12 research outputs found

    Covenant of Mayors for Climate and Energy: Default emission factors for local emission inventories – Version 2017

    Get PDF
    The Covenant of Mayors for Climate and Energy initiative, hereafter called “Covenant” or “CoM”, brings together local and regional authorities voluntarily committing to develop and implement a Sustainable Energy and Climate Action Plan (SECAP) containing measures to reduce their energy (and non-energy) related Greenhouse Gas (GHG) emissions. Within the CoM 2010 guidebook ‘How to develop a Sustainable Energy Action Plan’ (Bertoldi et al., 2010), Part II focuses on the compiling of local GHG emission inventories in the 28 Member States of the European Union (EU). This technical report provides an update of the CoM default emission factors, reported in Part II of the CoM 2010 guidebook and subsequently revised (CoM, 2014; CoM, 2016), together with information on the methodologies, assumptions and data sources, as well as recommendations for their application to the calculation of CO2 and GHG (CO2, CH4 and N2O) emissions due to local use or production of energy (fuel, municipal wastes, renewable energy sources (RES), electricity). As for previous versions, the CoM default emission factors - Version 2017 (expressed in tCO2 or CO2 equivalent/MWh), to be used to estimate standard direct emissions are the IPCC (2006) default factors for stationary combustion for the energy carriers and RES, the most commonly used in the European Union. The CoM default emission factors to estimate local emissions using the Life Cycle Assessment approach, which also includes emissions from the entire supply chain, have been updated using the lastest version (v3.2) of the European Life Cycle Database, as well as other Life Cycle databases and literature reviews. For indirect emissions from local consumption of electricity, national and EU annual factors have been calculated for the 1990 to 2013, using an updated methodological approach and an extended set of energy data (IEA, 2016). The GHG emission factors (in tCO2-eq/MWh) have been estimated using the 100-year time horizon Global Warming Potential factors from the IPCC Fourth Assessment Report (IPCC, 2007), which are the ones currently recommended to the EU countries for the national inventory reporting, in the frame of the United Nations Framework Convention on Climate Change. Regular updates of CoM default emission factors are foreseen for the future. New CoM signatories are therefore recommended to use the latest version of Annex I available from the Covenant on-line library . It is important to note is that the emission factors used to calculate emission inventories should be consistent for the entire implementation process of the SECAP. In particular, since more recent knowledge and technologies can give substantial changes, it is strongly recommended when opting for the use of CoM default emission factors, not to modify the ones applied to the Baseline Emission Inventory during the monitoring phase, in order to identify the trends and changes in local emissions that are due to local energy production and consumption. When selecting the CoM default emission factors, it is also important to ensure that they are appropriate to local fuel quality and composition. If local authorities prefer to use emission factors that better reflect the properties of the fuels used in their territory for the calculation and update of their local emission inventories, they are welcome to do so, when more country specific or local data are available and reliable.JRC.C.5-Air and Climat

    JRC – Ispra: Atmosphere – Biosphere – Climate Integrated monitoring Station: 2015 Report

    Get PDF
    A comprehensive set of essential atmospheric variables have been measured at the JRC-Ispra Atmosphere -Biosphere - Climate Integrated monitoring Station (ABC-IS) for several years to detect the impact of European policies and international conventions on air pollution and climate forcing. The variables we measure include greenhouse gas concentrations (CO2, CH4, N2O, SF6), radon (222Rn)activity concentration, short-lived gaseous and particulate pollutants (CO, SO2, NO, NO2, O3, PM2.5 and its main ionic and carbonaceous constituents), atmospheric particle micro-physical characteristics (number concentration and size distribution) and optical properties (light scattering and absorption in-situ, light scattering and extinction vertical profiles remotely), eutrophying and acidifying species (SO42-, NO3-, NH4+) wet deposition, and vegetation atmosphere exchanges (CO2, O3, H2O and heat), backed up by meteorological and pedological measurements. All the measurements performed at ABC-IS are made under international projects and programs like InGOS (Integrated non-CO2 Greenhouse gas Observation System), ACTRIS (the EU research Infra-Structure for the observation of Aerosols, Clouds and TRace gases), EMEP (co-operative Program for Monitoring and Evaluation of the long range transmission of air pollutants in Europe) and GAW (Global Atmosphere Watch), which implies the use of standard methods and scales, and the participation in quality assurance activities. The JRC has a leading role in ACTRIS and EMEP regarding the quality assurance for carbonaceous aerosol measurements. All the data obtained at ABC-IS are submitted to international open data bases (www.europe-fluxdata.eu, fluxnet.ornl.gov, www.ingos-infrastructure.eu, ebas.nilu.no,) and can be freely downloaded from these web sites. The data we produce are used in European wide assessments, for model inputs and validation, and for calibrating satellite airborne sensors. The ABC-IS 2015 report presents the data produced during the past year in the context of the previous years of measurements.JRC.C.5-Air and Climat

    JRC – Ispra Atmosphere – Biosphere – Climate Integrated monitoring Station: 2014 Report

