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Abstract We investigate four-dimensional spherically symmetric black hole
solutions in gravity theories with massless, neutral scalars non-minimally coupled
to gauge fields. In the non-extremal case, we explicitly show that, under the variation
of the moduli, the scalar charges appear in the first law of black hole thermodynamics.
In the extremal limit, the near horizon geometry is Ad S2 × S2 and the entropy does
not depend on the values of moduli at infinity. We discuss the attractor behaviour by
using Sen’s entropy function formalism as well as the effective potential approach and
their relation with the results previously obtained through special geometry method.
We also argue that the attractor mechanism is at the basis of the matching between
the microscopic and macroscopic entropies for the extremal non-BPS Kaluza–Klein
black hole.

Keywords Black holes · Attractors · Entropy function · String theory

1 Introduction

One of the most successful applications of string theory, as a theory of quantum
gravity, has been the study of black holes and their entropy. String theory provides
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a microscopic description of a special class of black holes [34,48]. Essential to the
embedding of charged black holes in string theory is the notion of compactification
on some internal compact manifold. A fundamental element of these constructions is
that all of the stringy constituents are wrapped around some non-trivial cycles of the
internal space so that the final configuration appears as point-like in the lower dimen-
sional space. A sufficiently heavy compactified wrapped object will effectively give
rise to a lower dimensional space containing a horizon, or in other words, a black hole.
Roughly speaking, the microscopic picture of black holes in string theory is based
on the (tiny) internal manifold where the extended objects are trapped. The geometry
of internal manifold is parametrised by certain moduli. These moduli will appear as
fields in the lower dimensional effective field theory.

It is well-known that the expectation value of the dilaton controls the string cou-
pling constant gs = e〈φ〉. This tells us that the strength of the interaction is determined
dynamically via the vacuum expectation value (vev) of a scalar field in the string spec-
trum. In fact, even the constants which appear upon compactification are vevs of certain
massless scalar fields (referred to as moduli fields) and are determined dynamically
by the choice of the vacuum (i.e., the choice of a consistent string background).

In this paper, we consider static four-dimensional charged black hole solutions in
gravity theories with U (1) gauge fields and neutral massless scalars.1 The general
Lagrangian we consider includes the bosonic part of N = 1 or 2 supergravities for
particular values of the couplings. We refer to the scalar fields as moduli even though
they do not necessarily characterize the geometry of an internal space because they
still determine the U (1) couplings. The moduli have a non-trivial radial dependence
and hence the properties of these black holes depend on the values (φ∞) of moduli at
spatial infinity.2 Since the moduli are non-minimally coupled to gauge fields and the
scalar charges are non-zero at spatial infinity, one expects a modification of the first
law of black hole thermodynamics. That is, the first law of black hole thermodynamics
should be supplemented by a new term containing the variation of the moduli [22]:

d M = T d S + ψ Ad Q A −Σi dφ
i∞, (1)

whereΣi are the scalar charges and ψ A is the potential conjugate to the U (1) charges
Q A. Interestingly enough, the scalar charge is not protected by a gauge symmetry
and so it is not a conserved charge. Therefore, this form of the first law should be
taken with caution: in string theory the scalar fields (moduli) are interpreted as local
coupling constants and so a variation of the moduli values at infinity is equivalent to
changing the background.3

Unlike the non-extremal case where the near horizon geometry (and the entropy)
depends on the values of the moduli at infinity, in the extremal case, the near horizon
geometry is universal and is determined by only the charge parameters. Consequently,

1 While massless scalars are unnatural in a generic non-supersymmetric theory they are at least technically
natural with N = 1 supersymmetry. For this reason, our results are best understood in the context of
non-supersymmetric solutions of theories with N ≥ 1.
2 φ∞ label different ground states (vacua) of the theory.
3 As mentioned in [22], one could imagine, for example, a cosmological scenario in which φ∞ does vary.
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the entropy is also independent of the asymptotic values of the moduli. The scalars
vary radially, but they are “attracted” to fixed values at the horizon, depending only
on the charge parameters.4

The attractor mechanism was discovered in the context of four-dimensional N = 2
supergravity [19,21,47], then extended to other supergravities [20]—including actions
with higher derivative corrections [33] (see, e.g., [37] for a nice review on this subject).
It is now well understood that supersymmetry does not really play a fundamental role
in the attractor phenomenon—the attractormechanism relies only on the form of the
near horizon geometry [44]. For spherically symmetric black holes, the near horizon
geometry is Ad S2 × S2, which continues to ensure the attractor behaviour even after
including α′ corrections [1,7,42–45]. In fact, it has been suggested that, the “long
throat” of Ad S2 is at the basis of attractor mechanism [44,2,29].

The paper is organised as follows: in Sect. 2, we describe the general set-up involv-
ing the action, equations of motion, and the effective potential. In Sect. 3, we study
the spherically symmetric non-extremal solutions, focusing on some of the exact solu-
tions. We explicitly discuss the appearance of scalar charge in the context of first law
of black hole thermodynamics. In Sect. 4, we discuss the attractor mechanism in the
context of the extremal limit of our black hole solutions. We discuss the equivalence of
the effective potential approach [17,25] and the entropy function [44] formalism in the
near horizon limit for a specific effective potential. We show that, for the non-extre-
mal black hole solutions whose near horizon geometry is not Ad S2 × S2, the effective
potential is not generically minimised and hence there is no attractor behaviour. We
generalize the results of [25] to non-extremal black holes and discuss how the relation-
ship between the effective potential and entropy is modified. We also discuss the role
of attractor in the case of near-extremal black holes with large charges in string theory.
Using a perturbation analysis of non-extremal Reissner–Nordstrom black holes with
respect to variations of the asymptotic moduli, we explicitly find that, to first order in
perturbation theory, the near horizon geometry depends on the moduli. Finally, we dis-
cuss the conditions for the attractor phenomenon in special geometry language [17,29]
as well as the relation with the other methods. In Sect. 5 we discuss the role of attractor
mechanism in understanding the entropy of non-BPS extremal black holes. For some
examples of non-supersymmetric extremal black holes in N = 2 four-dimensional
supergravity [30,15] an agreement has been found between the Bekenstein–Hawk-
ing entropy and the microscopic entropy computed in string theory. It is tempting
to conjecture that the deeper reason for this matching is the attractor mechanism. For
Ad2×S2 geometries, the equations of motion are equivalent to extremising the entropy
function which fixes the moduli. The horizon is an attractor and so the near horizon
geometry is universal, determined just by charges. One of the moduli is the dilaton
that controls the Newton constant and so by moving from strong coupling to weak
coupling asymptotically, the entropy determined by the near horizon geometry, does
not change.5

4 A similar behaviour was obtained for the rotating black holes [2]. However, in this case the values of the
scalars at the horizon have also an angular dependence.
5 The authors of [11] also suggest that the attractor mechanism is at the root of this matching and carefully
discuss numerous examples.
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2 General set-up

We will focus on a four-dimensional theory of gravity coupled to a set of massless
scalars and vector fields, whose general bosonic action has the form6

I
[
Gµν, φ

i , AI
µ

]
=− 1

k2

∫

M

d4x
√−G

[
R − 2gi j (φ)∂µφ

i∂µφ j − f AB(φ)F
A
µνF B µν

− f̃ AB(φ)F
A
µνF B

ρσ ε
µνρσ

]
+ 2

k2

∫

∂M

d3x
√−hΘ, (2)

where F A
µν , with A = (0, . . . N ), are the U (1) gauge fields, φi , with (i = 1, . . . , n),

are the scalar fields, εµνρσ is the completely antisymmetric tensor, and k2 = 16πG N .
The last term is the boundary Gibbons–Hawking term; hab and Θ are the induced
metric and the trace of the extrinsic curvature of the boundary geometry, respectively.
The moduli determine the gauge coupling constants and gi j (φ) is the metric on the
moduli space. We use Gaussian units so that factors of 4π in the gauge fields can be
avoided and the Newton’s constant G N is set to 1. The above action resembles that of
the ungauged supergravity theories.

The equations of motion for the metric, moduli, and the gauge fields are given by

Rµν − 2gi j∂µφ
i∂νφ

j = f AB

(
2F A

µλF B λ
ν − 1

2
GµνF A

αλF Bαλ
)
, (3)

1√−G
∂µ

(√−Ggi j∂
µφ j

)
= 1

4

∂ f AB

∂φi
F A

µνF B µν + 1

8

∂ f̃ AB

∂φi
F A

µνF B
ρσ ε

µνρσ , (4)

∂µ

[√−G

(
f AB F B µν + 1

2
f̃ AB F B

ρσ ε
µνρσ

)]
= 0, (5)

where we have varied the moduli and the gauge fields independently. The Bianchi
identities for the gauge fields are F A

[µν;λ] = 0.
We consider the following spherically symmetric ansatz for the metric

ds2 = −a(r)2dt2 + a(r)−2dr2 + b(r)2dΩ2. (6)

The Bianchi identity and equation of motion for the gauge fields can be solved by
a field strength of the form [25]

F A = f AB
(

Q B − f̃ BC PC
) 1

b2 dt ∧ dr + P A sin θdθ ∧ dφ, (7)

where P A, Q A are constants which determine the magnetic and electric charges
carried by the gauge field F A and f AB is the inverse of f AB .

