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Summary

Genome-wide association studies have identified loci underlying human diseases, but the causal 

nucleotide changes and mechanisms remain largely unknown. Here we developed a fine-mapping 

algorithm to identify candidate causal variants for 21 autoimmune diseases from genotyping data. 

We integrated these predictions with transcription and cis-regulatory element annotations, derived 

by mapping RNA and chromatin in primary immune cells, including resting and stimulated CD4+ 

T-cell subsets, regulatory T-cells, CD8+ T-cells, B-cells, and monocytes. We find that ~90% of 

causal variants are noncoding, with ~60% mapping to immune-cell enhancers, many of which gain 

histone acetylation and transcribe enhancer-associated RNA upon immune stimulation. Causal 

variants tend to occur near binding sites for master regulators of immune differentiation and 

stimulus-dependent gene activation, but only 10–20% directly alter recognizable transcription 

factor binding motifs. Rather, most noncoding risk variants, including those that alter gene 

expression, affect non-canonical sequence determinants not well-explained by current gene 

regulatory models.

Introduction

Genome-wide association studies (GWAS) have revolutionized the study of complex human 

traits by identifying thousands of genetic loci that contribute susceptibility for a diverse set 

of diseases1,2. However, progress towards understanding disease mechanisms has been 

limited by difficulty in assigning molecular function to the vast majority of GWAS hits that 

do not affect protein-coding sequence. Efforts to decipher biological consequences of 

noncoding variation face two major challenges. First, due to haplotype structure, GWAS 

tend to nominate large clusters of single nucleotide polymorphisms (SNPs) in linkage 

disequilibrium (LD), making it difficult to distinguish causal SNPs from neutral variants in 

linkage. Second, even assuming the causal variant can be identified, interpretation is limited 

by incomplete knowledge of noncoding regulatory elements, their mechanisms of action, 

and the cellular states and processes in which they function.

Inflammatory autoimmune diseases, which reflect complex interactions between genetic 

variation and environment, are important systems for genetic investigation of human 

disease3. They share a substantial degree of immunopathology, with increased activity of 

auto-reactive CD4+ T-cells secreting inflammatory cytokines and loss of regulatory T-cell 

(Treg) function4. A critical role for B-cells in certain diseases has also been revealed with the 

therapeutic efficacy of anti-CD20 antibodies5. Immune homeostasis depends on a balance of 

CD4+ pro-inflammatory (Th1, Th2, Th17) cells and FOXP3+ suppressive Tregs, each of 

which expresses distinct cytokines and surface molecules6. Each cell type is controlled by a 

unique set of master transcription factors (TFs) that directly shape cell-type specific gene 

expression programs, which include genes implicated in autoimmune diseases7–9. Immune 

subsets also have characteristic cis-regulatory landscapes, including distinct sets of 

enhancers that may be distinguished by their chromatin states9–13 and associated enhancer 

RNAs (eRNA)14. Familial clustering of different autoimmune diseases suggests that 
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heritable factors underlie common disease pathways, although disparate clinical 

presentations and paradoxical effects of drugs in different diseases support key 

distinctions15.

GWAS have discovered hundreds of risk loci for autoimmunity15. While most risk variants 

have subtle effects on disease susceptibility, they provide unbiased support for possible 

etiological pathways, including antigen presentation, cytokine signaling, and NFκB 

transcriptional regulation15. The associated loci are enriched for immune cell-specific 

enhancers10,16,17 and expansive enhancer clusters18,19, termed ‘super-enhancers’, 

implicating gene regulatory processes in disease etiology. However, as is typical of GWAS, 

the implicated loci comprise multiple variants in LD and rarely alter protein coding 

sequence, which complicates their interpretation.

Here, we integrated genetic and epigenetic fine-mapping to identify causal variants in 

autoimmune disease-associated loci and explore their functions. Based on dense genotyping 

data20, we developed a novel algorithm to predict for each individual variant associated with 

21 autoimmune diseases, the likelihood that it represents a causal variant. In parallel, we 

generated cis-regulatory element maps for a spectrum of immune cell types. Remarkably, 

~60% of likely causal variants map to enhancer-like elements, with preferential 

correspondence to stimulus-dependent CD4+ T-cell enhancers that respond to immune 

activation by increasing histone acetylation and transcribing noncoding RNAs. Although 

these enhancers frequently reside within extended clusters, their distinct regulatory patterns 

and phenotypic associations suggest they represent independent functional units. Causal 

SNPs are enriched near binding sites for immune-related TFs, but rarely alter their cognate 

motifs. Our study provides a unique resource for the study of autoimmunity, links causal 

disease variants with high probability to context-specific immune enhancers, and suggests 

that most non-coding causal variants act by altering non-canonical regulatory sequence 

rather than recognizable consensus TF motifs.

Fine-mapped Genetic Architecture of Disease

To explore the genetic architecture underlying common diseases, we first collected 39 well-

powered GWAS studies (Methods). Clustering of diseases and traits based on their shared 

genetic loci revealed groups of phenotypes with related clinical features (Fig 1A). This 

highlighted a large cluster of immune-mediated diseases forming a complex network of 

shared genetic loci; on average, 69% of the associated loci for each disease were shared with 

other autoimmune diseases, although no two diseases shared more than 38% of their loci.

We focused subsequent analysis on autoimmune diseases, reasoning that recent dense 

genotyping data combined with emerging approaches for profiling epigenomes of 

specialized immune cells would provide an opportunity to identify and characterize the 

specific causal SNPs. Prior studies that have integrated GWAS with epigenomic features 

focused on lead SNPs or multiple associated SNPs within a locus, of which only a small 

minority reflects causal variants10,16–19,21. Although these studies demonstrated enrichments 

within enhancer-like regulatory elements, they could not with any degree of certainty 

pinpoint the specific elements or processes affected by the causal variants. To overcome this 

limitation, we leveraged dense genotyping data to refine a statistical model for predicting 
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causal SNPs from genetic data alone. Rare recombination events within haplotypes can 

provide information on the identity of the causal SNP, provided sufficient genotyping 

density and sample size. We therefore examined a cohort of 14,277 cases with multiple 

sclerosis (MS) and 23,605 healthy controls genotyped using the Immunochip, which 

comprehensively covers 1000 Genomes Project SNPs22 within 186 loci associated with 

autoimmunity20. We developed an algorithm, Probabilistic Identification of Causal SNPs 

(PICS), that estimates the probability that an individual SNP is a causal variant given the 

haplotype structure and observed pattern of association at the locus (Methods, Extended 

Data Figs 1–4).

The IFI30 locus (Fig 1B–C) presents an illustrative example of the LD problem and the 

PICS strategy. The most strongly associated SNP at the locus is rs11554159 (R76Q, G>A; 

minor allele is protective), a missense variant in IFI30, a lysosomal enzyme that processes 

antigens for MHC presentation23. Although dozens of SNPs at the locus are significantly 

associated with disease, the association for each additional SNP follows a linear relationship 

with its linkage to rs11554159/R76Q, suggesting they owe their association solely to linkage 

with this causal variant. We used permutation to estimate the posterior probability for each 

SNP in the locus to be the causal variant, given the observed patterns of association. 

