196 research outputs found

    Neutron activation of natural zinc samples at kT = 25 keV

    Full text link
    The neutron-capture cross sections of 64Zn, 68Zn, and 70Zn have been measured with the activation technique in a quasistellar neutron spectrum corresponding to a thermal energy of kT = 25 keV. By a series of repeated irradiations with different experimental conditions, an uncertainty of 3% could be achieved for the 64Zn(n,g)65Zn cross section and for the partial cross section 68Zn(n,g)69Zn-m feeding the isomeric state in 69Zn. For the partial cross sections 70Zn(n,g)71Zn-m and 70Zn(n,g)71Zn-g, which had not been measured so far, uncertainties of only 16% and 6% could be reached because of limited counting statistics and decay intensities. Compared to previous measurements on 64,68Zn, the uncertainties could be significantly improved, while the 70Zn cross section was found to be two times smaller than existing model calculations. From these results Maxwellian average cross sections were determined between 5 and 100 keV. Additionally, the beta-decay half-life of 71Zn-m could be determined with significantly improved accuracy. The consequences of these data have been studied by network calculations for convective core He burning and convective shell C burning in massive stars

    Stellar (n,gamma) cross sections of p-process isotopes PartI: 102Pd, 120Te, 130,132Ba,and 156Dy

    Full text link
    We have investigated the (n,gamma) cross sections of p-process isotopes with the activation technique. The measurements were carried out at the Karlsruhe Van de Graaff accelerator using the 7Li(p,n)7Be source for simulating a Maxwellian neutron distribution of kT = 25 keV. Stellar cross section measurements are reported for the light p-process isotopes 102Pd, 120Te, 130,132Ba, and 156Dy. In a following paper the cross sections of 168Yb, 180W, 184Os, 190Pt, and 196Hg will be discussed. The data are extrapolated to p-process energies by including information from evaluated nuclear data libraries. The results are compared to standard Hauser-Feshbach models frequently used in astrophysics.Comment: 13 pages, 4 figure

    Scattering of positrons and electrons by alkali atoms

    Get PDF
    Absolute total scattering cross sections (Q sub T's) were measured for positrons and electrons colliding with sodium, potassium, and rubidium in the 1 to 102 eV range, using the same apparatus and experimental approach (a beam transmission technique) for both projectiles. The present results for positron-sodium and -rubidium collisions represent the first Q sub T measurements reported for these collision systems. Features which distinguish the present comparisons between positron- and electron-alkali atom Q sub T's from those for other atoms and molecules (room-temperature gases) which have been used as targets for positrons and electrons are the proximity of the corresponding positron- and electron-alkali atom Q sub T's over the entire energy range of overlap, with an indication of a merging or near-merging of the corresponding positron and electron Q sub T's near (and above) the relatively low energy of about 40 eV, and a general tendency for the positron-alkali atom Q sub T's to be higher than the corresponding electron values as the projectile energy is decreased below about 40 eV

    The 14C(n,g) cross section between 10 keV and 1 MeV

    Get PDF
    The neutron capture cross section of 14C is of relevance for several nucleosynthesis scenarios such as inhomogeneous Big Bang models, neutron induced CNO cycles, and neutrino driven wind models for the r process. The 14C(n,g) reaction is also important for the validation of the Coulomb dissociation method, where the (n,g) cross section can be indirectly obtained via the time-reversed process. So far, the example of 14C is the only case with neutrons where both, direct measurement and indirect Coulomb dissociation, have been applied. Unfortunately, the interpretation is obscured by discrepancies between several experiments and theory. Therefore, we report on new direct measurements of the 14C(n,g) reaction with neutron energies ranging from 20 to 800 keV

    Neutron capture cross section of 139 La

    Get PDF
    The neutron capture cross section of 139La{}^{139}\mathrm{La} has been measured relative to that of 197Au{}^{197}\mathrm{Au} by means of the activation method. The sample was irradiated in a quasistellar neutron spectrum for kT=25keVkT=25\mathrm{keV} generated via the 7Li(p,n)7Be{}^{7}\mathrm{Li}{(p,n)}^{7}\mathrm{Be} reaction with the proton energy adjusted 30 keV above the threshold. Maxwellian averaged neutron capture cross sections were calculated for energies kT=5100keV.kT=5--100\mathrm{keV}. The new value for kT=30keVkT=30\mathrm{keV} is found to be 31.6\ifmmode\pm\else\textpm\fi{}0.8\mathrm{mb}, 18% lower and considerably less uncertain than the previously recommended value of 38.4\ifmmode\pm\else\textpm\fi{}2.7\mathrm{mb}. With these results the s- and r-process components could be more accurately determined, making lanthanum a reliable s- and r-process indicator in stellar spectroscopy

    Approaching the Gamow Window with Stored Ions : Direct Measurement of Xe 124 (p,γ) in the ESR Storage Ring

    Get PDF
    © 2019 American Physical Society. All rights reserved.We report the first measurement of low-energy proton-capture cross sections of Xe124 in a heavy-ion storage ring. Xe12454+ ions of five different beam energies between 5.5 and 8 AMeV were stored to collide with a windowless hydrogen target. The Cs125 reaction products were directly detected. The interaction energies are located on the high energy tail of the Gamow window for hot, explosive scenarios such as supernovae and x-ray binaries. The results serve as an important test of predicted astrophysical reaction rates in this mass range. Good agreement in the prediction of the astrophysically important proton width at low energy is found, with only a 30% difference between measurement and theory. Larger deviations are found above the neutron emission threshold, where also neutron and γ widths significantly impact the cross sections. The newly established experimental method is a very powerful tool to investigate nuclear reactions on rare ion beams at low center-of-mass energies.Peer reviewedFinal Published versio

    The effects of pause software on the temporal characteristics of computer use.

    Get PDF
    The study investigated the natural work-pause pattern of computer users and the possible effects of imposing pause regimes on this pattern. Hereto, the precise timing of computer events was recorded across a large number of days. It was found that the distribution of the pause durations was extremely skewed and that pauses with twice the duration are twice less likely to occur. The effects of imposing pause regimes were studied by performing a simulation of commercially available pause software. It was found that depending on the duration of the introduced pause, the software added 25-57% of the pauses taken naturally. Analysis of the timing of the introduced pauses revealed that a large number of spontaneous pauses were taken close to the inserted pause. Considering the disappointing results of studies investigating the effects of introducing (active) pauses during computer work, this study has cast doubt on the usefulness of introducing short duration pauses
    corecore