6 We also consider “axionic” type couplings characterised by f̃ AB . In the so-called axion–dilaton-gravity
model, the coupling is a pseudo − scalar such that the action is parity-invariant.
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As discussed in [25], given our ansatze the equations of motion can be written as

(a2b2)
′′ = 2, (8)

b
′′

b
= −gi j∂rφ

i∂rφ
j , (9)

−1 + a2b
′2 + a2′

b2′

2
= − 1

b2 Veff(φi )+ a2b2gi j∂rφ
i∂rφ

j , (10)

∂r (a
2b2gi j∂rφ

j ) = 1

2b2

∂Veff

∂φi
, (11)

where ′ denotes derivatives with respect to r . The first three equations come from
the Einstein equations and the last one is the equation of motion for the scalar. As
discussed in Appendix A, Veff(φ

i ) is a function of scalars fields, φi , and charges,
(Q A, P A) which is given by

Veff(φi ) = f AB(Q A − f̃ AC PC )(Q B − f̃ B D P D)+ f AB P A P B . (12)

Modulo factors of b2, one sees from (11) that Veff(φ
i ) is an “effective potential” for

the scalar fields which is generated by non-trivial form fields. The effective potential,
first discussed in [17], plays an important role in describing the attractor mechanism
[12,13,18,25,28,31,50].

3 Non-extremal black holes

In this section, we study spherically symmetric non-extremal black holes for a model
with one scalar field non-minimally coupled to two gauge fields.7 In certain cases,
with exponential couplings, the equations of motion can be solved exactly by rewrit-
ing them as Toda equations [23] (see Appendix B). Since we will consider exponential
couplings, we need at least two terms in the effective potential it to have a minimum
which we required for the attractor behaviour. Our solutions will be characterized
by the mass, two gauge field charges, values of the moduli at infinity and the scalar
charge.8

After discussing how to dress the charges and revisiting the equations of motion
we will discuss some constraints on the charges which follow from evaluating the
equations at the boundaries and then list some of the solutions. Finally, we discuss, in
detail, the role of the scalar charge in the first law of thermodynamics for the simplest
case from Sect. 3.4.

7 A subset of these models, with α1 = −α2, are equivalent to a system with one gauge field with both
electric magnetic charges turned on.
8 The scalar charge is not really an independent parameter—this is an example of secondary hair which is
discussed further in Sect. 3.5 and 6.

123



2074 D. Astefanesei et al.

3.1 Scaling symmetry and dressing the charges

We consider two gauge fields with modulus dependent couplings of the form

f AB(φ) = δABeαBφ (13)

for which exact solutions can be found. Given these couplings and taking the metric
on the modulus to one, the matter Lagrangian is

Lmatter = 2(∂φ)2 + eα1φ(F1)
2 + eα2φ(F2)

2. (14)

For electrically charged solutions, assuming the ansatz (7), the effective potential
defined earlier becomes

Veff = e−α1φ(Q1)
2 + e−α2φ(Q2)

2. (15)

Alternatively for a dyonic black hole with a single gauge field we have

Veff = e−α1φ(Q1)
2 + eα1φ(P1)

2. (16)

The electric charges Q A, can be written in terms of the following surface integral
at spatial infinity

Q A =
∮

S2∞

∗ f AB F B . (17)

From the equations of motion for the gauge fields, (5), one observes that this is the
U (1) charge one expects from Gauss’ law modified in the presence of moduli. On the
other hand the Lagrangian (14) is invariant under the global scaling symmetry

φ′ = φ − δφ, F ′
A = eαAδφ/2 FA, (18)

but it is not hard to see that Q A is not invariant under this symmetry. However, one
can define a dressed charge, Q̄ A,

Q̄ A = e
1
2αAφ∞

∮

S2∞

∗ f AB F B = Q A e
1
2αAφ∞ , (19)

which is invariant—the extra factor of e
1
2αAφ∞ absorbs the change in Q A. Similarly,

for magnetic charges, we can define the dressed charge9

P̄A = PA e− 1
2αAφ∞ . (20)

9 A simple mnemonic for remembering how the dressed charges are defined is to check what factors are
required to keep the effective potential invariant under rescaling.
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3.2 Equations of motion revisited

Now, to recast the equations of motion as generalised Toda equations, and to facilitate
some of the thermodynamic analysis, we define the following new variables

u1 = φ, u2 = log a, z = log ab, “ · ” = ∂τ = a2b2∂r . (21)

From the definition of τ , we find

r = r+e−cτ − r−ecτ

e−cτ − ecτ
, where c = 1

2
(r+ − r−) (22)

and conversely

τ = 1

(r+ − r−)
log

(
r − r+
r − r−

)
. (23)

In terms of these new variables, the equations of motion become

ü1 = 1

2
α1e2u2+α1u1 Q2

1 + 1

2
α2e2u2+α2u1 Q2

2, (24)

ü2 = e2u2+α1u1 Q2
1 + e2u2+α2u1 Q2

2, (25)

z̈ = e2z, (26)

ż2 − e2z = u̇1
2 + u̇2

2 − e2u2+α1u1 Q2
1 − e2u2+α2u1 Q2

2. (27)

The last equation is equivalent to the Hamiltonian constraint (10). The equation for
z (26), decouples from the other equations and is equivalent to (8). It can be used to
show that the left hand side of the Hamiltonian constraint (27), is a constant, since

∂τ (ż
2 − e2z) = 2ż(z̈ − e2z)

(26)= 0. (28)

So, letting c2 = ż2 − e2z , we can rewrite (27) as

c2 = u̇1
2 + u̇2

2 − e2u2+α1u1 Q2
1 − e2u2+α2u1 Q2

2. (29)

The constant c above, turns out to be the same as the one we defined in (22).

3.3 Constraints on the charges

Examining the equations of motion evaluated at the boundaries one finds two important
properties of these black holes

M2 + gi j (φ∞)Σ iΣ j − Veff(φ∞) = 4S2T 2 = c2, (30)

2gi j (φ∞)MΣ j − 2gi j (φ∞)K j − gi j,k(φ∞)Σ jΣk = −1

2

∂Veff

∂φi∞
, (31)
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where, S and T are the entropy and temperature of the black hole, and the scalar
monopole and dipole charges, Σ and K , are defined by the expansion of the moduli
at infinity

φ j = φ
j∞ + Σ j

r
+ K j

r2 + · · · . (32)

The first Eq. (30), is the Hamiltonian constraint (29) evaluated at the boundaries and it
provides a constraint on charges. The second one (31), is an expression of the depen-
dence of the scalar charges on the mass, the electric and magnetic charges and the
values of the moduli at infinity. It follows from evaluating the scalar field equation at
infinity.

For simplicity, we prove the relations (30) and (35), in the case of two charges and
one scalar field, but the argument is easy to generalise. To prove (30), we evaluate the
right hand side of (29) at spatial infinity and evaluate the constant c2, at the horizon.
We find that

c2 = ż2 − e2z = [ab∂r (ab)]2 − e2 ln(ab) = (aa′b2)2 = 4S2T 2. (33)

Here we used the fact that, for a non-extremal black hole with finite horizon area, a(r)
has a simple zero and b is a constant at the horizon. In addition, we use the following
expressions for the temperature and entropy

T = aa′

2π

∣∣∣∣
r=rh

	= 0, S = πb2(rh). (34)

Then, evaluating the right hand side of (29) at infinity gives the left hand side of (30).
To prove (31), we consider the equation of motion for the scalar field (11), evaluated
at infinity. Upon simplification, one finds, to first non-trivial order in 1/r

[
gi j

(
1 − 2M

r

)
r2
(
φ

j∞ + Σ j

r
+ K j

r2

)′]′
= 1

2r2

∂Veff

∂φi∞
(35)

which leads to (31).

3.4 Exact solutions

It is only for certain values of the parameters αA, that exact solutions are known. The
parameter γ , given by

γ = 1

2

(√
1 − 2α1α2 − 1

)
(36)

is useful for characterising the solutions: exact solutions are know for the cases γ =
1, 2, 3 [23,25]. The details of constructing some exact non-extremal solutions are
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discussed in Appendix C. We merely list some of the solutions below for the cases
γ = 1, 2.

3.4.1 Case Ia: γ = 1 and |α1,2| = 2

This solution has been extensively discussed in the literature. Since, in Sect. 3.5, we
wish to discuss the role of both electric and magnetic charges in the first law, we
present this solution as a dyonic black hole with a single gauge field so,

Veff = e−2φQ2 + e2φP2. (37)

The non-extremal solution is given by [27]:

exp(2φ) = e2φ∞ (r +Σ)

(r −Σ)
,

a2 = (r − r+)(r − r−)
(r2 −Σ2)

, (38)

b2 = (r2 −Σ2),

with

r± = M ± c, c =
√

M2 +Σ2 − Q̄2 − P̄2, (39)

where we have defined the dressed charges Q̄ = eφ∞ Q and P̄ = e−φ∞ P .
As already discussed, the scalar charge Σ , is not an independent parameter. It is

given by

Σ = P̄2 − Q̄2

2M
. (40)

The extremal limit of the above solution corresponds to letting c2 → 0 and the corre-
sponding solution can be embedded in N = 4 supergravity.

3.4.2 Case Ib: γ = 1,
√−α1α2 = 2 and α1 > α2

For this case,

Veff = e−α1φQ2
1 + e4φ/α1 Q2

2. (41)

The solution is

e(α1−α2)φ =
(

1 − λ

λ

)(
Q2 F2

Q1 F1

)2

a2 = c2 (Q1 F1)
−2(1−λ) (Q2 F2)

−2λ
/{(1 − λ

λ

)λ
+
(

1 − λ

λ

)1−λ}
(42)

b2 = (r − r+)(r − r−)/a2

123
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where

Fi = sinh(c(τ − di )) (43)

and the ratio λ is defined as

λ = α1

α1 − α2
. (44)

Notice that λ lies between 0 and 1. The integration constants c, r±, and di are given
in terms of M , Σ , and the “dressed” charges

Q̄i
2 = eαiφ∞ Q2

i (45)

by

c2 = M2 +Σ2 − Q̄2
1 − Q̄2

2,

r± = M ± c,
(46)

sinh2(cdi ) =
[

4c2

α2
i + 4

]
Q̄−2

i . (47)

Due to the fact that the parameters α1 and α2 are very weakly constrained, we find
it unlikely that all solutions in this class could be embedded in supergravity theory.