Interestingly, prior GWAS studies24 had attributed the signal at this locus to a missense 

variant in a neighboring gene, MPV17L2 (rs874628, r2 = 0.9 to R76Q), with no known 

immune function. However, we find that the R76Q variant is ~10 times more likely than 

rs874628 to be the causal SNP and three times more likely than the next closest SNP (a 

noncoding variant), providing compelling evidence that the IFI30 missense variant is the 

causal variant in the locus.

We next generalized PICS to analyze 21 autoimmune diseases, using Immunochip data 

when they were available or imputation to the 1000 Genomes Project22 when they were not 

(Methods; Supplementary Table S1). We mapped 636 autoimmune GWAS signals to 4950 

candidate causal SNPs (mean probability of representing the causal variant responsible for 

the GWAS signal: ~10%). PICS indicates that index SNPs reported in the GWAS catalog 

have on average only a 5% chance of representing a causal SNP. Rather, GWAS catalog 

index SNPs are typically some distance from the PICS lead SNP (median 14 kb), and many 

are not in tight LD (Fig 1D, Extended Data Figure 5). PICS identified a single most likely 

causal SNP (>75% probability) at 12% of loci linked to autoimmunity. However, most 

GWAS signals could not be fully resolved due to LD and thus contain several candidate 

causal SNPs (Fig 1E).

To confirm the functional significance of fine-mapped SNPs, we compared PICS SNPs 

against a strict background of random SNPs drawn from the same loci. Candidate causal 

SNPs derived by PICS were strongly enriched for protein-coding (missense, nonsense, 

frameshift) changes, which account for 14% of the predicted causal variants compared to 

just 4% of the random SNPs. Modest enrichments over the locus background were also 

observed for synonymous substitutions (5%), 3′ UTRs (3%), and splice junctions (0.2%) 

(Fig 1F). Although these results support the efficacy of PICS for identifying causal variants, 

~90% of GWAS hits for autoimmune diseases remain unexplained by protein-coding 
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variants. Candidate causal SNPs and the PICS algorithm are available through an 

accompanying online portal (www.broadinstitute.org/pubs/finemapping).

Causal Autoimmunity Variants Map to Immune Cell-Specific Enhancers

To investigate the functions of predicted causal noncoding variants, we generated a resource 

of epigenomic maps for specialized immune subsets (Extended Data Figure 6). We 

examined primary human CD4+ T-cell populations from pooled healthy donor blood, 

including FOXP3+CD25highCD127low/−regulatory (Tregs), CD25−CD45RA+CD45RO− 

naïve (Tnaïve) and CD25−CD45RA−CD45RO+ memory (Tmem) T-cells, and ex vivo phorbol 

myristate acetate (PMA)/ionomycin stimulated CD4+ T-cells separated into IL-17-positive 

(CD25−IL17A+; Th17) and IL-17-negative (CD25−IL17A−; Thstim) subsets. We also 

examined naïve and memory CD8+ T-cells, B-cell centroblasts from pediatric tonsils 

(CD20+CD10+CXCR4+CD44−), and peripheral blood B-cells (CD20+) and monocytes 

(CD14+). We mapped six histone modifications by chromatin immunoprecipitation-

sequencing (ChIP-seq) for all ten populations, and performed RNA-sequencing (RNA-seq) 

for each CD4+ T-cell population. We also incorporated data for B-lymphoblastoid cells17, 

Th0, Th1 and Th2 stimulated T-cells10, and non-immune cells from the NIH Epigenomics 

Project25 and ENCODE26, for a total of 56 cell types.

For each cell type, we computed a genome-wide map of cis-regulatory elements based on 

H3 lysine 27 acetylation (H3K27ac), a marker of active promoters and enhancers12. We then 

clustered cell types based on these cis-regulatory element patterns (Extended Data Figure 7). 

Fine distinctions could be drawn between CD4+ T-cell subsets based on quantitative 

differences in H3K27ac at thousands of putative enhancers (Fig 2A). These cell type-

specific H3K27ac patterns correlate with the expression of proximal genes. In contrast, H3 

lysine 4 mono-methylation (H3K4me1) was more uniform across subsets, consistent with its 

association to open or ‘poised’ sites shared between related cell types12.

Mapping of autoimmune disease PICS SNPs to these regulatory annotations revealed 

enrichment in B-cell and T-cell enhancers (Fig 2A). A disproportionate correspondence to 

enhancers activated upon T-cell stimulation prompted us to examine such elements more 

closely. Substantial subsets of immune-specific enhancers markedly increase their H3K27ac 

signals upon ex vivo stimulation, often in conjunction with noncoding eRNA transcription, 

and induction of proximal genes (Figs 2A–B). Compared to naïve T-cells, enhancers in 

stimulated T-cells are strongly enriched for consensus motifs recognized by AP-1 TFs, 

master regulators of cellular responses to stimuli. PICS SNPs are strongly enriched within 

stimulus-dependent enhancers (p<10−20 for combined PMA/Iono; p<10−11 for combined 

CD3/CD28), while enhancers preferentially marked in unstimulated T-cells show no 

enrichment for causal variants. Candidate causal SNPs were further enriched in T-cell 

enhancers that produce noncoding RNAs upon stimulation (1.6-fold; p<0.01).

The association of candidate causal SNPs to immune enhancers increases with PICS 

probability score (Fig 2C). We estimate that immune enhancers overall account for ~60% of 

candidate causal SNPs, whereas promoters account for another ~8% of these variants 

(Extended Data Figure 7). When we compared these statistics against GWAS catalog SNPs, 

which were the focus of prior studies linking GWAS to regulatory annotations10,16–19,21, we 
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found that the subset of associated SNPs that do not correspond to a PICS SNP fail to show 

any enrichment for T-cell enhancers, relative to locus controls (Figs 2D–E). These data 

support the efficacy of PICS and link likely causal autoimmune disease variants to specific 

enhancers activated upon immune stimulation.

Cell-Type Specific Signatures of Complex Diseases

Along with the 21 autoimmune diseases, we predicted causal SNPs for 18 other traits and 

diseases (Methods). Comparing SNP locations with chromatin maps for 56 cell types 

revealed the cell type-specificities of cis-regulatory elements that coincide with PICS SNPs, 

thus predicting cell types contributing to each phenotype (Fig 3). The patterns are more 

informative than the expression patterns of genes targeted by coding GWAS hits (Extended 

Data Figure 8). Notable examples include SNPs associated with Alzheimer’s disease and 

migraine, which map to enhancers and promoters active in brain tissues, and SNPs 

associated with fasting blood glucose, which map to elements active in pancreatic islets. 

