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ABSTRACT

Absolute total scattering cross
sections (Qr's) have been measured for
positrons and electrons colliding with
sodium, potassium, and rubidium in the
1-102 eV range, using the same apparatus
and experimental approach (a beam
transmission technique) for both
projectiles. The present results for
positron-sodium and -rubidium collisions
represent the first Qr measurements
reported for these collision systems.
Features which distinguish the present
comparisons between positron- and
electron-alkali atom Qr's from those for
other atoms and molecules
(room-temperature gases) which have been
used as targets for positrons and
electrons are (1) the proximity of the
corresponding positron- and
electron-alkali atom Qp's over the
entire energy range of overlap, with an
indication of a merging or near-merging
of the corresponding positron and
electron Qp's near (and above) the
relatively low energy of about 40 eV,
and (2) a general tendency for the
positron-alkali atom Qr's to be higher
than the corresponding electron values
as the projectile energy is decreased
below about 40 eV.

INTRODUCTION

One of the incentives for making
direct comparison measurements between
positron—- and electron-scattering from
the same target gases is the potential
that such comparisons have for providing
deeper insight into atomic scattering
phenomena than may be acquired by
studying the scattering of only one type
of projectile from various gases. Since
positrons, being the antiparticles of
electrons, have the same magnitudes for
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the mass, charge, and spin as the
electron, but have the opposite sign of
charge, comparison measurements of the
scattering of positrons and electrons by
atoms and molecules can reveal
interesting differences and similarities
that arise from the basic interactions
which contribute to scattering. The
exchange interaction contributes to
electron scattering but does not play a
role in positron scattering. The static
interaction (assocliated with the )
interaction of the projectile with the
Coulomb field of the undistorted atom)
is attractive for the electron and
repulsive for the positron, while the
polarization interaction (resulting from
the distortion of the atom by the
charged projectile) 1s attractive for
both projectiles. The net effect of the
static and polarization interactions is
that they add to each other in electron
scattering whereas they tend to cancel
each other in positron scattering.

Thus, if one considers just the
contributions from the static and
polarization interactions, in general,
Qr's for positrons would be expected to
be smaller than those for electrons at
low energies. As the projectile energy
is increased, the polarization and
exchange interactions eventually become
negligible compared with the static
interaction, and the expected result is
a merging of the corresponding positron
and electron Qr's at sufficiently high
projectile energies. Two scattering
channels that are open only to positrons
are (1) annihilation, which is
negligible for the positron energies
(>0.2 eV) that have been used in
positron-beam scattering experiments,
and (2) positronium (Ps) formation,
which has a threshold energy 6.8 eV
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below the lonization threshold energy of
the target atom.

The general trends observed in
comparisons of the total scattering of
positrons and electrons by the
room—-temperature gases that have been
investigated appear to be consistent
with predictions based on the simple
interaction model described above., As
illustrations of these %eneral trends,
comparison measurements =4 for the inert
gases (Ne, Ar, and Kr) which correspond
to the alkali metal atoms (Na, K, and
Rb) discussed in this article, are shown
in Figs. 1, 2, and 3 respectively., 1In
these Figures, one can see (1) the
tendency for the measured positron-inert
gas Qr's to be significantly lower than
the corresponding electron Qp's at low
energies (except in the immediate
vicinities of the deep Ramsauer~Townsend
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Fig. 1. Comparison of
positron— and electron-Ne
total cross sections. The
lowest inelastic thresholds
for each projectile are
indicated by arrows. (From
Kauppila et al., Ref. 1).
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minima for the electron cases as shown
in Figs. 2 and 3), (2) clear indications
in the positron Qp curves of the onset
of Ps formation near the predicted Ps
formation thresholds, and (3) the
tendency for the positron and electron
Qr's to approach each other as the
projectile energy is increased to
sufficiently high energies. Mergings of
positron and electron Qp's have actually
been observed for helium,1 molecular
hydrogen,5 and water vapor6 in the
vicinity of about 200 eV.