3.4.3 Case II: γ = 2 and |α1,2| = 2
√

3

This case arises from the Kaluza–Klein reduction of the 5d Schwarzschild black hole
so it is natural to write it as a dyonic solution with

Veff = e−2φ/
√

3 Q2 + e2φ/
√

3 P2. (48)

The solution can be written as [14,24]

exp
(

4φ/
√

3
)

= e4φ∞/
√

3 A

B
(49)

a2 = (r − r+)(r − r−)√
AB

(50)

b2 = √
AB (51)

A = (r − rA+)(r − rA−) (52)

B = (r − rB+)(r − rB−) (53)

r± = M ±
√

M2 +Σ2 − P̄2 − Q̄2 = M ± c (54)

rA± = 1√
3
Σ ± P̄

√
2Σ

Σ − √
3M

(55)
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rB± = − 1√
3
Σ ± Q̄

√
2Σ

Σ + √
3M

(56)

Area = 4π
√
(r+ − rA+)(r+ − rA−)(r+ − rB+)(r+ − rB−) (57)

where we have defined the dressed charges Q̄ = e
1√
3
φ∞ Q and P̄ = e

− 1√
3
φ∞ P .

Once again Σ is not an independent parameter and is given by,

2√
3
Σ = Q̄2

√
3M +Σ

− P̄2

√
3M −Σ

. (58)

In the extremal limit (c = 0) we obtain a non-BPS black hole that can be embedded
in N = 2 supergravity.

3.5 Scalar charge and the first law of thermodynamics

We have seen previously that, unlike in the case of minimally-coupled scalars,10 the
black hole solutions we consider carry scalar charge. It is important to mention that
the scalar charge is not protected by a gauge symmetry, and hence is not a conserved
charge.

In the cases we studied, the scalar charge is not an independent parameter. It depends
on the other asymptotic charges, namely the ADM mass and the dressed gauge field
charges. This implies that just one of the parameters φ∞ and Σ is independent. This
kind of scalar charge, which depends on other asymptotic data, is called secondary
hair. As it depends on the gauge field charges, it does not represent a new quantum
number associated with the black hole.

Due to the non-minimal coupling of the scalar fields, the first law gets modified. It
should be supplemented by a new term containing the variation of the moduli [22]

d M = T d S + ψ Ad Q A + ψAd P A −Σi dφ
i∞, (59)

where (ψ A, ψA) are the potentials conjugate to the charges (Q A, P A).
Indeed, we will show explicitly that this is the case for some of the black hole

solutions considered here. We need to check that M(S, Q A, P A, φ∞) is an exact dif-
ferential. Since it is particular to this class of black holes, we are mainly interested in
the non-trivial term Σi = −(∂M/∂φi∞)|(S,Q A,P A), but similar computations can be
done for the other terms.11

While we have verified the first law for all the solutions in the previous section, we
present, in detail, the analysis of the solution (Ia), which has γ = 1 andα1 = −α2 = 2,
from Sect. 3.4.1. In that case, there are two conserved gauge charges (P, Q) and a

10 For minimally-coupled scalars the standard no-hair theorems apply and do not allow for a nice solution
with non-zero scalar charge.
11 Note that, requiring cosmic censorship imposes the condition M ≥ Σ since, there is a curvature singu-
larity at r = Σ while the outer horizon is at r+ = M + c (which approaches M as c → 0).
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scalar charge. We rewrite some of the equations from Sect. 3.4.1, as well as the entropy,
in the following useful way:

2MΣ = P̄2 − Q̄2, (60)

c =
√(

M + P̄2 − Q̄2

2M

)2

− 2 P̄2, (61)

S = πb2(r+) = π [(c + M)2 −Σ2] = π(2M2 − Q̄2 − P̄2 + 2cM). (62)

Now, by differentiating (61) and (62) at fixed entropy and charge parameters Q, P ,
we obtain:

dc = 1

c
(M +Σ)

(
1 − Σ

M

)
d M + 1

c

[
2 P̄2 − M +Σ

M

(
P̄2 + Q̄2

)]
dφ∞, (63)

0 = 4Md M − 2Q̄2dφ∞ + 2 P̄2dφ∞ + 2cd M + 2Mdc. (64)

The next step is to use (63) in (64) and to check that, indeed,Σ = −(∂M/∂φ∞)|S,Q,P .
We can calculate the other intensive parameters in the same way and we obtain the
following expressions:

ψQ = Q̄2

Q

M +Σ + c

(M + c)2 −Σ2 , ψ P = P̄2

P

M + c −Σ

(M + c)2 −Σ2 . (65)

With all these expressions one can easily check that the first law is satisfied

d M = T d S + ψQd Q + ψ P d P −Σi dφ
i∞. (66)

The fact that the Lagrangian has a global scaling symmetry (18), suggests writing
the first law in terms of the “dressed” charges:

d M = T d S + ψ̄Qd Q̄ + ψ̄ P d P̄, (67)

where ψ̄Q and ψ̄ P are the conjugate potentials of the dressed charges Q̄ and P̄ , respec-
tively. One can again compute the values of the intensive parameters as above or one
can rewrite (67) as

d M = T d S + ψ̄Q Q̄

Q
d Q + ψ̄ P P̄

P
d P + (ψ̄Q Q̄ − ψ̄ P P̄)dφ∞, (68)

and then compare with (66). One obtains the following expressions for the intensive
parameters

ψ̄Q = Q̄

M + c −Σ
, ψ̄ P = P̄

M + c +Σ
. (69)
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As an application of our formulae consider what happens if we add some scalar
particles to the black hole. We keep Q̄ and P̄ (or equivalently Q, P and φ∞) fixed.
Taking a differential of (60) and using the first law with Q̄ and P̄ constant gives

δS = − M

T

δΣ

Σ
. (70)

From (70) we see that increasing |Σ | (i.e. when dΣ/Σ > 0) causes the entropy to
decrease. This implies that adding scalar charge induces Hawking radiation.
Conversely, reducing |Σ | simply causes the black hole to puff up.

Note that (67) does not involve a variation with respect to the asymptotic value of
the scalars. However, let us recall that the physical conserved charges (due to the equa-
tions of motion) are Q A given in (17) and so the scaling symmetry does not preserve
the conserved charges. By making a scaling one can generate new solutions. However,
the new solution can not be reached dynamically starting from the old one because
this will also force a violation of charge conservation. To obtain the first law in this
form, one should supplement the quasilocal formalism by a boundary counterterm that
depends of moduli—this term is taking care of the non-conserved charge in the first
law.

4 Attractor mechanism

In this section, we discuss the attractor mechanism using both, the effective potential
(12) method [25] and the entropy function [44] framework. The first method is based
on investigating the equations of motion of the moduli and finding the conditions sat-
isfied by the effective potential such that the attractor phenomenon occurs. We will
extend the calculations of [25] for non-extremal black holes. The entropy function
approach focuses on the near-horizon geometry and its enhanced symmetries. The
equivalence of the effective potential approach and entropy function formalism in the
context of four-dimensional extremal non-BPS black hole solutions in N = 2 super-
gravity has recently been discussed in [6]. In the last section, we shall briefly mention
the relevant aspects of the attractor phenomenon in special geometry [17,29].

4.1 Effective potential and non-supersymmetric attractors

We consider again the solution (Ia) and we investigate its extremal limit, c → 0. We
use (60)–(62) and in the extremal limit we obtain:

2MΣ = P̄2 − Q̄2, (71)

0 =
√(

M + P̄2 − Q̄2

2M

)2

− 2 P̄2 =
√
(M +Σ)2 − 2 P̄2, (72)

S = πb2(r+) = π
(

M2 −Σ2
)
. (73)
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One can easily solve the system of the first two equations to obtain M and Σ as
functions of the dressed charges Q̄ = eφ∞ Q and P̄ = e−φ∞ P . Then, the mass and
the scalar charge depend on the asymptotic values of the moduli φ∞ as follows,

M = 1√
2
(P̄ + Q̄), (74)

Σ = 1√
2
(P̄ − Q̄). (75)

However, the entropy becomes independent of φ∞, i.e.

S = 2π P Q. (76)

The entropy is also independent of moduli for the other solutions. In what follows, we
briefly review the effective potential method of [25] to clarify these interesting results.

For the attractor phenomenon to occur, it is sufficient if the following two condi-
tions are satisfied [25]. First, for fixed charges, as a function of the moduli, Veff must
have a critical point. Denoting the critical values for the scalars as φi = φi

0 we have,

∂i Veff(φ
i
0) = 0. (77)

Second, there should be no unstable directions about this minimum, so the matrix of
second derivatives of the potential at the critical point,

Mi j = 1

2
∂i∂ j Veff(φ

k
0) (78)

should have no negative eigenvalues. Schematically we can write,

Mi j > 0. (79)

The eigenvalues of Mi j are proportional to the effective mass squared for the fields,
φi , near the attractor point.