Nearly all of the autoimmune diseases preferentially mapped to enhancers and promoters 

active in CD4+ T-cell subpopulations. However, a few diseases, such as systemic lupus 

erythematosus, Kawasaki disease, and primary biliary cirrhosis, preferentially mapped to B-

cell elements. Notably, ulcerative colitis also mapped to gastrointestinal tract elements, 

consistent with its bowel pathology. While the primary signature of type 1 diabetes SNPs is 

in T-cell enhancers, there is also enrichment in pancreatic islet enhancers (p<10−7). Thus, 

while immune cell effects may be shared among autoimmune diseases, genetic variants 

affecting target organs such as bowel and pancreatic islets may shape disease-specific 

pathology.

Causal Variants Map to Discretely-Regulated Elements Within Super-Enhancers

Genomic loci that encode cellular identity genes frequently contain large regions with 

clustered or contiguous enhancers bound by transcriptional co-activators and marked by 

H3K27ac. Recent studies showed that such ‘super-enhancer’ regions are enriched for 

GWAS catalog SNPs, including those related to autoimmunity18,19. Consistently, we find 

that PICS SNPs are 7.5-fold enriched in CD4+ T-cell super-enhancers, relative to random 

SNPs from the genome. We therefore parsed the topography of super-enhancers in immune 

cells using our genetic and epigenetic data.

The IL2RA locus exemplifies the complex landscape of enhancer regulation. IL2RA encodes 

a receptor with key roles in T-cell stimulation and Treg function15. The super-enhancer in 

this locus comprises a cluster of elements recognizable as distinct H3K27ac peaks (Fig 4A). 

Although the region meets the super-enhancer definition in multiple CD4+ T-cell types18, 

sub-elements are preferentially acetylated in Treg, Th17 and/or Thstim T-cells, consistent 

with differential regulation. Some sub-elements appear bound by T-cell master regulators, 

including FOXP3 in Tregs, TBET in Th1 cells, and GATA3 in Th2 cells. A systematic 

analysis indicates PICS SNPs are most enriched at distinct stimulus-dependent H3K27ac 

peaks within super-enhancer regions (Extended Data Figure 7).

PICS SNPs for eight autoimmune diseases map to distinct segments of the IL2RA super-

enhancer. For example, Immunochip data identify a candidate causal SNP for MS that has 
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no effect on autoimmune thyroiditis disease risk. Conversely, a candidate causal SNP for 

autoimmune thyroiditis has no effect on MS risk, despite the proximity of the two SNPs 

within the super-enhancer (Fig 4B). Furthermore, index SNPs for multiple other diseases are 

not in LD, suggesting that multiple sites of nucleotide variation in the locus have separable 

disease associations (Fig 4C). The distribution of PICS SNPs and the partially discordant 

regulation of sub-regions suggest that super-enhancers may comprise multiple discrete units 

with distinct regulatory signals, functions and phenotypic associations.

Disease Variants Map to TF Binding Sites, but Infrequently Disrupt Consensus Motifs

The enrichment of candidate causal variants within enhancers suggests that they affect 

disease risk by altering gene regulation, but does not distinguish the underlying mechanisms. 

Enhancer activity is dependent on complex interplay between TFs, chromatin, noncoding 

RNAs and tertiary interactions of DNA loci27. A straightforward hypothesis is that disease 

SNPs alter TF binding. Indeed, PICS SNPs tend to coincide with nucleosome-depleted 

regions, characterized by DNase hypersensitivity and localized (~150 bp) dips in H3K27ac 

signal26, which are indicative of TF occupancy (Fig 5A).

We therefore overlapped PICS SNPs with 31 TF binding maps generated by ENCODE26 

(Fig 5B). Candidate causal SNPs are strongly enriched within binding sites for immune-

related TFs, including NFκB, PU1, IRF4, and BATF. Variants associated with different 

diseases correlate to different combinations of TFs that control immune cell identity and 

response to stimulation. For example, MS SNPs preferentially coincide with NFκB, EBF1 

and MEF2A-bound regions, whereas rheumatoid arthritis and celiac disease SNPs 

preferentially coincide with IRF4 regions.

Next, we examined whether causal variants disrupt or create cognate sequence motifs 

recognized by these TFs. We focused on 823 of the highest-likelihood noncoding PICS 

SNPs, an estimated 30% of which represent true causal variants. We identified PICS SNPs 

that alter motifs for NFκB (n=2), AP-1 (n=8), or ETS/ELF1 (n=5). Overall, we identified 7 

known TF motifs and 6 conserved sequence motifs28,29 with a significant tendency to 

overlap causal variants likely to alter binding affinity. Of the highest-likelihood SNPs, 7% 

affected one of these over-represented motifs, with a roughly equal distribution between 

motif creation and disruption (Extended Data Fig 9).

A notable motif-disrupting PICS SNP is the Crohn’s disease-associated variant rs17293632 

(C>T, minor allele increases disease risk; PICS probability~54%), which resides in an intron 

of SMAD3 (Fig 5C). SMAD3 encodes a TF downstream of transforming growth factor-β 

(TGF-β) with pleiotropic roles in immune homeostasis30. The SNP disrupts a conserved 

AP-1 consensus site. ChIP-seq data for AP-1 factors (Jun, Fos) in a heterozygous cell line 

reveal robust binding to the reference sequence, but not to the variant sequence created by 

the SNP. As described above, a prominent AP-1 signature is associated with enhancers 

activated upon immune stimulation (Fig 2A). This suggests that rs17293632 may increase 

Crohn’s disease risk by directly disrupting AP-1 regulation of the TGF-β-SMAD3 pathway.

Despite this and other compelling examples, only ~7% of the highest-likelihood noncoding 

PICS SNPs alter an over-represented TF motif. Scanning a large database of TF motifs, we 
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found that ~13% of high-likelihood causal SNPs create or disrupt some known consensus 

sequence derived by in vitro selection28, while ~27% create or disrupt a putative consensus 

sequence derived from phylogenetic analysis29. However, these proportions are similar to 

the rate for background SNPs (Fig 5D). Even extrapolating for uncertainty in causal SNP 

assignments, our data suggest that at most 10–20% of noncoding GWAS hits act by altering 

a recognizable TF motif.

Notwithstanding their infrequent coincidence to the precise TF motifs, noncoding PICS 

SNPs have a strong tendency to reside in close proximity to such sequences. Candidate 

causal variants are most significantly enriched in the vicinity of NFκB, RUNX1, AP1, 

ELF1, and PU1 motifs (Extended Data Fig 9), with 26% residing within 100 bp of such a 

motif. These findings parallel recent studies of genetic variation in mice, where DNA 

variants affecting NFκB binding are dispersed in the vicinity of the actual binding sites31. 

Our results suggest that many causal noncoding SNPs modulate TF-dependent enhancer 

activity (and confer disease risk) by altering adjacent DNA bases whose mechanistic roles 

are not readily explained by existing gene regulatory models.

