19 research outputs found
Higher Derivative Operators from Scherk-Schwarz Supersymmetry Breaking on T^2/Z_2
In orbifold compactifications on T^2/Z_2 with Scherk-Schwarz supersymmetry
breaking, it is shown that (brane-localised) superpotential interactions and
(bulk) gauge interactions generate at one-loop higher derivative counterterms
to the mass of the brane (or zero-mode of the bulk) scalar field. These
brane-localised operators are generated by integrating out the bulk modes of
the initial theory which, although supersymmetric, is nevertheless
non-renormalisable. It is argued that such operators, of non-perturbative
origin and not protected by non-renormalisation theorems, are generic in
orbifold compactifications and play a crucial role in the UV behaviour of the
two-point Green function of the scalar field self-energy. Their presence in the
action with unknown coefficients prevents one from making predictions about
physics at (momentum) scales close to/above the compactification scale(s). Our
results extend to the case of two dimensional orbifolds, previous findings for
S^1/Z_2 and S^1/(Z_2 x Z_2') compactifications where brane-localised higher
derivative operators are also dynamically generated at loop level, regardless
of the details of the supersymmetry breaking mechanism. We stress the
importance of these operators for the hierarchy and the cosmological constant
problems in compactified theories.Comment: 23 pages, LaTeX, one figure, published version in JHE
RESEARCHES REGARDING THE DETERMINATION OF THE NOISE LEVEL PRODUCED BY A CORDLESS MULTIFUNCTIONAL TOOL IN VARIOUS OPERATING CONDITIONS
The acoustic power level is a dimension that must be specified on open-air equipment and its determination depends on several factors: the microphone positioning for determining it (lower or higher distance from the noise source), the shape of the surface measurement and operation of the equipment at different speeds.The paperwork consists in analyzing the results regarding the determination of the acoustic power levels by measuring the acoustic pressure in free field conditions according to SR EN ISO 3744: 2010, under different operating conditions for the tested equipment
Higher Derivative Operators from Transmission of Supersymmetry Breaking on S_1/Z_2
We discuss the role that higher derivative operators play in field theory
orbifold compactifications on S_1/Z_2 with local and non-local (Scherk-Schwarz)
breaking of supersymmetry. Integrating out the bulk fields generates
brane-localised higher derivative counterterms to the mass of the brane (or
zero-mode of the bulk) scalar field, identified with the Higgs field in many
realistic models. Both Yukawa and gauge interactions are considered and the
one-loop results found can be used to study the ``running'' of the scalar field
mass with respect to the momentum scale in 5D orbifolds. In particular this
allows the study of the behaviour of the mass under UV scaling of the momentum.
The relation between supersymmetry breaking and the presence of higher
derivative counterterms to the mass of the scalar field is investigated. This
shows that, regardless of the breaking mechanism, (initial) supersymmetry
cannot, in general, prevent the emergence of such operators. Some implications
for phenomenology of the higher derivative operators are also presented.Comment: 29 pages, LaTeX. Added Section 4 ("Phenomenological implications:
living with ghosts?") and Appendix
RESEARCH ON THE DETERMINATION OF THE NOISE LEVEL PRODUCED BY AN ATOMIZER IN DIFFERENT FUNCTIONING CONDITIONS
Noise is one of the priority issues of environment, especially in crowded urban zones. The user is more and more informed and prefers to choose some reliable products with low noise level. A low level of acoustic pollution leads to the environmental and consumer health protection satisfaction level and thus increases the quality of marketed products. 2000/14/E Directive it requires manufacturers to apply to each equipment introduced on market the guaranteed value of the acoustic power.In this regard, the paper consists both in measuring the acoustic power level of the atomizer at maximum speed and idling. Also, in the paper will be specified choosing the method, number and place of the used microphones, calculating the average of the acustic pressure, functioning conditions, and incertitude measuring
Comments on gluon 6-point scattering amplitudes in N=4 SYM at strong coupling
We use the AdS/CFT prescription of Alday and Maldacena \cite{am} to analyze
gluon 6-point scattering amplitudes at strong coupling in SYM. By
cutting and gluing we obtain AdS 6-point amplitudes that contain extra boundary
conditions and come close to matching the field theory results. We interpret
them as parts of the field theory amplitudes, containing only certain diagrams.
We also analyze the collinear limits of 6- and 5-point amplitudes and discuss
the results.Comment: 35 pages, 7 figures, latex, references adde
Moduli and (un)attractor black hole thermodynamics
We investigate four-dimensional spherically symmetric black hole solutions in
gravity theories with massless, neutral scalars non-minimally coupled to gauge
fields. In the non-extremal case, we explicitly show that, under the variation
of the moduli, the scalar charges appear in the first law of black hole
thermodynamics. In the extremal limit, the near horizon geometry is
and the entropy does not depend on the values of moduli at
infinity. We discuss the attractor behaviour by using Sen's entropy function
formalism as well as the effective potential approach and their relation with
the results previously obtained through special geometry method. We also argue
that the attractor mechanism is at the basis of the matching between the
microscopic and macroscopic entropies for the extremal non-BPS Kaluza-Klein
black hole.Comment: 36 pages, no figures, V2: minor changes, misprints corrected,
expanded references; V3: sections 4.3 and 4.5 added; V4: minor changes,
matches the published versio
Heavy quarkonium: progress, puzzles, and opportunities
A golden age for heavy quarkonium physics dawned a decade ago, initiated by
the confluence of exciting advances in quantum chromodynamics (QCD) and an
explosion of related experimental activity. The early years of this period were
chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in
2004, which presented a comprehensive review of the status of the field at that
time and provided specific recommendations for further progress. However, the
broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles
could only be partially anticipated. Since the release of the YR, the BESII
program concluded only to give birth to BESIII; the -factories and CLEO-c
flourished; quarkonium production and polarization measurements at HERA and the
Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the
deconfinement regime. All these experiments leave legacies of quality,
precision, and unsolved mysteries for quarkonium physics, and therefore beg for
continuing investigations. The plethora of newly-found quarkonium-like states
unleashed a flood of theoretical investigations into new forms of matter such
as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the
spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b},
and b\bar{c} bound states have been shown to validate some theoretical
approaches to QCD and highlight lack of quantitative success for others. The
intriguing details of quarkonium suppression in heavy-ion collisions that have
emerged from RHIC have elevated the importance of separating hot- and
cold-nuclear-matter effects in quark-gluon plasma studies. This review
systematically addresses all these matters and concludes by prioritizing
directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K.
Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D.
Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A.
Petrov, P. Robbe, A. Vair
Far-field potentials in surface EMG
Contains fulltext :
23887___.PDF (publisher's version ) (Open Access
Joint probabilistic pedestrian head and body orientation estimation
We present an approach for the joint probabilistic estimation of pedestrian head and body orientation in the context of intelligent vehicles. For both, head and body, we convert the output of a set of orientation-specific detectors into a full (continuous) probability density function. The parts are localized with a pictorial structure approach which balances part-based detector output with spatial constraints. Head and body orientation estimates are furthermore coupled probabilistically to account for anatomical constraints. Finally, the coupled single-frame orientation estimates are integrated over time by particle filtering. The experiments involve 37 pedestrian tracks obtained from an external stereo vision-based pedestrian detector in realistic traffic settings. We show that the proposed joint probabilistic orientation estimation approach reduces the mean head and body orientation error by 10 degrees and more