5 research outputs found

    Combined Tevatron upper limit on gg->H->W+W- and constraints on the Higgs boson mass in fourth-generation fermion models

    Get PDF
    Report number: FERMILAB-PUB-10-125-EWe combine results from searches by the CDF and D0 collaborations for a standard model Higgs boson (H) in the process gg->H->W+W- in p=pbar collisions at the Fermilab Tevatron Collider at sqrt{s}=1.96 TeV. With 4.8 fb-1 of integrated luminosity analyzed at CDF and 5.4 fb-1 at D0, the 95% Confidence Level upper limit on \sigma(gg->H) x B(H->W+W-) is 1.75 pb at m_H=120 GeV, 0.38 pb at m_H=165 GeV, and 0.83 pb at m_H=200 GeV. Assuming the presence of a fourth sequential generation of fermions with large masses, we exclude at the 95% Confidence Level a standard-model-like Higgs boson with a mass between 131 and 204 GeV.We combine results from searches by the CDF and D0 collaborations for a standard model Higgs boson (H) in the process gg→H→W+W- in pp̅ collisions at the Fermilab Tevatron Collider at √s=1.96  TeV. With 4.8  fb-1 of integrated luminosity analyzed at CDF and 5.4  fb-1 at D0, the 95% confidence level upper limit on σ(gg→H)×B(H→W+W-) is 1.75 pb at mH=120  GeV, 0.38 pb at mH=165  GeV, and 0.83 pb at mH=200  GeV. Assuming the presence of a fourth sequential generation of fermions with large masses, we exclude at the 95% confidence level a standard-model-like Higgs boson with a mass between 131 and 204 GeV.Peer reviewe

    Metallurgical features affecting the extrusion of aluminium alloys

    No full text

    Advanced Materials Treatment by Shock Waves

    No full text

    A New QCD facility at the M2 beam line of the CERN SPS: COMPASS++/AMBER

    No full text
    In this Letter of Intent, we propose a broad experimental programme for the ``New QCD facility at the M2 beam line of the CERN SPS''. This unrivalled installation will provide the site for a great variety of measurements to address fundamental issues of Quantum Chromodynamics, which are expected to lead to significant improvements in the understanding of QCD as our present theory of strong interactions. The proposed measurements cover the range from lowest-Q2Q^2 physics as the determination of the proton radius by elastic muon-proton scattering, over average-Q2Q^2-reactions to study hadron spectroscopy, to high-Q2Q^2 hadron-structure investigations using the Drell-Yan process and Deeply Virtual Compton Scattering

    Combination of tevatron searches for the standard model Higgs Boson for observing antiferromagnetism and superfluidity

    No full text
    corecore