Functional Effects of Disease Variants on Gene Expression

To assess the effects of autoimmunity-associated genetic variation on gene regulation, we 

incorporated a recent study that mapped variants associated with heritable differences in 

peripheral blood gene expression32. We used PICS to predict causal expression quantitative 

locus (eQTL) SNPs, which we compared against random SNPs from the same loci. These 

eQTL SNPs are strongly enriched in promoters (9%) and 3′ UTRs (25%), but show 

relatively modest preference for immune enhancers (14%), compared to GWAS SNPs (Fig 

6A). Overall, ~12% of causal noncoding autoimmune disease variants also score as eQTL 

SNPs (Extended Data Figure 10). Disease SNPs that did not score as eQTLs in peripheral 

blood may score in more precise immune subsets in relevant regulatory contexts. 

Nonetheless, their modest overlap with eQTLs and their striking correspondence to 

enhancers suggest that most disease variants exert subtle and highly context-specific effects 

on gene regulation.

Incorporation of eQTL SNPs allowed us to link causal noncoding disease variants to specific 

genes. For example, PICS fine-mapping identified two SNPs in the IKZF3 locus with 

independent effects on IKZF3 expression, rs12946510 and rs907091. IKZF3 is an IKAROS 

family TF with key roles in lymphocyte differentiation and function33. Interestingly, the 

minor allele of rs12946510 is associated with decreased IKZF3 expression and increased 

MS risk (Fig 6B–C), whereas the minor allele of rs907091 is associated with increased 

IKZF3 expression, but does not affect disease risk. This suggests that disease risk is 

dependent on the specific mode and context in which a variant influences gene expression.

Despite strong evidence from fine-mapping that rs12946510 is the causal SNP affecting MS 

risk and IKZF3 expression, the underlying sequence does not reveal a clear mechanism of 

action. The disease SNP resides within a conserved element with enhancer-like chromatin in 

immune cells. It coincides with a nucleosome-depleted, DNase hypersensitive site bound by 

multiple TFs, including immune-related factors RUNX3, RELA (NFκB family member), 

EBF1, POU2F2 and MEF2 (Fig 6D). The C/T variation at this site does not create or disrupt 
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a readily recognizable consensus DNA motif, but overlaps a highly degenerate MEF2 motif 

and might thus modulate TF binding despite incomplete sequence specificity. This example 

illustrates the value of integrative functional genomic analysis for investigating the complex 

mechanisms by which noncoding variants modulate gene expression and disease risk.

Discussion

Interpretation of noncoding disease variants, which comprise the vast majority of GWAS 

hits, remains a momentous challenge due to haplotype structure and our limited 

understanding of the mechanisms and physiological contexts of noncoding elements. Here 

we addressed these issues through combination of high-density genotyping and epigenomic 

data. Focusing on autoimmune diseases, we triaged causal variants based solely on genetic 

evidence and integrated chromatin and TF binding maps to distinguish their likely functions 

and physiologic contexts. We found that most causal variants map to enhancers and 

frequently coincide with nucleosome-depleted sites bound by immune-related TFs. The 

resulting resource highlights specific TFs, target loci and pathways with disease-specific or 

general roles in autoimmunity.

Yet despite their close proximity to immune TF binding sites, only a fraction of causal 

noncoding variants alter recognizable TF sequence motifs. Moreover, disease variants have 

a distinct functional distribution and infrequently overlap peripheral blood eQTLs, which 

suggests that they exert highly contextual regulatory effects. Although these features of 

noncoding disease variants further challenge GWAS interpretation, they might not be 

unexpected. Biochemical and genetic manipulations have established the potential of motif-

adjacent sequences to influence TF activity34. Roles for such non-canonical sequences are 

also supported by the extended nucleotide conservation at many enhancers, most of which 

lies outside of known motifs, and the complex structural interactions and looping events that 

underlie gene regulation27. Furthermore, common variants contributing to polygenic 

autoimmunity are expected to have modest, context-restricted effects, given that strongly 

deleterious mutations would be eliminated from the population1. Compared to mutations 

that disrupt TF motifs, alterations to non-canonical determinants may produce subtle but 

pivotal alterations to the immune response, without reaching a level of disruption that would 

result in strong negative selection.

Systematic integration of fine-mapped genetic and epigenetic data implies a nuanced 

complexity to disease variant function that will continue to push the limits of experimental 

and computational approaches. Much work remains to be done to characterize SNPs whose 

causality can be firmly established through genotyping and to facilitate efforts to resolve 

GWAS signals that remain refractory to fine-mapping due to haplotype structure. 

Understanding their regulatory mechanisms could have broad implications for autoimmune 

disease biology and treatment, given genetic links to immune regulators, such as NFκB, 

IL2RA and IKZF3 (AIOLOS), and implied transcriptional and epigenetic aberrations, all of 

which are candidates for therapeutic intervention.
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Supplementary Methods

Cell Isolation and Culture

Purification and Culture of Human CD4+ T-cell Subsets—Cells were obtained from 

the peripheral blood of pooled healthy subjects in compliance with Institutional Review 

Board (Yale University and Partners Human Research Committee) protocols. Untouched 

CD4+ T cells were isolated by gradient centrifugation (Ficoll-Hypaque; GE Healthcare) 

using the RosetteSep Human CD4+ T cell Enrichment kit (Stemcell Technologies). CD4+ T 

cells were next subjected to anti-CD25 magnetic bead labeling (Miltenyi Biotech), to allow 

magnetic cell separation (MACS) of CD25+ and CD25− cells. Subsequently CD25+ cells 

were stained with fluorescence-labeled monoclonal antibodies to CD4, CD25 and CD127 

(BD Pharmingen), and sorted using a FACS ARIA (BD Biosciences) for 

CD25highCD127low/− Treg cells, which express FOXP3 (Biolegend) as confirmed by 

intracellular post-sort analysis by FACS (Extended Data Fig. 6). Dead cells were excluded 

by Propidium iodide (BD). An aliquot of CD25− cells was labeled with fluorescence-labeled 

monoclonal antibodies to CD4, CD45RA and CD45RO (BD Pharmingen), and sorted on a 

FACS ARIA to isolate CD45RO+CD45RA− memory (Tmem) and CD45RO−CD45RA+ 

naïve (Tnaive) CD4+ T-cell populations. Dead cells were excluded by Propidium iodide. 

Highly pure human Th17 cells were isolated with modifications as previously described35. 

In brief, CD25− cells were stimulated in serum-free X-VIVO15 medium (BioWhittaker) 

with PMA (50ng ml−1) and ionomycin (250ng ml−1; both from Sigma-Aldrich) for 8 hours 

and sorted by a combined MACS and FACS cell sorting strategy based on surface 

expression of IL-17A. Stimulated cells were stained with anti-IL-17A-PE (Miltenyi) and 

labeled with anti-PE microbeads (Miltenyi) and subsequently pre-enriched over an LS 

column (Miltenyi). The IL-17A negative fraction was used as control population (Thstim). 