We can consistently set the moduli to constants if we fix them at their critical values.
The theory effectively reduces to Einstein–Maxwell gravity which has the extremal
Reissner–Nordstrom black hole as a solution. If we then examine what happens if the
asymptotic value of the asymptotic moduli deviate slightly from the attractor value,
simultaneously demanding that the black hole remains extremal (that is the horizon
still has a double zero), one finds attractor behaviour: the moduli attain their critical
values at the horizon and entropy remains independent of the value of the moduli at
infinity [25]. The horizon radius is given by

b2
H = Veff(φ

i
0), (80)
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and the entropy is

SB H = 1

4
A = πb2

H = πVeff(φ
i
0). (81)

Now, one can verify the attractor behaviour for our effective potential given in (15).
The condition for the existence of an extremum for the effective potential will give us
the value of the moduli at the horizon

0 = ∂Veff

∂φ
= α1eα1φ(Q1)

2 + α2eα2φ(Q2)
2 �⇒ e(α1−α2)φ0 = −α2

α1

Q2
2

Q2
1

. (82)

Then, the value of the moduli at the horizon depends just on the charge parameters and
not on the boundary conditions. It is a simple exercise to check that the second deriva-
tive of the potential is positive and hence the extremum is a minimum. For α1 	= −α2
with α1α2 = −4 the entropy is

S = πVeff(φ0) = πQ

8
α2

1+4

1 Q

2α2
1

α2
1+4

2

⎡
⎢⎢⎣
(

4

α2
1

) α2
1

α2
1+4

+
(

4

α2
1

)− 4
α2

1+4

⎤
⎥⎥⎦ . (83)

The same result is obtained by taking the extremal limit c = 0 in the non-extremal
entropy (167). For α1 = −α2 = 2, the entropy is given by

S = πVeff(φ0) = 2πQ1 Q2 , (84)

or for a dyonic black hole

S = 2π P Q . (85)

It is important to note that in deriving the conditions for the attractor phenomenon,
one does not have to use supersymmetry at all. We will obtain the same result in the
next section by using the entropy function.

4.2 Entropy function

The near-horizon geometry of the extremal charged black holes has been shown to
have a geometry of Ad S2 × S2 and, when embedded in certain supergravities, has an
enhanced supersymmetry.

As has been discussed in [16,29], the moduli do not preserve any memory of the
initial conditions at infinity due to the presence of the infinite throat of Ad S2. This is in
analogy with the properties of the behavior of dynamical flows in dissipative systems,
where, on approaching the attractors, the orbits practically lose all the memory of their
initial conditions.
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Let us investigate the near-horizon geometry of non-extremal spherically symmetric
black holes, where the line element is given by,

ds2 = −a(r)2dt2 + a(r)−2dr2 + b(r)2dΩ2. (86)

The Einstein equation (8), (a2b2)
′′ = 2, can be integrated out and one gets a2b2 =

(r −r+)(r −r−). The interpretation of the parameters r+ and r− is that they are related
to the outer and the inner horizon, respectively. Next, we introduce the non-extremality
parameter ε and also make a change of coordinates such that the horizon is at ρ = 0,
i.e.

ρ = r − r+, ε = r+ − r−. (87)

The extremal black hole is obtained when the inner and the outer horizons coincide.
For the non-extremal solution (r+ 	= r−), we have,

a2b2 = ρ(ρ + ε), (88)

Let us take,

a2 = ρ f (r) = ρ( f0 + f1ρ + f2ρ
2 + · · · ), (89)

b2 = ρ(ρ + ε)

a2 = ρ + ε

f0 + f1ρ + f2ρ2 + · · · , (90)

where, f (r) has been expanded as a power series in ρ. The near-horizon geometry is
obtained by taking the limit ρ → 0 and is given by

ds2 = −(ρ f0)dt2 + 1

ρ f0
dρ2 + ε

f0
dΩ2. (91)

The temperature and the entropy of the non-extremal black hole are given by

T = (a2)
′

4π

∣∣∣∣∣
ρ=0

, S = 4πb2

4

∣∣∣∣
ρ=0

. (92)

By comparing these expressions with the expressions obtained from the near-horizon
geometry (91), one can read off the following expressions for the parameters appearing
in (91):

f0 = 4πT, ε = f0S

π
= 4T S = 2c. (93)

To see that the near-horizon geometry of the extremal solution is Ad S2 × S2, we take
the extremal limit T ∼ f0 → 0 and expand the metric to first non-trivial order about
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ρ = 0. It is not hard to see that this procedure gives:

ds2 = 1

f1

(
−ρ2dt2 + 1

ρ2 dρ2
)

+ 1

f1
dΩ2, (94)

where we have rescaled the time variable: t → t/ f1.
It is crucial that the near horizon geometry is Ad S2 × S2: Sen’s entropy function

formalism, [44], assumes from the beginning that the metric and all other fields respect
the SO(2, 1)× SO(3) symmetry of Ad S2 × S2.12

In [44], it was observed that the entropy of a spherically symmetric extremal black
hole is given by the extremum of the Legendre transform (with respect to the electric
field) of the Lagrangian density evaluated at the horizon. The derivation of this result
does not require that the theory or the solution are supersymmetric. The only require-
ments are gauge and general coordinate invariance of the action and the assumption
that the near horizon geometry is Ad S2 × S2.

The entropy function is defined as

E(−→u ,−→v ,−→e ,−→p ) = 2π
(
ei qi − f (−→u ,−→v ,−→e ,−→p ))

= 2π

⎛
⎝ei qi −

∫

H

dθdφ
√−GL

⎞
⎠ , (95)

where qi = ∂ f/∂ei are the electric charges, us are the values of the moduli at the
horizon, pi and ei are the near horizon radial magnetic and electric fields and v1, v2
are the sizes of Ad S2 and S2, respectively. Thus, E/2π is the Legendre transform
of the reduced Lagrangian f , with respect to the variables ei . For an extremal black
hole of electric charge

−→
Q and magnetic charge

−→
P , Sen has shown that the equations

determining −→u ,−→v , and −→e are given by

∂E
∂us

= 0 ,
∂E
∂vi

= 0 ,
∂E
∂ei

= 0 . (96)

Then, the black hole entropy is given by S = E(−→u ,−→v ,−→e ,−→p ) at the extremum (96).
The entropy function, E(−→u ,−→v ,−→e ,−→p ), determines the sizes v1, v2 of Ad S2 and S2
and also the near horizon values of moduli us and gauge field strengths ei . If E has
no flat directions, then the extremization of E determines −→u , −→v , −→e in terms of

−→
Q

and
−→
P . Therefore, S = E is independent of the asymptotic values of the scalar fields.

These results lead to a generalised attractor phenomenon for both supersymmetric and
non-supersymmetic extremal black hole solutions.

Now we can apply this method to our action (2) with a zero axionic coupling. We
are interested in a theory with one scalar field and one electromagnetic field with both

12 In the rotating case, due to the axial symmetry, the SO(3) symmetry is broken to a U (1) symmetry.
However, the long throat of Ad S2 is still present and the entropy function formalism, slightly modified, can
still be applied [2].
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electric and magnetic charges turned on

S = 1

κ2

∫
d4x

√−G(R − 2(∂φ)2 − e2φF2). (97)

The general metric of Ad S2 × S2 can be written as

ds2 = v1

(
−ρ2dt2 + 1

ρ2 dρ2
)

+ v2(dθ
2 + sin2 θdφ2). (98)

The field strength ansatz (7) in our case is given by

F = edt ∧ dr + P sin θdθ ∧ dφ = e−2φQdt ∧ dr + P sin θdθ ∧ dφ. (99)

The entropy function, E(v1, v2, e, q, p), and reduced Lagrangian, f (v1, v2, e, p), are
given by

E(v1, v2, e, q, p) = 2π [qe − f (v1, v2, e, p)],
(100)

f (v1, v2, e, p) = 8π

k2

[
−v2 + v1 − e2φ

(−v2

v1
e2 + v1

v2
P2
)]

.

Then the attractor equations are obtained as

∂E
∂v1

= 0 ⇒ 1 − v2

v2
1

e2φe2 − 1

v2
e2φP2 = 0, (101)

∂E
∂v2

= 0 ⇒ −1 + 1

v1
e2φe2 − v1

v2
2

e2φP2 = 0, (102)

∂E
∂φ

= 0 ⇒
(

P2 − e2
)

= 0, (103)

∂E
∂e

= 0 ⇒ q = 16π

k2

(
v2

v1
e2φe

)
. (104)

By combining the first two equations we obtain, v = v1 = v2 = e2φ(e2 + P2),
which is also expected from our near horizon geometry analysis as discussed before.
The third equation gives the value of the moduli at the horizon e−4φ = P2/Q2 and
therefore, v = 2P Q. Now one can check that the entropy is given by the value of the
entropy function E evaluated at the attractor point

S = E = 2π P Q = πv. (105)

Using the electromagnetic field ansatz, one can show that S = πVeff and q = −Q
(negative sign appears because of our convention for Ftr ).
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4.3 Attractors, dissipation and deep throats

Before going on to discuss how the attractor behaviour breaks down for non-extremal
black holes, we consider the analogy between dissipative dynamical systems, their
attractor behaviour and black hole attractors.

Dissipative dynamical systems are characterized by the presence of some sort of
internal “friction” that tends to contract the phase–space volume elements. Attractors
are states towards which a system starting from certain initial conditions may evolve
after a long enough time. Attractors can be unique states, called fixed point attractors.13

Now, the extremal black hole attractors sit at the bottom of a infinitely deep Ad S2
throat. The authors of [29], draw an analogy between the radial evolution of the scalar
field down the throat and an under-damped oscillator, which, given sufficient time
will settle to its equilibrium position independent of the initial conditions. Dissipation
erases the “memory” of the initial conditions.