It is of interest to consider
whether all atoms and molecules would be
expected to exhibit the same general
tendencies for positron and electron
scattering comparisons as those
described above (and illustrated in
Figs. 1-3). 1In order to investigate
this matter further, we have been
focusing our attention recently on
positron-electron scattering comparisons
for the alkali atoms. The alkali atoms
have a relatively simple electronic
structure with a single loosely bound
valence electron moving outside a core
of closed shells. Although there is
some similarity between the single
valence electron alkali atoms and_atomic
hydrogen, it has been pointed,out7 that
the ground states of the alkali atoms
have different characteristics than that
of the H atom and that approximation
schemes developed for the hydrogen atom
will not necessarily be equally
successful for the alkali atoms. One
difference is associated with the atomic
energy level separations. The energy
separation between the ground state and
first excited states of H is 10.2 eV
whereas the largest corresponding
separation for all of the alkali atoms

is only 2.1 eV (which is for the case of

sodium). The large coupling between the
ground state and the first excited state
of the alkali atoms influences
significantly the behavior of both
elastic and inelastic scattering.
Another feature of the alkali metal
atoms is their very large
polarizabilities relative to
room~-temperature gases. As examples,
Na, K, and Rb have polarizabilitie58 of

approximately 159, 293, and 319 ay3
(where a, = Bohr radius), respectively,
in comparison with the corresponding
inert gas atoms, Ne, Ar, and Kr, with
polarizabilities of 2.67, 11.1, and 16.7
ao3, respectively. Another unique
feature of the alkali atoms is that
since they all have ionization threshold
energies less than the binding energy
(6.8 eV) of Ps in its ground state, Ps
can be formed by positrons of
arbitrarily small incident energy, and
thus the Ps formation channel is always
open for these atoms. TIn contrast to
this, the room temperature gases which
have been used as targets for positroans
and electrons all have Ps formation
thresholds of at least several eV,

Our first report on the measurement
of positron and electron-alkali atom
Qr's was on potassiumg, where we found
that the corresponding positron and
electron Qp's were much closer to each
other over the entire energy range
studied (5 - 49 eV) than had been
observed for any other target atoms and
molecules investigated previously. 1In
this paper, we report our present
positron- and electron-Na, K, and Rb
results from 1 - 102 eV. The
positron-Na and -Rb results represent
the first reported Qp measurements for
these collision systems.

EXPERIMENTAL TECHNIQUE

We use a beam transmission
technique to make absolute Qr
measurements for positrons and electrons
colliding with alkali atoms in the same
apparatus. Details of the apparatus and
technique are provided elsewhere, 10 50
only a brief description of our
experimental approach is provided below.
The positron source is g produced on
site by the Hg(p,n)llc reaction,
generated by bombarding a boron target
with protons from a Van de Graaff
accelerator. The electron source 1is a
thermionic cathode. A weak, curved
axial magnetic field (produced by a
curved solenoid) is used to guide the
projectile beam from the source region
to the scattering region, and to
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discriminate against high energy
positrons coming from the source. The
measured full-width at half-maximum of .
the energy distribution of the detected
positron beam is less than 0.10 eV,
while that of the electron beam is
between 0.15 and 0.20 eV.

A schematic diagram of the
alkali-atom scattering system is shown
in Fig. 4. The main component in this
system is the scattering cell consisting
of the main oven body, and a detachable
cylinder which contains the alkali
metal. The weak guiding axial magnetic
field produced by the curved solenoid is
extended into the scattering region by
means of two coils located
concentrically with the entrance and
exit apertures of the scattering cell.

A Channeltron electron multiplier (CEM)
on the input side of the oven serves
(when its front end is biased
apppropriately) as a detector for
positrons or electrons about to enter
the oven., When the cone (front end) of
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Fig. 4. Experimental setup for
measuring total cross sections for
alkali atoms. (From Stein et al.,
Ref. 9).
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that detector is placed at ground
potential, the projectile beam is
permitted to pass through the oven and
the transmitted beam is detected by
another CEM at the output end of the
oven. A retarding element (which
becomes coated with the alkali metal
effusing from the oven) located between
the oven and the output CEM is used to
measure the projectile energy as well as
to provide additional discrimination
(beyond geometrical considerations)
against projectiles scattered through
small angles in forward directions.