MACS-enriched Th17 cells were further sorted on a FACS ARIA (BD) for highly pure 

IL-17A+ cells (Th17).

Purification of Human Naïve and Memory CD8+ T cells—Leukocyte-enriched 

fractions of peripheral blood (byproduct of Trima platelet collection) from anonymous 

healthy donors were obtained from the Kraft Family Blood Donor Center (DFCI, Boston, 

MA) in compliance with the institutional Investigational Review Board (Partners Human 

Research Committee) protocol. For two independent purifications of each cell subset, blood 

fractions from 7 and 8 donors were pooled. Total T cells were isolated by immunodensity 

negative selection using the RosetteSep Human T-cell Enrichment Cocktail (STEMCELL 

Technologies, Vancouver, Canada) and gradient centrifugation on Ficoll-Paque PLUS (GE 

Healthcare, Pittsburgh, PA), according to the manufacturer’s instructions. Subsequently, T 

cells were stained at 4°C for 30 min using fluorescently-labeled monoclonal anti-human 

CD8 (FITC, 2.5 μg/ml, clone RPA-T8, Biolegend, San Diego, CA), CD4 (PE, 1.25 μg/ml, 

clone RPA-T4, Biolegend), CD45RA (PerCP-Cy5.5, 2.4 μg/ml, clone HI100, eBioscience, 

San Diego, CA) and CD45RO (APC, 0.6 μg/ml, clone UCHL1, eBioscience) antibodies 

diluted in staining buffer (PBS supplemented with 2% fetal bovine serum, FBS). 4′,6-

diamidino-2-phenylindole (DAPI, 2.5 μg/ml, Life Technologies, Grand Island, NY) was also 

included to stain for dead cells. After washing with staining buffer, naïve 

(CD45RA+CD45RO−) and memory (CD45RA−CD45RO+) CD8+ or CD4+ were isolated 
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using a BD FACSAria 4-way cell sorter (BD Biosciences, San Jose, CA). Cell subsets were 

identified using a BD FACSDiva Software (BD Biosciences) after gating on lymphocytes 

(by plotting forward versus side scatters) and excluding aggregated (by plotting forward 

scatter pulse height versus pulse area), dead (DAPI+), and CD8/CD4 double positive cells 

(Extended Data Fig. 6). Cell purity was 90-94% CD8+ or 97–99% CD4+, and >99% naïve or 

memory.

Purification of Human B Centroblasts—Cells were obtained in compliance with 

Institutional Review Board (Partners Human Research Committee) protocols. For 

purification of human centroblasts, bulk mononuclear cells were isolated from fresh 

pediatric tonsillectomy specimens by mechanical disaggregation and Ficoll-Paque 

centrifugation36. MACS enrichment of germinal center cells was performed using anti-

CD10-PE-Cy7 (BD Biosciences), and anti-PE microbeads (Miltenyi Biotec). Centroblasts37 

(CD19+CD10+CXCR4+CD44−CD3−) were purified from the enriched germinal center cells 

by FACS antibodies for CD19 (APC, clone SJ25C1, BD), CD3 (BV606, clone OKT3, 

Biolegend), CD10 (PE-Cy7, clone HI10A, BD), CD44 (FITC, clone L178, BD) and CXCR4 

(PE, clone 12G5, eBioscience) (Extended Data Fig. 6).

Purification of Adult Human Peripheral Blood B Cells and Monocytes—Human 

peripheral B cells and monocytes were provided by the S. Heimfeld Laboratory at the Fred 

Hutchinson Cancer Research Center. The cells were obtained from human leukapheresis 

product using standard procedures. Briefly, Peripheral B cells (CD20+CD19+) and 

monocytes (CD14+) were isolated by immunomagnetic separation using the CliniMACS 

affinity-based technology (Miltenyi Biotec GmbH, Bergisch Gladbach, Germany) according 

to the manufacturer’s recommendation. Reagents, tubing sets, and buffers are purchased 

from Miltenyi Biotec.

ChIP-Seq

Following isolation (+/− ex vivo stimulation), cells were cross-linked in 1% formaldehyde at 

room temperature or 37°C for 10 minutes in preparation for ChIP. Chromatin 

immunoprecipitation and sequencing were performed as previously described38. Datasets 

were publicly released upon verification at epigenomeatlas.org.

RNA-Seq

RNA was extracted from CD4+ T-cell subsets with Trizol. Briefly, polyadenylated RNA 

was isolated using Oligo dT beads (Invitrogen) and fragmented to 200–600 base pairs and 

then ligated to RNA adaptors using T4 RNA Ligase (NEB), preserving strand of origin 

information as previously described39,40.

Enhancer Annotation and Clustering

ChIP-seq data were processed as previously described38. Briefly, ChIP-seq reads of 36 bp 

were aligned to the reference genome (hg19) using the Burroughs-Wheeler Alignment tool 

(BWA)41. Reads aligned to the same position and strand were only counted once. Aligned 

reads were extended by 250 bp to approximate fragment sizes and then a 25-bp resolution 

chromatin map was derived by counting the number of fragments overlapping each position. 
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H3K27ac and H3K4me1 peaks were identified by scanning the genome for enriched 1kb 

windows and then merging all enriched windows within 1kb, using as a threshold 4 genome-

normalized reads per base pair38. Adjacent windows separated by gaps less than 500bp in 

size were joined. H3K27ac peaks that do not overlap ±2.5 kb region of an annotated TSS 

were defined as candidate distal regulatory elements. In order to define the cell-specific 

H3K27ac peaks, we calculated the mean signal in 5Kb regions centered at distal H3K27ac 

peaks and sorted the peaks by the ratio of signal in one cell type to all remaining cell types. 

For each cell type, the top 1000 distal H3K27ac peaks with highest ratio were cataloged as 

the cell-specific distal H3K27ac peaks. The heatmaps for H3K27ac and H3K4me1 signal 

were plotted over 10kb regions surrounding all distal cell-specific H3K27ac peaks.

The distal H3K27ac peaks were assigned to their potential target genes if they locate in the 

gene body or within 100kb regions upstream the TSS. Expression levels of the target genes 

were derived from RNA-seq data. Paired-end RNA-seq reads were aligned to RefSeq 

transcripts using Bowtie242. RNA-seq data for B cells, B centroblast, Macrophages, Th1, 

Th2 and Th0 were retrieved from NCBI GEO and SRA database (Bnaive: GSE45982; 

BgerminalCenter: GSE4598243; Macrophages: GSE3695244; Th0, Th1 and Th2: 

SRA08267010). RNA-seq data for lymphoblastoid (GM12878) was retrieved from 

ENCODE project26. The number of reads per kilobase per million reads (RPKM) was 

calculated for each gene locus. Heatmap of RNA-seq data shows the average relative 

expression of all potential target genes for each cluster of cell type-specific regulatory 

elements.