Like any analogy, this one has its uses and short comings. If one examines the dif-
ferential equations which describe the radial evolution of the scalars and the metric,
one finds they have to be fine tuned to get the extremal solution. The equations can be
mapped to a mechanical model of a ball rolling up a hill. The radial parameter maps to
time and the initial position and velocity of the ball can be mapped to the asymptotic
values of the scalar and scalar charge. For the attractor black hole solution, the ball
comes to rest precisely at the top. Any trajectory which does not come to rest at the
top corresponds to the scalars blowing up at the horizon which is unphysical. Clearly
one has to chose the initial velocity of the ball rather judiciously to obtain the solu-
tion—from the perspective of the mechanical model, this is the complete opposite of
attractor behaviour. However, the point is that this mechanical model does not capture
all the physics of the situation.

First the fine-tuning of the ball’s initial velocity, physically corresponds to the fact
that, as we have previously seem, the scalar charge is not an independent parame-
ter. We should not find this too disturbing since the scalar charge is not a conserved
quantity.

Secondly, once we consider how our black hole might form we see that it does indeed
display conventional attractor behaviour—that is the final state does not depend on
initial conditions. Consider an arbitrary distribution of matter which collapses to form
a blackhole with certain gauge charges. Generically, such a collapse would produce a
non-extremal black hole. This blackhole would then cool via Hawking radiation and
approach extremality. Since there is only one extremal solution—the attractor solu-
tion—it much approach this solution as the black hole cools. As it cools, the throat
becomes deeper and deeper and the black hole becomes more and more sequestered
from its environment eventually completely forgetting about its initial conditions. This
is directly analogous to an under-damped oscillator. Once we invoke semi-classical
effects, we see that the attractor black hole is attractive in the conventional sense—

13 For linear dissipative dynamical systems, fixed point attractors are the only possible type of attractor.
Nonlinear systems, on the other hand, harbor a much richer spectrum of attractor types. For example, in
addition to fixed-points, there may exist periodic attractors such as limit cycles. There is also an intriguing
class of chaotic attractors called strange attractors that have a complicated geometric structure.
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given generic initial conditions (that is some arbitrary matter distribution), we expect
to end up with the attractor solution.

In using this analogy, one should be careful about how one relates radial evolution
to time. We can associate the radial direction with time evolution, since, as the black
hole cools, the throat becomes deeper. This should not be confused with the map
between the radial parameter and the time in an artificial mechanical model.

It is amusing to contrast the fine tuning of the mechanical model with the genericity
of the attractor solution we argue for above. Perhaps this fine tuning corresponds to
the fine tuning that would be required to form an extremal black hole without invoking
semi-classical effects.

Finally, we note that there may be flat directions in the entropy function. This can
lead to generalised attractor behaviour in which the entropy is independent of the
moduli but the near horizon geometry is not [2]. Extending our analogy, one might
suppose that flat directions correspond to modes that do not couple to the dissipation
and can persist even in the extremal limit. The black hole forgets enough to ensure the
entropy does not depend on the moduli.14

4.4 Non-extremal solutions and unattractor equation

We would like to understand the relation between the entropy and the value of effective
potential at the horizon for the non-extremal black holes. The first observation is that
the near-horizon geometry of a non-extremal black hole (91) does not contain an Ad S2
part. Since, as we have seen, the Ad S2 symmetries implied the attractor behaviour it
is plausible to suppose that the converse applies—in the absence of these symmetries
there is no attractor behaviour. Then, the black hole horizon is not an attractor for the
moduli. The effective potential evaluated at the horizon and the entropy will receive
corrections away from the attractor value which depend on the asymptotic values of
the moduli.

We investigate (10) and (11) at the horizon. Using some results from Sect. 4.2,
namely,

f0 = 4πT, ε = f0S

π
= 4T S = 2c. (106)

we try to write things in terms of the temperature and entropy as much as possible.
Equation (10) gives us a relation between the entropy and the value of the effective
potential at the horizon

Veff = ε

2 f0

(
1 + ε f1

f0

)
= S

2π

(
1 + S f1

π

)
. (107)

14 Notwithstanding information leaking through the deep throat, on might say that the generalised black
hole attractor behaves like an ideal “tricky” politician, choosing to forget (or erase) only compromising
details.
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The other Eq. (11), evaluated at the horizon gives us

∂Veff

∂φ
= S2

π2

√
2 f0 f2 + 1

2

(π
S

− f1

) (π
S

+ 3 f1

)
. (108)

There is a class of near-extremal black holes which break supersymmetry, but whose
entropy can still be accounted for by microscopic counting [5,26]. These are five-
dimensional black hole solutions and in the extremal limit, the near-horizon geometry
contains an Ad S3 factor, rather than an Ad S2. In this case one can use the Ad S3/C FT2
correspondence and the Cardy formula to compute the entropy. Unfortunately, there
is no entropy function formalism for this kind of black holes. However, it was pointed
out in [42] that there is a nice relation between Ad S3 and Ad S2 in the context of attrac-
tor mechanism. Also, Maldacena [35] observed that the supersymmetry of the theory
describing the excitations of the D-branes is similar to N = 2 in four dimensions,
the supersymmetry we are interested in. That is an (1 + 1)-dimensional field theory
with (4, 4) susy—this is the susy left unbroken by the extremal D-branes. There are
vector multiplets and hypermultiplets and the distinction between them is that they
have different transformation properties under R symmetries.

Let us comment on the role of the effective potential in the case of near-extremal
black holes. We saw that, in the extremal case, the fixed t-surface takes the geometry
of an infinite cylinder (the “infinite throat”). It seems that the horizon has been pushed
away to infinity, though one can still fall into the black hole in finite proper time
since the horizon is still a finite distance away in time-like or null directions. The near
horizon geometry of the non-extremal black hole is rather similar to Rindler space as
opposed to Ad S2 × S2. In this case, the effective potential is not generically extre-
mised and the attractor behaviour is absent. However, there is a special case when the
attractor is still useful. Let us consider black holes with large charges (Q � 1). Now,
let us repeat the arguments of [35] to explain the microscopic/macroscopic agreement
for the near-extremal black holes. In our discussion, we can keep gs small (closed
string effects are small) and we obtain a strong coupling regime because of the large
number Q of branes: the fundamental strings couple weakly to each other but interact
strongly with the collection of D-branes. The effective open string coupling is gs Q.
For gs Q � 1 we obtain the domain of validity of the D-brane perturbation theory and
for gs Q � 1 we obtain the semi-classical black hole domain.

Using our Eq. (107), one finds that, in the near-extremal limit and for large charges,
the entropy is still given by the value of the effective potential at the horizon. In the
near-extremal limit, the effective potential depends on the values of moduli at infinity.
However, the string coupling is small and so the corrections received by the effective
potential are small in comparison with its value in the extremal limit. The near-horizon
geometry is approximately Ad S2 × S2 and the attractor mechanism still works in this
case.

4.5 First order perturbation analysis of non-extremal black holes

To put our discussion of non-extremal unattractive black holes on a more quantita-
tive footing, we study the effect of perturbing a non-extremal black hole away from
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the attractor point. We will start with a non-extremal Reissner–Nordstrom black hole
where the scalar field is fixed at the attractor value everywhere. We ask how the solution
changes if we shift the asymptotic value of the scalar slightly away from the attractor
point. In particular we are interested in how the value of the scalar field changes at
the horizon. This extends the perturbation analysis of [25] which mainly considered
extremal black holes.15

For concreteness we consider an effective potential of the form

Veff = e−αφQ2 + eαφP2. (109)

We can consistently set the scalar, φ, to a constant if it is at the attractor point,
∂φVeff = 0. Extremising the effective potential one finds

e2αφ0 = Q2/P2 (110)

where φ0 is the attractor value. Now, with the scalar constant everywhere, we effec-
tively have Einstein–Maxwell gravity which in particular has the non-extremal Reiss-
ner–Nordstrom black hole as a solution.

We now perturb the non-extremal Reissner–Nordstrom black hole by assuming that
the scalar varies slightly from the attractor value

φ(r) = φ0 + εφ1(r) (111)

Here ε is a small parameter we use to organise the perturbation theory. As discussed
in [25], the scalar perturbation (111), will source second order perturbations to the
metric. This back-reaction will in turn source second order perturbations to the scalar
field etc.

Let us write

a2 = a2
0 + ε2a2 (112)

b = b0 + ε2b2

where b0 and a0 are the unperturbed non-extremal Reissner–Nordstrom solution. They
are given by,

a2
0 = 1

r2 (r − r+)(r − r−) (113)

b0 = r (114)

with r± = M ±
√

M2 − (Q̄2 + P̄2) = M ±√M2 − 2|Q P|.

15 While the non-extremal case was discussed in [25], the first order analysis was only done approximately.
Our results confirm the qualitative picture discussed there.
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Now, expanding the equation for the scalar field, (4), to first order in ε in the
non-extremal Reissner–Nordstrom background, we find

∂r
[
(r − r+)(r − r−)∂rφ1

] = β2φ1

r2 + O(ε) (115)

where β2 = 1
2∂

2
φVeff(φ)|φ=φ0 = α2|Q P|.

It is convenient to define a new variable, x , given by

x = r+(r − r−)+ r−(r − r+)
r (r+ − r−)

= (r+ − r−)
r+e−cτ + r−ecτ

ecτ − e−cτ
, (116)

for which the inner and outer horizons are at x± = ±1 and r = ∞ is at x∞ =
(r+ + r−)/(r+ − r−).

In terms of x , the equation for φ1 is just Legendre’s equation

∂x ((x
2 − 1)∂xφ1) = 1

2
α2φ1 (117)

which has the solution

φ1 = c1 Pγ (x) (118)

where γ = 1
2 (

√
1 + 2α2 − 1) and Pγ is a Legendre function of the first kind.16 When

γ is an integer, Pγ is a polynomial. It is amusing notice that this is the same γ we
used to categorise the exact solutions. Perhaps in these cases the perturbations series
can be exactly summed.