Our Qr's are determined by
measuring (1) the ratio, R.y14, of the
output CEM to the input CEM counts per
second when the oven is relatively cool
so that there is a negligible
vapor-pressure in the oven, and (2) the
ratio, Ryot of the output CEM to the
input CEM counts per second with the
oven at an elevated temperature so that
there is a high enough vapor-pressure in
the oven to attenuate the projectile
beam appreciably. The purpose of using
the ratio of the output CEM to the input
CEM counts per second is to normalize
the transmitted beam intensity with
respect to the incident beam intensity.
Determinations of (1) the beam
transmission ratio, Rpotr/Reo1ds (2) the
number density, n, of the alkali atoms,
which is determined by measuring the
temperature of the oven and by using
published vapor pressure data,ll and (3)
the beam path length, L of the
projectiles thorough the oven, can be
used with the relationship,

Rhot = Reold exp(-nlQr)
to obtain absolute positron- and
electron~alkali atom Qr's. It should be
recognized that a major potential source
of error in our Qr measurements is
related to the accuracy of the
determination of n which is limited by
the accuracy of our measurements of the
scattering cell temperature, and by the
accuracy of the vapor pressure data that
we use. As a result of our continuing
efforts to Improve our determination of
n (by improving the accuracy of our



measurements of the scattering cell
temperature and by trying to identify
the most reliable vapor pressure data in
the literature), we feel that the
present positron- and electron-K and
electron-Na Qr measurements !0 should be
regarded as superseding our
corresponding earlier measurements.Js12

RESULTS AND DISCUSSION
Electrons

Our present electron-Na, and -K, Qr
measurements (Kwan et al.lo) are shown
in Figs. 5 and 6 respectively along with
prior measurements 13~ and
theoretical20=22 regults. The present
electron results were obtained using the
game apparatus and technique as was used
for our positron measurements.
walters2V has obtained Qp's for
electron-Na and -K collisions by adding
the partial cross sections that he
selected from existing theoretical and
experimental results for the elastic
(Qg), resonance excitation (Qg, which
represents the 3s-3p transition for Na,
and the 4s-4p transition for K), the sum
of other discrete excitations (Qp), and
the ionization (Qy) cross sections.
Since Walters reported these Qp values,
Qr and cross sections for numerous other
discrete excitations have been measured
by Phelps and Linl® for Na and by Phelps
et al.l8 for K, and we have added these
more recent excitation cross section
results (rather than the Qg and Qp
values used by Walters) to the values of
Qg and Q1 selected by Walters, to obtailn
the Qp curves shown in Figs. 5 and 6 for
Na and K, which we refer to as
"Walters-Phelps curves”. Our measured
electron-Na Qp values are in reasonable
agreement with the shape and absolute
values of the Walters—Phelps curves and
in good agreement (averaging about 10%
lower) with the theoretical values of
Msezane2Z who added the elastic,
resonance excitation, 3s-3d, 3s—4s,
3s-4p, and 3s-4d cross sections obtained
from his 6 state close-coupling
calculation to existing direct
ionization cross sections obtained by
others. Our measured electron-K Qr
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values are also in quite good agreement
with the corresponding Walters-Phelps Qp
curve, averaging only about 10% lower
from 20 to 50 eV. Of the prior
measurements, the indirect
determinations of Srivastava and
Vuskovicld for Na, and of Vuskovic and
Srivastaval? for K, {who used their own
crossed-beam measurements of
differential cross sections for elastic
scattering and for a number of different
transitions from the ground state, and
ionization cross sections measured by
others) are in the closest overall
agreement with the present corresponding
measurements. As the energy is reduced
below 10 to 20 eV, there is a tendency
for our measured electron-Na and -K Qr's
to fall somewhat further below the
corresponding curve of Msezane (for Na)
and the Walters—-Phelps curves. We feel
that the explanation for this trend in
Na and K may be as follows. The bias on
the retarding element shown in Fig. 4 is
always set within 1.25 V of the
"cut-off" retarding voltage for the
projectiles, and since the Na and K
excitation thresholds are 2.10 eV and
1.61 eV respectively, there should be
1007% discrimination against all
inelastically scattered projectiles. 1In
the vicinity of 20 eV for Na and K, the
Walters-Phelps results in Figs. 5 and 6
show that the elastic scattering cross
section (Qg) is about 20% of Qr for Na
and about 25% of Qr for K, and becomes
an even smaller fraction of Qr as the
electron energy increases toward 50 eV.
As the electron energy is reduced below
10 eV on the other hand, Qp rapidly