    Get PDF
    The Institute for Environment and Sustainability provides long-term observations of the atmosphere within international programs and research projects. These observations are performed from the research infrastructure named ABC-IS: Atmosphere – Biosphere – Climate Integrated monitoring Station. Most measurements are performed at the JRC-Ispra site, but observations are also carried out from two other platforms: the forest station in San Rossore, and a ship cruising in the Western Mediterranean sea. This document reports about the measurement programs, the equipment which is deployed, the data quality assessment, and the results obtained for each site. Our observations are presented, compared to each other, as well as to historical data obtained over close to 30 years at the Ispra site.JRC.H.2-Air and Climat

    JRC – Ispra Atmosphere – Biosphere – Climate Integrated monitoring Station 2013 report

    Get PDF
    The Institute for Environment and Sustainability provides long-term observations of the atmosphere within international programs and research projects. These observations are performed from the research infrastructure named ABC-IS: Atmosphere – Biosphere – Climate Integrated monitoring Station. Most measurements are performed at the JRC-Ispra site, but observations are also carried out from two other platforms: the forest station in San Rossore, and a ship cruising in the Western Mediterranean sea. This document reports about the measurement programs, the equipment which is deployed, the data quality assessment, and the results obtained for each site. Our observations are presented, compared to each other, as well as to historical data obtained over more than 25 years at the Ispra site.JRC.H.2-Air and Climat

    JRC-Ispra Atmosphere-Biosphere-Climate Integrated monitoring Station 2012 report

    Get PDF
    The Institute for Environment and Sustainability provide long-term observations of the atmosphere within international programs and research projects. These observations are performed from the research infrastructure named ABC-IS: Atmosphere – Biosphere – Climate Integrated monitoring station. Most measurements are performed at the JRC-Ispra site. Observations are also carried out from two other platforms: the forest station in San Rossore, and a ship cruising in the Western Mediterranean sea. This document reports about measurement programs, the equipment which is deployed, the data quality assessment, and the results obtained for each site. Our observations are presented, compared to each other, as well as to historical data obtained over more than 25 years at the Ispra siteJRC.H.2-Air and Climat

    JRC – Ispra Atmosphere – Biosphere – Climate Integrated monitoring Station : 2011 report

    Get PDF
    The Institute for Environment and Sustainability provide long-term observations of the atmosphere within international programs and research projects. These observations are performed from the research infrastructure named ABC-IS: Atmosphere-Biosphere-Climate Integrated monitoring station. Most measurements are performed at the JRC-Ispra site. Observations are also carried out from two other platforms: the forest station in San Rossore, and a ship cruising in the Western Mediterranean sea. This document reports about measurement programs, the equipment which is deployed, and the data quality assessment for each site. Our observations are presented, compared to each other, as well as to historical data obtained over the past 25 years at the Ispra site.JRC.H.2-Air and Climat

    Genetic and Epigenetic Fine-Mapping of Causal Autoimmune Disease Variants

    Get PDF
    Summary Genome-wide association studies have identified loci underlying human diseases, but the causal nucleotide changes and mechanisms remain largely unknown. Here we developed a fine-mapping algorithm to identify candidate causal variants for 21 autoimmune diseases from genotyping data. We integrated these predictions with transcription and cis-regulatory element annotations, derived by mapping RNA and chromatin in primary immune cells, including resting and stimulated CD4+ T-cell subsets, regulatory T-cells, CD8+ T-cells, B-cells, and monocytes. We find that ~90% of causal variants are noncoding, with ~60% mapping to immune-cell enhancers, many of which gain histone acetylation and transcribe enhancer-associated RNA upon immune stimulation. Causal variants tend to occur near binding sites for master regulators of immune differentiation and stimulus-dependent gene activation, but only 10–20% directly alter recognizable transcription factor binding motifs. Rather, most noncoding risk variants, including those that alter gene expression, affect non-canonical sequence determinants not well-explained by current gene regulatory models

    On the Monoterpene Emission under Heat Stress and on the Increased Thermotolerance of Quercus ilex L. Fumigated with Selected Monoterpendes.

    No full text
    Leaves of the monoterpene emitter Quercus ilex were exposed to a temperature ramp with 5C steps from 30C to 55C while maintained under conditions in which endogenous emission of monoterpenes was allowed or suppressed, or under fumigation with exogeneous selected monoterpenes. Fumigation with monoterpenes reduced the decline of photosynthesis and photorespiration found in non-fumigated leaves exposed to high temperatures. It also increased respiration when photosynthesis and photorespiration were inhibited by low 02 and CO2-free air. Finally, fumigation allowed for a more rapid recovery of photosynthesis and monoterpene emission when the 30C temperature was restored. These results indicate that, as previously reported for isoprene, monoterpenes may help plants to cope with heath stress. Membrane stability may be enhanced by monoterpenes therefore causing a rather non-specific stimulation.JRC.(EI)-Environment Institut
    corecore