To first order in ε, we find

φ(x) = φ0 + (φ∞ − φ0)
Pγ (x)

Pγ (x∞)
(119)

In particular, deviation of the scalar field at the horizon from the attractor is just
proportional to its deviation at infinity. Now, x∞ is inversely proportional to the tem-
perature, so when the temperature is small, x∞ is large. Using the asymptotic form of
the Legendre function [38], Pγ (x∞) ∼ xγ∞ ∼ T −γ , we find that the deviation of the
scalar field from the attractor value at the horizon goes like the deviation at infinity
times the temperature to some power

(φHorizon − φattractor) ∼ (φ∞ − φattractor)T
γ . (120)

This formula holds for small deviations from the attractor values and small tempera-
tures. Notice that in the limit T → 0 we recover the attractor behaviour and for near
extremal black holes we have approximate attractor behaviour as expected.

16 The other linearly independent solution is a Legendre function of the second kind which diverges at the
horizon.
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Now we return to (4.38) and (4.39). Since the change to the metric are second order
in ε, so are the changes of the coefficients fi . We see that Veff remains unchanged to
first order but, due to the square root on the right hand side of (4.39), ∂φVeff changes
to first order. So, to first order the scalar is governed by the same effective potential
but it does not sit at the minimum at the horizon. In other words, for the non-extremal
black hole, the infinite Ad S throat has been capped off and the scalar field does not
have “time” to reach the minimum of its potential before it hits the horizon.

Although the scalar field is shifted, it does not necessarily follow that the entropy
changes. Since changes to the metric appear at second order, the entropy actually
remains unchanged to first order. However, we expect moduli dependence of the
entropy to appear at second order. Since, in general, the second order perturbation
analysis is rather complicated, we examined some of the exact solutions and found
that moduli dependent corrections to the entropy do indeed appear at second order.

4.6 (Un)attractors and special geometry

The Lagrangian in (2) can be embedded in N = 2 supergravity theory for certain
special values of the couplings. In this section, we briefly review the analysis of the
(un)attractor equations in N = 2 special geometry language [17,29] and show the
relation with our results.

The bosonic part of the N = 2 supergravity action coupled to arbitrary number of
vector multiplets is given by17

− R

2
+ Gaā∂µza∂ν z̄ā + I mNΛΣFΛ

µνFΣ
λρgµλgνρ + ReNΛΣFΛ

µν � FΣ
λρgµλgνρ.

(121)

Here Gaā is the metric of the scalar manifold and ReN and I mN components of
N are negative definite scalar dependent vector couplings. Their explicit expressions
can be obtained in terms of the symplectic sections of the underlying N = 2 theory
and from the prepotential. The negative of the real and imaginary part of the vector
couplings in the above N = 2 action can be schematically identified with our previous
quantities f̃ab and fab, respectively.

One can construct the symplectic invariant quantity Z(z, z̄, p, q)|2 +
|Da Z(z, z̄, p, q)|2 which can be identified with the scalar dependent effective poten-
tial Veff . Here, Z is the central charge in N = 2 supergravity theory and Da Z is the
Kähler covariant derivative, z are the complex moduli, p and q are the magnetic and
electric charges, respectively. The central charge is given by the expression

Z(z, z̄, q, p) = e
K (z,z̄

2
(
XΛ(z)qΛ − FΛ pΛ

)
, (122)

17 For details on special geometry formulation, we refer to [51,52].
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where K (z, z̄) is the Kähler potential. So the effective potential is given in a simple
form:

Veff(z, z̄, q, p) = |Z(z, z̄, p, q)|2 + |Da Z(z, z̄, p, q)|2. (123)

The above form of Veff can be simplified to obtain an expression in terms of electric,
magnetic charges as well as the real and imaginary part of the vector coupling N :

Veff = −1

2

(
p q
) ( I mN + ReN I mN−1 ReN −ReN I mN−1

−I mN−1 ReN I mN−1

)(
p

q

)
,

(124)

where, we have suppressed the indices I, J . This is equivalent to the expression for
the effective potential obtained in [25] which has been derived by using the metric
ansatz and the equations of motion.

The metric of the spherically symmetric solution is given by

ds2 = e2U dt2 − e−2U
[

c4

sinh4 cτ
dτ 2 + c2

sinh2 cτ
dΩ2

]
(125)

Then the constraint becomes,

(
dU

dτ

)2

+
∣∣∣∣
dz

dτ

∣∣∣∣
2

+ e2U
(
|Z(z, z̄, q, p)|2 + |Da Z(z, z̄, q, p)|2

)
= c2 (126)

The constraint expression evaluated at infinity (at τ → 0,U → Mτ ) is given by,

M2(z∞, z̄∞, p, q)− |Z(z∞, z̄∞, p, q)|2
= c2 + |Da Z(z∞, z̄∞, p, q)|2 − GaāΣ

aΣ̄ ā (127)

For BPS configuration,

M2(z∞ z̄∞, p, q) = |Z(z∞, z̄∞, p, q)|2,
c = 0, Gaā D̄ā Z(z∞, z̄∞, p, q) = Σa (128)

For extremal solution, c2 = 2ST = 0, (here we have used a different nor-
malization for the parameter c as compared to our previous discussion) but when
Da Z(z, z̄, p, q) 	= 0, this describes non BPS solutions. For non-extremal solutions
c2 	= 0 and Da Z(z, z̄, p, q) 	= 0.

The condition for the attractor is obtained by knowing the critical point of the effec-
tive potential. Using special geometry identities, the critical point of Veff is given by
the expression,

∂a Veff = 2(Da Z)Z̄ + iCabcGbm̄ Gcn̄ D̄m̄ Z̄ D̄n̄ Z̄ (129)
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This shows that l.h.s. is zero when Da Z = D̄ā Z̄ = 0 which means that the critical
point of Veff coincides with the critical point of the central charge.

The second condition for the existence of an attractor is obtained by evaluating the
second derivative of the effective potential at the critical point. Using special geometry
identities, one gets,

(
D̄ā DbVeff

)
cr = (∂̄ā∂bVeff

)
cr = 2GābVeff(cr) (130)

which shows that the sign of the second derivative of the effective potential is positive
when the sign of the moduli space metric at the critical point is positive.

Equivalently, one can also obtain these conditions by considering the equation of
motion for the scalars and assuming the moduli space to be a complex Kähler manifold
with a Kähler metric Gab̄.

The equation of motion for the scalar is given by [29],

∂τ (∂τ za)+ Γ a
bc(z, z̄)∂τ zb∂τ zc = Gab̄e2U ∂V

∂ z̄b̄
(131)

For extremal (BPS and non BPS) solution, the l.h.s. at the horizon is zero, so one
gets the condition

∂V

∂za

∣∣∣∣
za

h

= 0 (132)

where, za
h is the value of the scalar field at the horizon.

For non-extremal case, the attractor equation reduces to (after some change of
coordinates),

(za)
′′ ∣∣∣
ρ=0

= gab̄ ∂V

∂ z̄b̄

∣∣∣∣
za

h

. (133)

Here, ρ → 0 is the near horizon limit and ρ is related to τ as ρ = 2ecτ . The metric
function in the new coordinate is given as, e2U → (−c2ρ2/r2

h ). The near horizon
geometry is then given as:

ds2 = ρ2dt2 − (rh)
2dρ2 − (rh)

2dΩ2, ρ → 0 (134)

Certainly, the l.h.s. of the attractor equation (133), is not zero and hence the derivative
of the effective potential is not zero and hence there is no attractor phenomenon. This
is reflected in our equation (108) which has been derived from the scalar field equation
of motion and using the horizon values of the derivative of the moduli as well as a2,
b2 appearing in the metric function. We have shown there that the r.h.s. of Eq. (108)
is not equal to zero. This shows that the attractor phenomenon does not occur in the
non-extremal case.
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5 The role of non-supersymmetric attractor in microscopic/macroscopic
entropy matching

The extremality condition was enough to constrain the near-horizon geometry and
ensure that the entropy is independent of the asymptotic values of the moduli—the
entropy only depends on the modulus independent product P̄ Q̄ = P Q. In this sec-
tion18 we argue that the attractor mechanism is at the basis of the matching between
microscopic and macroscopic entropy of certain extremal non-BPS black holes. In
particular, we consider the examples as discussed in [15,30].

The thermodynamics of extremal black holes is very tricky (see, also, the Sect. 6).
In many cases, the horizon area is finite and one expects the entropy to be non-zero.
Therefore, a vanishing entropy on the Euclidean section should prevent us from trust-
ing the Euclidean semi-classical calculations. A strong argument to support a non-
vanishing entropy for extremal black holes comes from string theory which provides a
nice microscopic interpretation. In string theory, the entropy of an extremal BPS black
hole is computed by counting the degeneracy of D-branes states—D-branes are the
constituents from which the black hole is formed. That is equivalent to counting the
BPS states (lowest mass states at fixed charges) in the D-brane world-volume theory.
Supersymmetry is at the basis of the non-renormalization theorems that ensures that
the ground state degeneracy is a kinematic quantity rather than a dynamical one (it is
independent of the strength of the string coupling). Then, the counting of the number
of D-branes at weak coupling agrees with the classical area law of the black hole at
strong coupling.