‘becomes a progressively larger fraction
of Qp, and at 5 eV, Qg accounts for more

than 50% of Qr for both Na and K. 1In
addition, the angular discrimination of
our apparatusg’1 against elastically
scattered projectiles becomes poorer as
the projectile energy decreases. For
instance, the angular discrimination for
electrons is estimated to be about 13°
near 5 eV, 9° near 10 eV, 7° near 20 eV,
and is about 5% or less from 30 eV to
100 eV. (The angular discrimination for
elastically scattered positrons is

'somewhat poorer than that for electrons,

but behaves in a similar way, being

about 13° near 10 eV, 11° near 20 eV, 9°
near 30 eV, and continuing to improve
with increasing energy, reaching about
50 from 75 to 100 eV.) Our estimates of
errors introduced into the electron-Na
and -K Qr's due to an inability to
discriminate against projectiles
elastically scattered through small
angles in the forward direction suggest
that as the electron energy is reduced
below 10 to 20 eV, the increasing ratio
of Qg to Qr, and the poorer angular
discrimination may account for our
measured Qp's falling further below
Msezane's results2? and the
Walters-Phelps curves. At 20 eV and
above on the other hand, we estimate
that the amount by which our measured
Qr's would be low due to our inability
to discriminate against projectiles
elastically scattered through small
angles in the forward direction, should
be of the order of 10% or less for
electron-Na and -K collisions. Taking
into consideration the uncertainty in
our determination of the number density
of atoms in our oven (iZOZ), and the
potential errors in our measured Qr's
associated with the angular
discrimination of our measurements, the
closeness (and the consistency) of the
close-coupling electron-Na Qr results of
Msezane?2 and the Walters—-Phelps
electron-Na and -K Qr curves to our own
corresponding measured values gives us
some confidence that our experimental
technique and apparatus for measuring
electron-alkali atom Qp's is basically
sound. Since the same apparatus and
technique is used for the positron
measurements, we feel that they should
not be greatly in error.

Positrons

The present measured positron-Na,
-K (Kwan et al.l0) and -Rb (preliminary)
Qr's are shown in Figs. 7-10 along with
prior theoretical results.23-33 1Tyo
separate Figures (Figs. 7 and 8) have
been used for Na because of the
abundance of theoretical results for
this system. Ward et al.Z25,32 have
performed five-state close-coupling