Shared Genetic Loci for Common Human Diseases

Publicly available GWAS catalog data were obtained from the NHGRI website, http://

www.genome.gov/gwastudies/, current as of July 201345,46. Studies were included based on 

the criteria that they had at least 6 hits at the genome-wide significant level of p ≤ 5 ×10−8. 

From a set of 21 autoimmune diseases and 18 representative non-autoimmune diseases/

traits, we included index SNPs with significance p ≤ 10−6 for downstream analysis.

In some cases, the same disease had multiple index SNPs mapping to the same locus 

(defined as within 500kb of each other), due to independently conducted GWAS studies 

identifying different lead SNPs within the same region. For these loci, only the most 

significant GWAS index SNP was kept for downstream analysis, resulting in 1170 GWAS 

index SNPs for 39 diseases/traits. For each pair of diseases/traits, we compared their 

respective lists of index SNPs to find instances of common genetic loci (defined as the two 

diseases sharing index SNPs within 500kb of each other). The number of overlapping loci 

was calculated for each disease pair. To measure the genetic similarity between two 

diseases/traits, a disease-by-disease correlation matrix was calculated based on the number 

of overlapping loci for each disease/trait with each of the other diseases, and the results are 

shown in Fig. 1A.

Sources of Immunochip and Non-Immunochip GWAS Data

Summary statistics for published Immunochip studies of celiac disease47, autoimmune 

thyroiditis48, primary biliary cirrhosis49, and rheumatoid arthritis50 were downloaded from 
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the Immunobase website, http://www.immunobase.org/. Full genotype data and PCA 

analysis for the multiple sclerosis Immunochip GWAS study20 was provided by the 

International Multiple Sclerosis Genetics Consortium. For ankylosing spondylitis51, atopic 

dermatitis52, primary sclerosing cholangitis53, juvenile idiopathic arthritis54, and psoriasis55, 

Immunochip studies had been previously been published, but only the lead SNPs from 

associated Immunochip regions were available. We also included GWAS of autoimmune 

diseases that had not been studied using Immunochip, including asthma, allergy, Kawasaki 

disease, Behcet’s disease, vitiligo, alopecia arreata, systemic lupus erythematosis, systemic 

sclerosis, type 1 diabetes, Crohn’s disease, and ulcerative colitis. For these diseases and the 

18 representative non-immune diseases, index SNPs from the GWAS catalog were used46. 

In addition, full genotype data and PCA analysis for the inflammatory bowel disease 

Immunochip GWAS study were provided by the International Inflammatory Bowel Diseases 

Genetics Consortium for purposes of calculating the statistical models used in PICS. 

Because the results for the IBD Immunochip analysis are unpublished, we used the 

previously published index SNP results for inflammatory bowel disease from the GWAS 

catalog.

Probabilistic Identification of Causal SNPs (PICS)

We developed a fine-mapping algorithm, which we call Probabilistic Identification of 

Causal SNPs (PICS), that makes use of densely-mapped genotyping data to estimate each 

SNP’s probability of being a causal variant, given the observed pattern of association at the 

locus. We developed PICS on large multiple sclerosis (MS) (14277 cases, 23605 controls20) 

and inflammatory bowel disease (IBD) cohorts (34594 cases, 28999 controls; unpublished 

data) that were genotyped using the Immunochip, a targeted ultra-dense genotyping array 

with comprehensive coverage of 1000 Genomes Project SNPs22 within 189 autoimmune 

disease-associated loci.

Analysis of IBD risk associated with SNPS at the IL23R locus presents an illustrative 

example of the LD problem and the potential for PICS to overcome this challenge (Extended 

Data Fig. 1). The most strongly associated SNP is rs11209026, a loss of function missense 

variant that changes a conserved arginine to glutamine at amino acid position 381 (R381Q) 

and decreases downstream signaling through the STAT3 pathway56,57. Association with 

IBD decreases with physical distance along the chromosome, due to rare recombination 

events that break up the haplotype and distinguish the causal missense mutation from other 

tightly linked neutral variants. These rare informative recombination events would be 

missed by standard genotyping arrays with probes spread thinly across the entire genome.

For neutral SNPs whose association signal is only due to being in LD with a causal SNP, the 

strength of association, as measured by chi-square (or log-pvalue, since chi-square and log-

pvalue are asymptotically linear) scales linearly with their r2 to the causal SNP. This is 

because strength of association is linear with r2 by the formula for the Armitage Trend 

Test58:
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where χ2 is the chi-square association test statistic, n is the sample size, and r2 is the square 

of the correlation coefficient.

This linear trend is observed at the IL23R locus, consistent with a model where R381Q is the 

causal variant, and neutral SNPs demonstrate association signal in proportion to their LD to 

the causal variant (Extended Data Fig. 1). SNPs in linkage to R381Q do not perfectly fall on 

the expected line, due to statistical fluctuations. Independent association studies for the same 

disease tend to nominate different SNPs within a given locus as their best association, due to 

statistical fluctuation pushing a different SNP to the forefront in each subsequent study59–62. 

Note that a group of SNPs that are strongly associated to disease but are not in linkage with 

rs11209026 (R381Q) represent independent association signals at the locus.

Although we know from functional studies that R381Q is the likely causal variant, we 

sought additional statistical evidence to support R381Q as the causal variant, and to refute 

the null hypothesis that the prominent association of R381Q (compared to other SNPs in the 

haplotype) is due to chance. We simulated 1000 permutations by fixing the association 

signal at R381Q, but with all other SNPs being neutral, while preserving the LD 

relationships between SNPs in the locus. An odds ratio of 1.2 was used rather than the ~2-

fold odds ratio naturally observed at R381Q, because this was more representative of the 

modest association signal strengths observed at other GWAS loci. For each round of 

permutation, we obtained the association signal at all SNPs in the locus. Because only the 

association signal at R381Q is fixed, the signal at the remaining neutral SNPs in the locus 

are free to vary due to statistical fluctuations; four typical examples of simulated association 

results at the R381Q locus are shown (Extended Data Fig. 1), including two examples where 

the causal variant is not the most strongly associated SNP in the locus. From these 1000 

iterations, we calculated the standard deviation in the association signal for each of the SNPs 

in the IL23R locus (Extended Data Fig. 2). We show that the distribution of association 

signals for each SNP approximates a normal distribution, centered at the expected value 

based on that SNP’s r2 to the causal variant (Extended Data Fig. 2).

These permutations demonstrate that the causal variant need not be the most strongly 

associated SNP within the locus, due to statistical fluctuations. Rather, given the observed 

pattern of association at a locus, we are interested in knowing the probability of each SNP 

within the locus to be the causal variant. We can use Bayes’ theorem to infer the probability 

of each SNP being the causal variant, by using information derived from the permutations. 