The large19 non-susy black holes share an important property with their BPS cous-
ins: they have the lowest possible mass in the quantum theory (due to the extremality
condition) and there is no other black hole state to which they can decay by Hawking
radiation. Then, their temperature should vanish. The extremality condition acts as the
cosmic censorship preventing a minimum mass black hole to decay in a naked singu-
larity. An important question arises here, namely, is there any D-brane microscopic
configuration to describe such a non-BPS black hole? The answer is affirmative and
in what follows, we present a concrete example.

In [15], an intriguing example of microstates counting for a neutral black hole has
been proposed that precisely reproduces the Hawking–Bekenstein entropy. The non-
rotating case corresponds to our solution II. This solution can be embedded in string
theory [32] by identifying the KK circle with the M-theory circle. In this way, the
magnetic charge becomes the charge of the D-6 brane and the electric charge is the
D-0 brane charge.

We will discuss this case using the effective potential formalism, but the computa-
tions using the entropy function are very similar with the calculations in the Sect. 4.2.
The effective potential is given by

Veff = eαφ(Q)2 + e−αφ(P)2, (135)

18 DA would like to thank Ashoke Sen for discussions on this section.
19 Large black holes are the black holes for which the spacetime curvature is weak outside the horizon—of
course when the curvature is strong, e.g. is blowing up at the singularity, the stringy effects are important.
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with α = 2
√

3. Then, the value of the modulus at the horizon and the entropy are

e4
√

3φH = P2

Q2 , S = πVeff(φH ) = 2π P Q. (136)

These expressions involve only the charge parameters, the moduli cancel out. This is
interpreted as a signal that a clear connection to the microscopic theory is possible. This
black hole is not supersymmetric and this is in agreement with the absence of the bound
states of D0 and D6 branes. However, in [15], a simple string description based on non-
supersymmetric, quadratically stable, D0–D6 bound states [49] was provided—this
statistical prescription precisely reproduces the Hawking–Bekenstein entropy.

The electric and magnetic charges are quantized according to Dirac’s quantization
rule and we obtain

2P Q

G4
= nQn P , (137)

where the integers nQ and n P can be interpreted after the embedding in M-theory as
the number of D0- and D6-branes, respectively. The entropy of extremal black hole
can be rewritten [32] as

S = πn P nQ = πN0 N6. (138)

The excitations of the D-branes system at low energies are described in terms of
a moduli space approximation. Since our black hole is non-BPS, one can not use the
non-renormalization theorems to argue that low energy theory does not receive correc-
tions when the string coupling is increased. Therefore, the black hole dynamics in the
strong coupling regime is described by a different moduli space. Now, it is important
to remember that the near-horizon geometry of the non-BPS extremal black holes is
the same as for the BPS extremal black holes, namely Ad S2 × S2. Then even if we
start with different moduli spaces (in different regimes), the moduli are attracted to
the horizon to the same values. Then, this seems to be the reason for the mysterious
microscopic/macroscopic entropy match in [15].

We will comment more on the validity of our proposal in Sect. 6.

6 Discussion

In classical general relativity, no hair theorems impose strong constraints on the pos-
sibility of obtaining solutions of the Einstein equations coupled to non-trivial scalar
fields. A crucial ingredient for their proof is that the scalars be minimally coupled to
gravity and other fields. In this paper, we have considered black holes with scalar fields
which are non-minimally coupled to gauge fields. Clearly, this is a concrete possibil-
ity for evading no hair theorems. Indeed, we have seen how the non-zero asymptotic
scalar charges and the values of moduli at infinity play a role in the first law of ther-
modynamics. However, this is not considered as a drastic violation of the no hair
theorems [8,9,46]. The reason is that the scalar charges are not independent param-
eters, but are given functions of the other asymptotic charges which characterise the
solution.
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Let us consider, for example, the part of the Lagrangian containing the moduli and
the moduli coupled to gauge fields. The Lagrangian reduces to the standard Einstein–
Maxwell form if the moduli are constant. However if FµνFµν 	= 0 and the scalar field
is not at the minimum of its effective potential, the field equation for φ will not be
satisfied by taking φ to be a constant.

This means that the non-vanishing electromagnetic field can also be understood
as a source for the moduli. As a result, the scalar charges have been called second-
ary hair by the authors of [8,9,46].20 They are generated because the basic fields
(associated with mass, angular momentum, and gauge charges) act also as sources
for the moduli. This should be contrasted with primary hair which would be due
an asymptotic scalar charge which is completely independent of the other charges.
It is significant that they do not represent a new quantum number associated with
the black hole. However, in string theory the scalar fields, referred to as moduli are
interpreted as local coupling constants rather than matter fields and the notion of
scalar charge is somehow misleading. While conventional in general relativity, one
would not normally consider variations of the moduli at infinity, there are case in
both string theory and general relativity where one might be lead to consider them
hence introducing a new term in the first law (59). For example, one may be inter-
ested in time-dependent cosmological situations in which φ∞ becomes dynamical,21

one may wish to understand the behaviour of the black holes under slow adiabatic
changes of φ∞ or one may wish to compare black holes at different points in moduli
space.

The non-extremal black holes have a non-zero temperature that can be evaluated
by eliminating the conical singularity in the Euclidean section. Then, the Euclidean
geometry becomes a “cigar” and so the Euclidean time circle closes off smoothly.
On the other hand, for an extremal Euclidean black hole the topology changes. The
Euclidean time circle does not close off and so there is no conical singularity. In
this case, one is forced, either to work with an arbitrary periodicity of the Euclidean
time leading to ambiguous results, or simply to ignore the Euclidean time method.
However, in the Lorentzian section the picture is quite satisfactory: an extremal
black hole is obtained by continuously sending the surface gravity of a non-extre-
mal black hole to zero. While the surface gravity (i.e. the temperature) vanishes, the
area of the horizon (i.e. the entropy) can remain finite. These results strongly sug-
gest that the entropy of an extremal black hole with a non-vanishing horizon area is
non-zero.

The extremal supersymmetric black holes play a central role in providing a statis-
tical foundation for black hole thermodynamics in string theory. In all known cases,
supersymmetric (static) black holes are also extreme black holes—the converse is not
true. This can be understood by the fact that the BPS black holes are stable systems
corresponding to the lowest possible mass in the quantum theory and should not radiate.
Then, their temperature should vanish and so they are extremal. On the other hand, not
all extremal black holes saturate BPS bounds and they can break supersymmetry—the

20 We prefer the term stubble.
21 Since the derivation assumes asymptotically flat space, one would require sufficiently flat background
for the analysis to remain valid.
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mismatch between the extremality and BPS conditions is quite general [39]. There are
two kinds of extremal non-susy solutions. The first one contains extremal black holes
which can not be embedded in supergravity theories (e.g., a subset of the solutions
Ib). The second one contains extremal black holes which are solutions of supergravity
theories but are not supersymmetric (e.g., the solution II).

It was discovered long time ago that, in four-dimensional, ungauged N = 2 super-
gravity, the BPS black hole solutions exhibit fixed-point attractor behavior near the
horizon. However, recently it was understood that the near-horizon extremal geometry
[44] is at the basis of the attractor mechanism, rather than supersymmetry. It is just
more convenient to solve the supersymmetry transformations for the gravitino and
gauginos in a bosonic background of (N = 2) supergravity—these transformations
depend linearly on the first derivatives. Consequently, to find BPS black hole solutions
one has to solve first order differential equations (the attractor equations near-horizon
become algebraic) [40,41].

When the BPS bound is saturated, the entropy is determined microscopically just
by the charges. However, the charges are quantized and then the entropy should also
be a discrete quantity. Instead, the moduli are continuous parameters of the internal
manifold. For consistency with the discreteness of the entropy, the values of the moduli
at the horizon can not have any arbitrary values. The attractor mechanism provide an
explanation for why the moduli are fixed at the horizon. However, this argument is
not based at all on supersymmetry and this was one important reason for investigating
non-supersymmetric attractors in [25].

In the previous section, we proposed that the attractor mechanism is at the origin of
the microscopic/macroscopic match of some non-BPS extremal black holes [15,30]
(see, also, [10] for a five-dimensional example). We used the effective potential method
to show that the Kaluza–Klein horizon is an attractor for the moduli and have explicitly
shown that there is just one minimum. This is the explanation for why the entropy
is independent of continuous parameters (coupling constants). It is also worth to be
mentioned that the existence of just one minimum imply that there can not be jumps
in entropy moving from weak coupling to strong coupling coupling. Although this
proposal is certainly suggestive, one should take it with some caution—similar argu-
ments are not valid when the basin of attraction is not unique. In general, the effective
potential method will provide more information about the attractor behavior than the
entropy function. For example, if there is more than one attractor fixed point, then a
study of the effective potential will make it clear which minimum can be obtained by
starting with different boundary conditions. In this case, our arguments fail, because
by changing the coupling gs Q, the moduli can end up in a different domain of attrac-
tion and the value of the entropy will change.22 For the KK solution we have found
that the effective potential has just one minimum and we expect this is also true for
the black holes of [30]. Another point worth to be mentioned is that, for consistency
with the macroscopic picture, the microscopic configuration of branes should be also
non-supersymmetric but stable. For the case at hand—KK black hole—it is known
[49] that, indeed, this is true. The 0-brane and the 6-brane repel one another and so, in

22 The near-horizon geometry remains Ad S2 × S2 even after adding α′ corrections—the radia of Ad S2
and S2 receive corrections, but the geometry does not change.
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general, a point-like 0-brane placed on or near a 6-brane gives rise to a non-susy con-
figuration. However, a D0–D6 brane configuration has been proposed in [49] which
satisfies the classical equations of motion and is classically stable to quadratic order.
That is, a set of four 0-branes which are smeared out over four 6-branes wrapped on
a six-torus—this configuration served as a basis of the microscopic picture in [15].
These metastable states are interpreted as some kind of long-lived resonances com-
posed of 0-branes and 6-branes and so the microscopic and the macroscopic pictures
are consistent with one another. One more puzzle is related to the lack of non-ren-
ormalization theorems for the extremal non-BPS black holes. In the strong coupling
regime the extremal black hole can still be thought of as the black hole with the lowest
mass. However, by changing the coupling, the mass will receive corrections and the
statistical entropy definition should be revised.