18

calculations of Qr for positron-Na and
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~K collisions that include the cross
sections for elastic scattering,
resonance excitation, and a few other
discrete excitatioans (3s-~4s, 3d, 4p for
Na and 4s-5s, 3d, 5p for K) but do not
include the cross sections for Ps
formation and for ilonization which are
both expected to be relatively
smal120,23 gpove 10 ev. McEachran et
al.33 have extended such Qr calculations
to Rb where they include the cross
sections for elastic scattering,
resonance excitation (5s-5p), and other
discrete excitations (5s-4d, 6s, 6p) and
do not include the cross sections for Ps
formation and for ionization. 1In
addition, Ward et al.25,32 (for Na and
K) and McEachran et al.33 (for Rb) have
used our estimates of our angular
discrimination along with their
differential elastic cross section
results to calculate effective cross
sections, Qgff, which represent their
theoretical estimates of the Qp's that
we would be expected to obtain if the
only error in our measurements were that
associated with our inability to
discriminate against projectiles
elastically scattered through small
angles in the forward direction. Our
measured Qr's are in reasonable
agreement with their corresponding Qr
calculations for Na (Fig. 7) and K (Fig.
9) and are even closer to their Qeff
values (within 10% over most of the
energy range of overlap). For Rb (Fig.
10), our measured Qr's are in good
agreement with the theoretical Q¢
values of McEachran et al.33 for all
energies of overlap above about 6 eV.
However, as the positron energy is
reduced below 4 eV, our measured Qr
values decrease sharply, whereas the
theoretical Qgff values of McEachran et
al. continue rising, and this gives rise
to a significant discrepancy at the
lowest energies of overlap. Aside from
this puzzling discrepancy at the lowest
energies in the positron-Rb case, there
is good overall agreement between the
close-coupling approximation Qgff
results of Ward et al.<”?» for
positron-Na, ~K and of McEachran et
al.33 for positron-Rb for most of the
energy range of overlap. The B
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positron-Na Qr results of Ward et al.2>
are also quite close to the earlier
four-state close-coupling aggroximation
Qr results of Sarkar et al.<* (Fig. 7)
which include their cross sections for
elastic scattering, resonance
excitation, 3s-3d and -4p excitations,
and the Ps formation cross sections
calculated by Guha and Mandal,23 and
first Born approximation values of
ionization cross sections obtained by
Walters20, The positron-Na and -K
modified Glauber approximation ("MG3")
Qr results (Figs. 8 and 9) of Gien30,31
are in reasonable agreement with the
present results.

Positron and Electron Comparisons

In Figs. 11-13 our direct
comparison measurements between
positron- and electron-Na, -K, and -Rb
Qr's are shown along with selected
exper:[menl:alw»16’1 an
theoretical?0,25,32 regults. It should
be noted that even though, as mentioned
earlier, a major potential source of
error in our absolute Qr determinations
is associated with the determination of
the number density of atoms in the
scattering cell, our direct
positron—-electron comparison
measurements should still be meaningful
because essentially the same oven
temperatures are used for each
projectile for a given alkali atom.
find that Na, K, and Rb each exhibit
remarkably similar Qr's for positron and
electron collisions over the entire
energy range that has been studied.

(The only indication of a substantial
difference between the positron and
electron Qr's for these atoms so far is
at the lowest energies studied for Rb,
where the measured positron Qp decreases
abruptly as the positron energy is
reduced below 4 eV.) We also find that
our corresponding positron and electron
Qr's for Na, K, and Rb merge within the
uncertainties of the measurements in the
vicinity of 40 eV and remain essentially
merged up to the highest energies
studied thus far. 1In sharp contrast to
the case for positron- and electron-room
temperature gas Qr's, the positron-Na,

We
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-K, and -Rb Qr's become increasingly
higher than the corresponding Qr's for
electrons as the projectile energy is
reduced from 40 eV down to the lowest
energies studied in each case with the
exception of the lowest energies for Rb
shown in Fig. 13 (preliminary results).

It is interesting that when the
Walters—-Phelps electron-Na and -K Qf
curves are compared with the
corresponding positron-Na and - QE
results obtained by Ward et al.25,32 a5
shown in Figs. 11 and 12 respectively,
mergings, or at least near-mergings of
the positron and electron Qr's are
observed to occur in the vicinity of 30
to 50 eV, and as the projectile energy
is reduced below this energy range, the
positron Qr's are observed to become
increasingly larger than the
corresponding electron values for each
of these atoms. The close—coupling
electron-Na Qr results of Msezane?2Z are



