111 research outputs found
Signatures of the charge density wave collective mode in the infrared optical response of VSe<sub>2</sub>
We present a detailed study of the bulk electronic structure of high quality
VSe single crystals using optical spectroscopy. Upon entering the charge
density wave phase below the critical temperature of 112 K, the optical
conductivity of VSe undergoes a significant rearrangement. A Drude response
present above the critical temperature is suppressed while a new interband
transition appears around 0.07\,eV. From our analysis, we estimate that part of
the spectral weight of the Drude response is transferred to a collective mode
of the CDW phase. The remaining normal state charge dynamics appears to become
strongly damped by interactions with the lattice as evidenced by a mass
enhancement factor m/m3. In addition to the changes taking place
in the electronic structure, we observe the emergence of infrared active
phonons below the critical temperature associated with the 4a x 4a lattice
reconstruction
Effect of Benzoic Acids on Barite and Calcite Precipitation
The effect of various benzoic acids on the precipitation of barite (BaSO4) and calcite (CaCO3) was investigated. The acids varied in the number of carboxylate groups, from dibenzoic acids (phthalic, isophthalic, and terephthalic) through to the hexabenzoic acid (mellitic acid). It was found that the stereochemistry of the dibenzoic acids was important, as was the pH of the solution (trimesic acid was used as a test case and showed that greatest inhibition was achieved with all carboxylate groups deprotonated). Interestingly, for both the calcite and barite systems, mellitic acid was found to be both a potent inhibitor and a significant crystal growth modifier. In the case of barite, the presence of mellitic acid produced nanoparticles that agglomerated. The nanoparticles were found to be 20 nm in size from X-ray diffraction (XRD) line width analysis and 20-50 nm from transmission electron microscopy (TEM). Humic acid was also tested and found to form bundled fibers of barium sulfate
Increasing organic solar cell efficiency with polymer interlayers
We demonstrate how organic solar cell efficiency can be increased by introducing a pure polymer interlayer between the PEDOT:PSS layer and the polymer: fullerene blend. We observe an increase in device efficiency with three different material systems over a number of devices. Using both electrical characterization and numerical modeling we show that the increase in efficiency is caused by optical absorption in the pure polymer layer and hence efficient charge separation at the polymer bulkheterojunction interface
Coherent phonons and the interplay between charge density wave and Mott phases in 1-TaSe
1-TaSe is host to coexisting strongly-correlated phases including
charge density waves (CDWs) and an unusual Mott transition at low temperature.
Here, we investigate coherent phonon oscillations in 1-TaSe using a
combination of time- and angle-resolved photoemission spectroscopy (TR-ARPES)
and time-resolved reflectivity (TRR). Perturbation by a femtosecond laser pulse
triggers a modulation of the valence band binding energy at the -point,
related to the Mott gap, that is consistent with the in-plane CDW amplitude
mode frequency. By contrast, TRR measurements show a modulation of the
differential reflectivity comprised of multiple frequencies belonging to the
distorted CDW lattice modes. Comparison of the temperature dependence of
coherent and spontaneous phonons across the CDW transition shows that the
amplitude mode intensity is more easily suppressed during perturbation of the
CDW state by the optical excitation compared to other modes. Our results
clearly identify the relationship of the in-plane CDW amplitude mode with the
Mott phase in 1-TaSe and highlight the importance of lattice degrees
of freedom.Comment: 7 pages, 4 figures, supplemental materia
Displacement of polarons by vibrational modes in doped conjugated polymers
Organic pi-conjugated polymers are deemed to be soft materials with strong electron-phonon coupling, which results in the formation of polarons, i.e., charge carriers dressed by self-localized distortion of the nuclei. Universal signatures for polarons are optical resonances below the band gap and intense vibrational modes (IVMs), both found in the infrared (IR) spectral region. Here, we study p-doped conjugated homo-and copolymers by combining first-principles modelling and optical spectroscopy from the far-IR to the visible. Polaronic IVMs are found to feature absorption intensities comparable to purely electronic transitions and, most remarkably, show only loose resemblance to the Raman or IR-active modes of the neutral polymer. The IVM frequency is dramatically scaled down (up to 50%) compared to the backbone carbon-stretching modes in the pristine polymers. The very large intensity of IVMs is associated with displacement of the excess positive charge along the backbone driven by specific vibrational modes. We propose a quantitative picture for the identification of these polaron shifting modes that solely based on structural information, directly correlates with their IR intensity. This finding finally discloses the elusive microscopic mechanism behind the huge IR intensity of IVMs in doped polymeric semiconductors
Moonlighting Proteins Hal3 and Vhs3 Form a Heteromeric PPCDC with Ykl088w in Yeast CoA Biosynthesis
Premi a l'excel·lència investigadora. 2010Unlike most other organisms, the essential five-step Coenzyme A biosynthetic pathway has not been fully resolved in yeast. Specifically, the gene(s) encoding the phosphopantothenoylcysteine decarboxylase (PPCDC) activity still remains unidentified. Sequence homology analyses suggest three candidates, namely Ykl088w, Hal3 and Vhs3, as putative PPCDC enzymes in Saccharomyces cerevisiae. Interestingly, Hal3 and Vhs3 have been characterized as negative regulatory subunits of the Ppz1 protein phosphatase. Here we show that YKL088w does not encode a third Ppz1 regulatory subunit, and that the essential roles of Ykl088w and the Hal3/Vhs3 pair are complementary, cannot be interchanged and can be attributed to PPCDC-related functions. We demonstrate that while known eukaryotic PPCDCs are homotrimers, the active yeast enzyme is a heterotrimer which consists of Ykl088w and Hal3/Vhs3 monomers that separately provides two essential catalytic residues. Our results unveil Hal3/Vhs3 as moonlighting proteins, involved in both CoA biosynthesis and protein phosphatase regulation
Essential Roles of the Tap42-Regulated Protein Phosphatase 2A (PP2A) Family in Wing Imaginal Disc Development of Drosophila melanogaster
Protein ser/thr phosphatase 2A family members (PP2A, PP4, and PP6) are implicated in the control of numerous biological processes, but our understanding of the in vivo function and regulation of these enzymes is limited. In this study, we investigated the role of Tap42, a common regulatory subunit for all three PP2A family members, in the development of Drosophila melanogaster wing imaginal discs. RNAi-mediated silencing of Tap42 using the binary Gal4/UAS system and two disc drivers, pnr- and ap-Gal4, not only decreased survival rates but also hampered the development of wing discs, resulting in a remarkable thorax cleft and defective wings in adults. Silencing of Tap42 also altered multiple signaling pathways (HH, JNK and DPP) and triggered apoptosis in wing imaginal discs. The Tap42RNAi-induced defects were the direct result of loss of regulation of Drosophila PP2A family members (MTS, PP4, and PPV), as enforced expression of wild type Tap42, but not a phosphatase binding defective Tap42 mutant, rescued fly survivorship and defects. The experimental platform described herein identifies crucial roles for Tap42•phosphatase complexes in governing imaginal disc and fly development
- …