The counting in [15] requires N6 � 4, but the configurations constructed in [49]
can be found even for small numbers of branes. It will also be interesting to repro-
duce the entropy of KK black hole in this case. Our investigation in Sect. 4.4 strongly
suggests that, due to the attractor mechanism, a computation of the near-extremal KK
black hole entropy with large charges should be also possible.

The rotating case was also studied in [2] by using the entropy function. It is worth
noticing that the long throat of Ad S2 is also present in the near-horizon geometry of
the extremal rotating black hole. Unfortunately, in the rotating case, it is difficult to
construct an effective potential when the moduli are not constants. It will be inter-
esting to find an effective potential analogous to (107) and study the near-extremal
rotating black holes. It will also be interesting to investigate the thermodynamics
of the non-extremal black holes by using the “counter-term” method developed in
[3,4,36].
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Appendix A: Effective potential

Let us derive the expression of the effective potential, Veff , by rewriting (4) as (11).
We have

∂µ

(√−Ggi j G
µν∂νφ

j
)

= √−G

[
1

4

∂ f AB

∂φi
F A

µνF B µν + 1

8

∂ f̃ AB

∂φi
F A

µνF B
ρσ ε

µνρσ

]
, (139)
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with
√−G = b2 sin θ . Then

∂r

(
b2 sin θgi j G

rr∂rφ
j
)

= (b2 sin θ)

[
1

4

∂ f AB

∂φi
F A

µνF B µν + 1

8

∂ f̃ AB

∂φi
F A

µνF B
ρσ ε

µνρσ

]
, (140)

and

∂r

(
b2a2gi j∂rφ

j
)

= b2

[
1

4

∂ f AB

∂φi
F A

µνF B µν + 1

8

∂ f̃ AB

∂φi
F A

µνF B
ρσ ε

µνρσ

]
. (141)

Now, we calculate Veff by using its definition (11):

∂Veff

∂φi
= 2b4

[
1

4

∂ f AB

∂φi
F A

µνF B µν + 1

8

∂ f̃ AB

∂φi
F A

µνF B
ρσ ε

µνρσ

]
. (142)

To get (12), we need to use (7)

F A = f AB
(

Q B − f̃ BC PC
) 1

b2 dt ∧ dr + P A sin θdθ ∧ dφ

= F A
tr dt ∧ dr + F A

θφdθ ∧ dφ, (143)

and so we find

1

4

∂ f AB

∂φi
F A

µνF B µν

= 1

4
2
∂ f AB

∂φi

(
Grr Gtt F A

tr F B
tr + GθθGφφF A

θφF B
θφ

)
(144)

= 1

2

[
−∂ f AB

∂φi
f AC

(
QC − f̃C D P D

) 1

b2 f B E
(
QE − f̃ E F P F

) 1

b2+
∂ f AB

∂φi

1

b4 P A P B
]
,

= 1

2

[
∂ f AC

∂φi
f AB

(
QC − f̃C D P D

) 1

b2 f B E
(

QE − f̃ E F P F
) 1

b2 + ∂ f AB

∂φi

1

b4 P A P B
]
,

(145)

= 1

2

[
∂ f AC

∂φi

(
QC − f̃C D P D

) 1

b2

(
Q A − f̃ AF P F

) 1

b2 + ∂ f AB

∂φi

1

b4 P A P B
]
,

(146)

and also (Frt = −Ftr )

1

8

∂ f̃ AB

∂φi
F A

µνF B
ρσ ε

µνρσ=∂ f̃ AB

∂φi
F B

rt F A
θφ= − ∂ f̃ AB

∂φi
f B E

(
QE − f̃ E F P F

) 1

b2

P A

b2

(147)
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Then, using f AB∂ f AB = − f AB∂ f AB , (142) becomes

∂Veff

∂φi
=
[
∂ f AC

∂φi

(
QC − f̃C D P D

) (
Q A − f̃ AF P F

)
+ ∂ f AB

∂φi
P A P B

]
(148)

−2
∂ f̃ AB

∂φi
f B E

(
QE − f̃ E F P F

)
P A (149)

One can easily check that the effective potential (12) satisfies the previous equation.

Appendix B: Toda equations

We rewrite the Eqs. (24)–(25) in a form similar to Toda equations. We define

A = 2u2 + α1u1, B = 2u2 + α2u1, (150)

and we obtain the following equivalent system

Ä =
(

1

2
α2

1 + 2

)
Q2

1 eA +
(

1

2
α1α2 + 2

)
Q2

2 eB, (151)

B̈ =
(

1

2
α1α2 + 2

)
Q2

1 eA +
(

1

2
α2

2 + 2

)
Q2

2 eB . (152)

For α1α2 = −4 the equations decouple and we obtain

Ä =
(

1

2
α2

1 + 2

)
Q2

1 eA = e(A+a) = eĀ, (153)

B̈ =
(

1

2
α2

2 + 2

)
Q2

2 eB = e(B+b) = eB̄ . (154)

A solution of the equation Ẍ = eX can be written in the following form:

X = log

(
2c2

sinh2(c(τ − d))

)
= log

(
2c2

F2(τ )

)
. (155)

The solutions are given by

Ā = A + a = log

(
2c2

1

F2
1 (τ )

)
⇒ A = log

(
2c2

1

F2
1 (τ )

2

Q2
1(α

2
1 + 4)

)
(156)

B̄ = B + b = log

(
2c2

2

F2
2 (τ )

)
⇒ A = log

(
2c2

2

F2
2 (τ )

2

Q2
2(α

2
2 + 4)

)
(157)
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Appendix C: Finding solutions

We construct the solution I with γ = 1 ⇔ α1α2 = −4. Without loss of generality
we assume α2 < 0. We obtain the following expression for the dilaton, a2, and τ (we
define λ = α1

α1−α2
):

e(α1−α2)φ = eA−B =
(

F2c1

F1c2

)2

e(b−a) =
(

F2c1

F1c2

)2 Q2
2(α

2
2 + 4)

Q2
1(α

2
1 + 4)

(158)

a2 = 4

(α2
1 + 4)1−λ (α2

2 + 4)λ

(
F1 Q1

c1

)2(λ−1) ( c2

F2 Q2

)2λ

(159)

τ =
∫

dr

a2b2 = 1

(r+ − r−)
log

(
r − r+
r − r−

)
(160)

Appendix C.1: Boundary conditions

• Horizon (r → r+, τ → −∞)

As r → r+(ie. τ → −∞) the scalar field goes like

e(α1−α2)φ ∼ e2(c1−c2)τ (161)

so, for φ finite at the horizon, we require c := c1 = c2. Also at the horizon

b2 ∼ (r − r+)/a2 ∼ (r − r+)
(

r − r−
r − r+

) 2c
r+−r−

(162)

which necessitates

(r+ − r−) = 2c (163)

• Asymptotic infinity (r → ∞, τ → 0)

At infinity, the scalar field tends to

e(α1−α2)φ∞ = e(α1−α2)φ(τ=0) = α2
2 + 4

α2
1 + 4

(
Q2 sinh(cd2)

Q1 sinh(cd1)

)2

which we can write

(α2
1 + 4)Q̄2

1 sinh2(cd1) = (α2
2 + 4)Q̄2

2 sinh2(cd2) (164)

where

Q̄2
i = eαiφ∞ Q2

i
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We also have

a2|τ=0 = 1 = 4

(α2
1 + 4)1−λ(α2

2 + 4)λ
c2 (Q1 sinh(cd1))

−2(1−λ) (Q2 sinh(cd2))
−2λ

(165)

= 4

(α2
1 + 4)1−λ(α2

2 + 4)λ
c2
(

Q̄2
1 sinh2(cd1)

)−(1−λ) (
Q̄2

2 sinh2(cd2)
)−λ

(166)

Together with (164) this implies

sinh(cd1) = 2c(α2
1 + 4)−

1
2 Q̄−1

1

sinh(cd2) = 2c(α2
2 + 4)−

1
2 Q̄−1

2

The scalar “charge” is

−φ̇(τ = 0) = Σ = −2c(coth(cd1)− coth(cd2))

α1 − α2

and the mass is

ȧ|τ=0 = M =

1︷ ︸︸ ︷(
2c (Q1 sinh(cd1))

−(1−λ) (Q2 sinh(cd2))
−λ

[(α2
1 + 4)1−λ(α2

2 + 4)λ] 1
2

)
c(λ coth(cd2)

+(1 − λ) coth(cd1))

= c(λ coth(cd2)+ (1 − λ) coth(cd1)).

The entropy is given by

S = πb2(τ = −∞) = π

4
(α2

1 + 4)(1−λ)(α2
2 + 4)λ

(
Q2

1e2cd1
)(1−λ) (

Q2
2e2cd2

)λ

(167)

while the temperature is

T = aa′

2π
(τ = −∞)

= c

2π

4

(α2
1 + 4)(1−λ)(α2

2 + 4)λ

(
Q2

1e−2cd1
)−(1−λ) (

Q2
2e−2cd1

)−λ
,

and as a check, we note that,

ST = c

2
= 1

4
(r+ − r−),
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and one can also check that

M2 +Σ2 − Q̄2
1 − Q̄2

2 = 4S2T 2 = c2. (168)
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