consistent with this picture since they
are 1n good agreement with the
Walters-Phelps curves shown in Fig. 1l1l.
Thus, the comparisons between the
Walters—Phelps electron—-Na, and -K Qr
curves (and the MsezaneZZ curve for Na)
and the close-coupling results of Ward
et al.25,32 for positrons colliding with
Na and K tend to support our
observations of a merging (or
near-merging) of the positron and
electron Qp's near the relatively low
energy of 40 to 50 eV, and also support
our observations that the positron Qr's
are higher than the corresponding
electron values below 40 eV (at least
down to the lowest energiles studied thus
far). 1If these observations are
correct, it 1s of interest to consider
why the comparisons between positron and
electron scattering from the alkali
atoms indicate a dominance of the
positron- over the electron-Qr's at low
energies whereas for the
room-temperature gases, the situation is
for the most part, reversed. Why do the
room—-temperature gases (illustrated by
Figs. 1-3) all seem to fit, in general,
the simple interaction model referred to
in the Introduction which implies that
the positron cross sections at low
energies would be expected to be lower
than the corresponding electron cross
sections? That prediction was based
upon the tendency toward cancellation of
the static and polarization interactions
in positron scattering, in contrast to
the addition of these interactions in
the electron case. Why do the alkali
atoms appear to be showing the opposite
behavior?

Perhaps the simple argument
referred to in the Introduction
concerning the relative roles of the
static and polarization interactions is
applicable to the total scattering cross
section if the dominant contribution to
it is elastic scattering for both
positrons and electrons. However,
perhaps when inelastic processes become
dominant for either positrons or
electrons (or both), this argument in
its simple form no longer applies to a
comparison of their total scattering
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cross sections. Theoretical
investigations by Walters20,34 of
electron-alkali atom scattering indicate
that with increasing energy beyond the
first excitation thresholds (which are
2.10 eV or less for the alkall atoms)
there is a change-over from a situation
where polarization effects are dominant
to one in which flux loss3% becomes
dominant. Figs. 11 and 12 indicate that
the resonance excitation becomes the
dominant contribution to positron and to
electron scattering from Na and K near
the relatively low energy of 10 eV. It
can also be seen from Figs. 11 and 12
that while the elastic cross section
(Qg) is predicted to be somewhat larger
for electrons than for positrons above
10 eV, it makes a relatively small
contribution to Qr as the projectile
energy 1s increased above this energy.
On the other hand, Figs. 11 and 12
indicate that the resonance excitation
cross section (Qgp) is significantly
larger for the positron than for the
electron at low energies and is the main
contribution to Qt above 10 eV. We have
chosen not to show a comparison of the
sum of the other discrete excitations
(Qp) for positrons and electrons in
Figs. 11 and 12 because Ward et al.25,32
have only included cross sections for
three such excitations for Na(3s-4s, 3d,
4p) and K(4s-5s, 3d, 5p) whereas the
Qp's used for the Walters-Phelps Qp
electron curves in Figs. 11 and 12
include 14 such excitations. However it
is interesting to note that for the 3
corresponding excitation processes in Na
and K which have been calculated for
positronszss32 and measured for
electrons,16s18 the positron cross
sections tend to be significantly larger
than the corresponding electron cross
sections at low energies, similar to the
situation shown for the resonance
excitation in Figs. 11 and 12. The
positron- and electron-Na and —K
ionization cross sections are expected
to be small, and if the positron- and
electron-He ilonization cross section
comparisons35 can serve as a guide, one
might expect Q7 for the positron-Na and
K collisions to be larger than the
corresponding electron values. 1In



addition to this, although the
theoretical predictions of Qpg by Guha
and Mandal23 shown in Figs. 7 and 9
indicate that Qpg makes a relatively
small coantribution to Qrp for energies
above 10 eV, this is still an additional
inelastic contribution to Qr which does
not have a counterpart in
electron—-alkali atom collisions, and it
appears (as seen in Figs. 7 and 9) to be
playing an increasingly important role
in Qr as the positron energy decreases
below 10 eV. The above information
suggests that the positron-alkali atom
Qr's may rise above the corresponding
electron values as the projectile energy
is reduced below 40 eV mainly due to the
relatively large contributions to Qp by
inelastic processes (especially
excltation) which are predicted to have
larger cross sections for positrons than
for electrons at these low energies.
Although the elastic cross section for
alkali atoms is predicted to be slightly
larger for electrons than for positrons
at low energies (between 5 and 50 eV),
it appears that Qp contributes too
little to Qr to make Qr larger for
electrons than it is for positrons, as
is the case for the room-temperature
gases in this energy range.