Since the prior probability of each SNP to be the causal variant is equal, the SNP most likely 

to be the causal variant is therefore the SNP whose simulated signal most closely 

approximates the observed association at the locus. By performing permutations of a 

simulated association signal at each SNP within the locus, we can estimate the probability 

that the SNP could lead to the observed association at the locus.

For example, consider a two SNP example where SNP A and SNP B are in LD, and SNP A 

is the lead SNP in the locus (Extended Data Fig. 2). If we are interested in knowing 

P(Bcausal|Alead), i.e. the probability that SNP B is the causal variant given that SNP A is the 

top signal in the locus, then by Bayes’ theorem:
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Where P(Alead|Bcausal) is the probability of SNP A being the top signal in the locus, given 

that SNP B is the causal variant. P(Alead|Bcausal) is straightforward to calculate by 

performing permutations with a simulated signal at SNP B, and measuring the number of 

permutations where SNP A emerges as the top signal in the locus despite SNP B being the 

actual causal variant. We have assumed that the prior probability of each SNP to be the 

causal variant or the lead SNP is equal, although this could be adjusted based on external 

information, such as functional annotation of the SNP to be a coding variant.

Using the formula above, we calculate both P(Bcausal|Alead) and P(Acausal|Alead), and then 

normalize both of these probabilities so that P(Bcausal|Alead) + P(Acausal|Alead) = 1. In cases 

where there are more than two SNPs to consider, we similarly normalize the probabilities so 

that they sum to 1. Probabilities were calculated for all SNPs with r2 > 0.5 to the lead SNP.

Because the calculation of thousands of permutations is computationally expensive and 

requires full genotype data, we sought to generalize the results of the permutation-based 

method in order to extend it to the analysis of autoimmune diseases for which Immunochip 

data were not available, or only the identity of the lead index SNPs was reported, such as 

from the GWAS catalog. We developed a general model, where PICS was able to calculate 

P(Bcausal|Alead), where B is a SNP within a locus, and A is the lead SNP in the locus, by 

using LD relationships from the Immunochip where these were available, and from the 1000 

Genomes Project otherwise. Since the distribution of association signal at neutral SNPs in 

the locus approximates a normal distribution, given the lead SNP in the locus, we need to be 

able to estimate the mean expected association for a neutral SNP in LD with the lead SNP, 

and the standard deviation for that SNP.

The expected mean association signal for SNPs in the locus scales linearly with r2 to the 

causal SNP in the locus. We derived an approximation for the standard deviation for each 

SNP in the locus based on the results of empiric testing. We picked 30,000 random SNPs 

from densely-mapped Immunochip loci, with half coming from the MS Immunochip data, 

and half coming from the IBD Immunochip data. For each SNP, we simulated 100 

permutations with that SNP being the causal variant. SNPs selected had minor allele 

frequency above 0.05, and the odds ratio used varied from 1.1 fold to 2.0 fold. The number 

of cases and controls and total sample size were also allowed to randomly vary from 1%–

100% of the total number of samples in the original studies. These results indicated that the 

standard deviation for the association signal at a SNP in LD (with r2>0.5) to a causal variant 

in the locus was approximately:

where s is the standard deviation of the association signal at the SNP, m is the expected 

mean of the association signal at the SNP, indexpval is the −log10(p-value) of the causal 

Farh et al. Page 15

Nature. Author manuscript; available in PMC 2015 August 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



SNP in the locus, r2 is the square of the correlation coefficient (a measure of LD) between 

the SNP and the causal SNP in the locus, and k is an empiric constant that can be adjusted to 

fit the curve; in practice, we found that choosing k from a wide range of values between 6 

and 8 had little measurable effect on the candidate causal SNPs selected, and we used a 

value of k=6.4. The results of the 30,000 simulated iterations and the empiric curve fitted 

using the above equation is shown in Extended Data Fig. 3. To verify that our method was 

applicable to a wide range of case-control ratios and effect sizes, we performed six 

additional simulations, with the percentage of case samples fixed at 10%, 20%, and 50%, 

and the effect sizes of causal SNPs fixed at 1.2-fold, 1.5-fold, and 2.0-fold, which cover a 

broad range of parameters likely to be encountered in practical GWAS studies (Extended 

Data Fig. 3). We found that for all six scenarios, the relationship between r2 to the causal 

SNP and standard deviation similarly followed the empirically fitted curve.

For each SNP in the locus, we used the estimated mean and standard deviation of the 

association signal at each neutral SNP in LD (r2 > 0.5) to the lead SNP in the locus to 

calculate the probability of each SNP to be the causal variant relative to the lead SNP. We 

then normalized the probabilities so that the total of their probabilities summed to 1.

For diseases where summary SNP information was available, but the r2 relationships 

between SNPs was unknown, the r2 relationship was estimated based on the ratio between 

the association signal at the lead SNP versus the SNP in question. For diseases where only 

the lead SNP was known, r2 values were drawn from the LD relationships from the MS 

Immunochip study if the SNP was from an Immunochip, or from the 1000 Genomes Project 

otherwise. 1000 Genomes European LD relationships were used for diseases, except for 

Kawasaki disease, for which 1000 Genomes East Asian LD relationships were used. For 

diseases which had both GWAS catalog results and Immunochip results, we used 

Immunochip results whenever possible, and GWAS catalog results in regions outside 

Immunochip dense-mapping coverage.

Multiple Independent Association Signals

For the MS data, we were able to use full genotyping information to distinguish multiple 

independent signals. We used stepwise regression to condition away SNPs one at a time 

until no associations remain at the p<10−6 level, which is an effective method for separating 

independent signals, when LD between the independent causal variants is low. We then 

treated each independent signal separately for the purpose of using PICS to derive the likely 

causal variants.

Missing Immunochip Data

For the minority of SNPs that were missing from the Immunochip, we used 1000 Genomes 

SNPs LD relations to the index SNP to estimate their probability of being the causal SNP. 

For the diseases with only Immunochip summary statistic data, we could not be certain of 

the LD relationships, and therefore we estimated the LD to the index SNP from the 

difference between the association at the lead SNP and the SNP in question, since these 

follow a linear relationship. For the diseases that only had Immunochip index SNP data, we 
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used Immunochip LD relationships where available from the MS data, and 1000 Genomes 

SNPs LD relations to the index SNP where these were not available.

Distance between GWAS Catalog SNPs and Lead SNPs

For Immunochip regions that were previously studied by non-Immunochip studies, we 

examined the performance of prior non-fine-mapped studies at correctly determining the 

lead SNP. GWAS catalog SNPs within 200kb of Immunochip regions were considered, and 

the LD and genomic distance between the catalog SNP and any Immunochip lead SNPs for 

that disease in the Immunochip region were measured and reported in the histograms in Fig. 

1D and Extended Data Fig. 5. PICS was also used to calculate the probability of GWAS 

catalog SNPs to be causal variants; the probability was 5.5% on average.

