Channel, coastal Galicia, east coast of Scotland and Wales/west Scotland. Demographic connectivity was very low among most populations with <10% migration rate, suggesting no demographic coupling among them. Each local population should therefore be monitored separately. 5. The results of this study have the potential to be used to identify management units for bottlenose dolphins in this region and thus offer a significant contribution to the conservation of the species in European Atlantic waters. Future studies should prioritize obtaining biopsies from free‐living dolphins from areas where only samples from stranded animals were available, i.e. Wales, west Scotland and Galicia, in order to reduce uncertainty caused by sample origin doubt, as well as from areas not included in this study (e.g. Iroise Sea, France). Furthermore, future management strategies should include monitoring local population dynamics and could also consider other options, such as population viability analysis or the incorporation of genetic data with ecological data (e.g. stable isotope analysis) in the designation of management units.PostprintPeer reviewe

    Postglacial Colonization of Northern Coastal Habitat by Bottlenose Dolphins: A Marine Leading-Edge Expansion?

    Get PDF
    Oscillations in the Earth’s temperature and the subsequent retreating and advancing of ice-sheets around the polar regions are thought to have played an important role in shaping the distribution and genetic structuring of contemporary high-latitude populations. After the Last Glacial Maximum (LGM), retreating of the ice-sheets would have enabled early colonizers to rapidly occupy suitable niches to the exclusion of other conspecifics, thereby reducing genetic diversity at the leading-edge. Bottlenose dolphins (genus Tursiops) form distinct coastal and pelagic ecotypes, with finer-scale genetic structuring observed within each ecotype. We reconstruct the postglacial colonization of the Northeast Atlantic (NEA) by bottlenose dolphins using habitat modeling and phylogenetics. The AquaMaps model hindcasted suitable habitat for the LGM in the Atlantic lower latitude waters and parts of the Mediterranean Sea. The time-calibrated phylogeny, constructed with 86 complete mitochondrial genomes including 30 generated for this study and created using a multispecies coalescent model, suggests that the expansion to the available coastal habitat in the NEA happened via founder events starting ~15 000 years ago (95% highest posterior density interval: 4 900–26 400). The founders of the 2 distinct coastal NEA populations comprised as few as 2 maternal lineages that originated from the pelagic population. The low effective population size and genetic diversity estimated for the shared ancestral coastal population subsequent to divergence from the pelagic source population are consistent with leading-edge expansion. These findings highlight the legacy of the Late Pleistocene glacial cycles on the genetic structuring and diversity of contemporary populations

    Grey and harbour seals in France : distribution at sea, connectivity and trends in abundance at haulout sites

    Get PDF
    Grey (Halichoerus grypus) and harbour seals (Phoca vitulina) are sympatric seal species, but they display distinct strategies of habitat use and connectivity between haulout sites. The distribution patterns and variations in relative abundance of both species were investigated along the French coast of the English Channel, at the southern limit of their range where seal numbers are increasing. Regular censuses conducted at all main haulout sites in mainland France showed significant seasonal variations at most sites, with more harbour seals counted during summer (breeding and moulting seasons), and more grey seals during summer only in the eastern English Channel. Trends in maximum haulout numbers at haulout sites showed a significant increase over the last five years, ranging from 9.7 to 30.9% per year for harbour seals, and from 5.8% (in the western English Channel) to 49.2% (in the eastern English Channel) per year for grey seals. These rates of increase in grey seal numbers are not linked to local pup production and most probably result from seal movements from the southwest British Isles and the North Sea, respectively. Aerial surveys conducted across the English Channel showed that most seal observations at sea were concentrated in the north-eastern English Channel. Telemetry showed that the 28 harbour seals tracked remained highly coastal, within a radius of 100 km from their haulout sites, and did not move to other known colonies. Grey seals moved much greater distances, reaching up to 1200 km from their capture site. More than half of the 45 grey seals tracked crossed the English Channel, especially during the breeding season, moving to known colonies in the southwest British Isles and the North Sea. Combining individual tracks and long-term surveys of the seal populations allowed a better understanding of the dynamics of these populations and their connectivity at a larger regional scale. The findings provide direct information for the management of grey and harbour seals within the frame of the Marine Strategy Framework Directive, and highlight focus areas where potential interactions between the two species should be monitored.PostprintPeer reviewe
    corecore