It should be noted that although
our observations indicate a merging of
the positron- and electron-Na and -K
Qr's at the relatively low energy of
about 40 eV, and a dominance of the
positron Qr's over the corresponding
electron Qp's at lower energies, and
although this picture is supported by
the comparisons of the Walters—Phelps Qp
curves (and the Msezane 22 curve) for
electrons with the Ward et al.25,32
close-coupling approximation results for
positrons, modified Glauber (MG3)
calculations by Gien30, for positron-
and electron—-Na and -K collisions, shown
in Figs. 14 and 15 predict a different
behavior for the positron-electron
comparisons. According to Gien's
calculations,30:3l the positron- and
electron-Na and K Qr's do not merge even
up to energies as high as 1000 eV, and
furthermore, the electron Qp's are
larger than the positron Qp's over
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essentially his entire energy range. It
should be noted however, that whereas
Gien's positron-Na and -K Qr's are in
quite good agreement with those of Ward
et al.25,32 (and Sarkar et al.24 for
Na), his electron QT's are somewhat
higher than those associated with the
Walters-Phelps curves for Na and K and
the results of Msezane?? for Na. It is
also of possible interest that Gien has
not included the effects of exchange in
his electron calculations.

FUTURE DIRECTIONS

Based upon our direct comparison
measurements of Qr's for positron- and
electron-alkali atom collisions up to
the present time, we feel that it would
be of interest to address the following
points in future research. (1) Is there
actually a merging (or near-merging) of
Qr's for positron- and electron-Na, K,
and Rb collisions in the vicinity of 40
eV, and are the positron Qr's larger
than the corresponding electron values
below that energy as our observations
(preliminary for Rb) indicate? As
mentioned above, our observations tend
to be supported by a comparison (Figs.
11 and 12) of the Walters-Phelps
electron-Na and -K Qr curves (and
electron-Na Qp's obtained by Msezane 22
using a close-coupling approximation)
with the corresponding positron values
obtained by Ward et al. 5,32 using a
close-coupling approximation. However
the modified Glauber approximation (MG3)
results of Gien2? for Na and K suggest a
significantly different behavior for the
positron and electron comparisons (Figs.
14 and 15). Up to the present time,
theorists who have done close-coupling
approximation calculations of Qp for
positron-alkali atom collisions have not
done them for electron—-alkali atom
collisions and vice versa. 1In order to
conduct a more stringent theoretical
test of the validity of our observed low
energy mergings and the reversal of the
"normal"” arrangement of positron and
electron Qr's at low energies, it could
be helpful if theorists who have done a
close-coupling approximation calculation
for one of these projectiles colliding

with an alkali atom would do a
comparable close-coupling approximation
calculation for the other projectile.

In a certalin sense, this could be
considered to be the theoretical
counterpart to our having measured Qp's
for the two projectiles in the identical
apparatus using the same experimental
technique as opposed to comparing our
measured positron-alkali atom Qp's to
another experimental group's measured
electron—-alkali atom Qp's. (2)
Although the positron and electron
elastic scattering cross sections
predicted by Ward et al.25,32 and
Walters, respectively, for Na and K
collisions are in the usual order from
about 5 to 50 eV (the electron Qg's
being higher than the corresponding
positron values), it is curious that the
the positron and electron Qg's appear to
cross each other (Figs. Il and 12) in
the vicinity of 5 eV, so that as the
projectile energy is reduced below 5 eV,
it appears that the positron Qg's are
larger than the corresponding electron
values. 1Is this representative of the
actual situation, or is it possible that
the Ward et al. calculation of Q at
these low energies is too large due to
the neglect of Ps formation, which may
be playing a more important role as the
positron energy decreases. (3) If our
observed low—energy mergings of
positron— and electron—alkali atom Qr's
are valid, this may provide additional
evidence that mergings of positron- and
electron-atom Qr's can occur at '
unexpectedly low energies. 1In this
connection it should be noted that the
first observation! of such a low energy
merging was for He where the positron
and electron Qr's were found to merge
(to within 2%) near 200 eV. The
distorted wave second Born approximation
(DWA) calculations of Dewangan and
Walters36 predict that a merging of the
positron and electron-He Qp's (to within
2%) does not occur until 2000 eV. These
calculations also indicate that at 200
eV, where Kauppila et al.l have observed
the merging of positron and electron
Qr's, the electron total elastic cross
section is about 2.4 times as large as
the corresponding positron cross
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section. Thus at the energy (about 200
eV) where the positron and electron Qr's
have been observed! to merge, the
partial contributions (such as Qg) to Qr
are apparently behaving much differently
for positrons than for electrons. A
comparison37 of a calculation of Qp for
54.4-300 eV positron—atomic hydrogen
collisions by Walters 7 (using a
pseudostate close-coupling approximation
that is supplemented by the second Born
approximation) with similar calculations
for electrons by Van Wyngaarden and
Walters38 indicates a situation similar
to that just described for helium in the
sense that the Qr's for these
projectiles remain very nearly merged
down to the lowest energies studied
(54.4 eV) whereas the cross section for
elastic scattering is about 3 times as
large for electrons as for positrons at
54.4 eV, while the cross sections for
the ls-2s and ls-2p excitations are
larger for positrons than for electrons.
Qur present observationslQ indicate that
the alkali atom Qp's may be merging at
energies considerably lower than the
asymptotic energies at which the first
Born approximation is valid,39 but based
upon the information in Figs. 11 and 12,
the partial elastic and inelastic
contributions to Qr may be at least
close to separately merged where the
Qr's appear to be merging, in possible
contrast to the He and atomic hydrogen
situations. 1In relation to the question
of mergings of positron and electron
cross sections at unexpectedly low
energies, it is of interest that a
theoretical analysis by Dewangan40
related to higher order Born amplitudes
calculated in the closure afproximation
has been shown to imp1y3l"4 that if
electron exchange can be ignored in the
electron-scattering case, and if the
closure approximation is valid, then a
merging (or near-merging) of positron-
and electron-atom Qr's can occur at
energies considerably lower than the
asymptotic energies at which the first
Born approximation is valid. (4) 1In
light of the information (theo;g?lcal
and experimental) that we have on
positron and electron scattering
comparisons up to the present time, it
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is interesting to consider the
possibility that at low energies, in
general, elastic scattering cross
sections for electron-atom collisions
may tend to be larger than those for
positron-atom collisions (aside from
complications like Ramsauer-Townsend
effects), whereas inelastic scattering
cross sections for positron—atom
collisions may tend to be larger for
positrons than they are for electrons.
Perhaps the simple explanation given in
the Introduction for why the electron
Qr's are larger than the corresponding
positron values at low energy applies
only to elastic scattering. Could there
be a correspondingly simple explanation
for why inelastic scattering cross
sections may tend to be larger for
positrons than for electrons in general
(if this 1is indeed the case)? Lél In
relation to item (4), it would be useful
to have direct positron-electron
comparison measurements (using the same
apparatus and experimental technique) of
resonance excitation cross sections for
the alkali atoms to see if it is the
case (as indicated by the comparisons
shown in Figs. 11 and 12) that the
resonance excitation cross section is so
much larger for positrons than it is for
electrons at low energies. This would
be of particular interest in view of the
indications shown in Figs. 11 and 12
that the resonance excitation becomes
the main contribution to Qr at energies
above 10 eV or so. (6) What is the
contribution of Ps formation to Qp in
positron-alkali atom scattering? The
theoretical calculations of Qpg shown in
Figs. 7,9, and 10 suggest that it plays
a relatively unimportant role above 10
eV, but is increasing as the positron
energy is reduced toward zero. As was
mentioned above, it is possible to form
Ps in collisions with alkali atoms at
arbitrarily small positron energies.
Does Qpg increase without limit as the
positron energy approaches zero? Tt
would be useful to have direct
measurements of Qpg for positron-alkali
atom collisions at low energies to
investigate questions such as this.
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