Number of Candidate Causal SNPs per GWAS Signal

For each GWAS signal, we obtained a set of candidate causal SNPs, each with a probability 

of being the causal variant. For each signal, we asked what was the minimum number of 

candidate causal SNPs required to to cover at least 75% of the probability (Fig. 1E).

Distribution of GWAS Signals in Functional Genomic Elements: Signal to Background

For downstream analyses, we considered the set of 4905 candidate causal SNPs which had 

mean probability of greater than 10% of being the candidate causal SNP (the cutoff was 

probability > 0.0275). We performed 1000 iterations, picking 4905 minor-allele-frequency-

matched random SNPs from the same loci (from genomic regions within 50kb of the 

candidate causal SNPs and excluding the actual causal SNPs). It was necessary to match for 

minor-allele-frequency because lower MAF SNPs are far more likely to be coding variants. 

Furthermore, it was necessary to match for locus, because GWAS SNPs are greatly enriched 

at gene bodies, and using a background of random 1000 genome SNPs for comparison 

results in massive nonspecific enrichment of all functional elements. Because we are 

comparing the candidate causal SNPs to a background set of control SNPs from the same 

regions, the observed enrichments at functional elements strongly argues that PICS 

effectively predicts causal variants within the loci. For each functional category (missense, 

nonsense, and frameshift were merged), we calculated the number of actual candidate causal 

SNPs above mean background (mean of 1000 random iterations), divided by the total 

number of GWAS signals represented (635), and used these results to populate the pie chart 

indicating the approximate percentage of GWAS signals that can be attributed to each 

assessed functional category (Fig. 6).

Analysis of ex vivo Stimulation-dependent Enhancers

We searched for motifs enriched in cell type-specific enhancers in the five stimulated T-cell 

subsets (PMA/Ionomycin stimulated Thstim and Th17 T-cells, anti-CD3/CD28 stimulated 

Th0, Th1, and Th2 T-cells) compared to enhancers in naïve T-cells, using the motif finding 

program HOMER (http://homer.salk.edu/homer/)63. AP-1 was the most strongly enriched 

motif in enhancers that gained H3K27ac in the stimulated T-cells (Fig. 2), whereas this 

enrichment was absent when comparing naïve T-cells with memory or regulatory T-cells. 

Additional motifs that were enriched in the stimulation-dependent enhancers included 
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NFAT for the PMA/Ionomycin stimulation conditions and STAT for the anti-CD3/CD28 

stimulation condition.

Enhancer Signal-to-noise Analysis

We focused on 14 immune cell types (8 CD4+ T-cell subsets, 2 CD8+ T-cell subsets, CD14+ 

monocytes, and 3 B-cell subsets) and 19 representative non-immune cell/tissue types from 

the Roadmap Epigenomics project. Enhancers were broken up into 1kb segments and 

immune specific enhancers were identified based on the following criteria: (1) # of 

normalized mean H3K27ac ChIP-seq extended reads/base > 4, and (2) mean H3K27ac in the 

top 15th percentile when comparing immune cells to non-immune cells/tissues. We 

measured the percentage of PICS SNPs (with different probability cutoffs) that either map to 

an immune enhancer or cause an amino acid coding change (Fig. 2). We next considered the 

4300 candidate causal SNPs that were not associated with protein coding changes, and 

compared them against 1000 iterations of frequency and locus matched controls (picked 

from genomic regions within 50kb of the candidate causal SNPs and excluding the actual 

candidate causal SNPs; see discussion of background calculations above). Enhancers were 

enriched approximately 2:1 above background. We also measured the signal to backround 

ratio for GWAS signals that had been attributed to coding variants; these produced a much 

lower signal to background ratio for immune enhancers, as would be anticipated by the fact 

that most of these are acting on coding regions rather than enhancers (Extended Data Fig. 7). 

The mean signal above background was shown in a pie chart (Fig. 6).

Comparison to Other Methods for Determining Candidate Causal Variants

We compared the efficacy of PICS versus previously published methods used to determine 

candidate causal variants (Fig. 2D–E). We first considered studies that had used cutoffs of 

r2=1.0 and r2>0.8 to determine likely causal SNPs. Because prior studies had not made use 

of dense genotyping data, we used only the GWAS catalog results for this comparison, and 

applied PICS, and the two r2-cutoff criteria. In practice these were much more stringent than 

prior analyses, because we limited the GWAS catalog studies to those that produced 6 or 

more genome-wide significant hits, thereby pruning underpowered studies. We also required 

a significance of p<10−6 for index SNPs, and merged index SNPs at the same locus to use 

the strongest and most accurate lead SNP. We found that PICS autoimmunity SNPs were 

much more likely to map to immune enhancers than SNPs identified by the other statistics. 

In addition, when the PICS SNPs which overlapped the r2>0.8 and r2>1.0 sets were 

removed, the remaining SNPs did not show any enrichment above background. In contrast, 

the candidate causal SNPs identified by PICS, but missed by both of the other 

methodologies, were significantly enriched for immune enhancers. Background was 

calculated based on random SNPs drawn from the same loci (within 50kb, frequency-

matched controls) as the candidate causal SNPs.

We also compared PICS with a recently reported Bayesian approach64, using a recently 

published study of MS20 that employed this methodology to call candidate causal SNPs. 

Because this published method required full genotypes to be available, this comparison was 

limited to only the MS dataset. Both PICS and the published method are Bayesian 

approaches, where each SNP within the locus is given equal prior consideration to be the 
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causal variant, and the algorithm then weighs each SNP based on the likelihood of each 

model given the data. However, the PICS method provides two advantages. First, the 

probabilities assigned to each SNP by PICS are determined empirically using permutation, 

rather than using a theoretical estimate for the weight of each SNP. Second, PICS can be 

generalized to all GWAS data with publicly available summary statistic data and does not 

rely on genotype data.

For the same MS immunochip dataset, PICS called 434 candidate causal SNPs, while the 

prior method called 4070 candidate causal SNPs; 177 SNPs were shared between the two 

analyses. Of the 434 PICS candidate causal SNPs, 26.5% overlapped immune enhancers, 

whereas 9.5% of the SNPs from the other method overlapped immune enhancers; the 

background rate of random SNPs from the same loci overlapping immune enhancers was 

8% (Extended Data Fig. 4). Because the Wellcome Trust (Maller et al.) method is clearly 

less stringent than PICS, we also tried using a high confidence set of SNPs derived by that 

method, by selecting the top SNPs such that their average probability of being a causal 

variant was 10% (the same cutoff used for the PICS SNPs). There were 165 SNPs in this 

high confidence set, compared to 434 for PICS, with an overlap of 65 SNPs. 20.3% of the 

candidate causal SNPs in the high confidence Maller et al. set overlapped immune 

enhancers. Although anecdotal, these results suggest that PICS performs at least as well as 

the prior method.

Tissue-specificity of Diseases

We used PICS fine-mapping to determine the set of candidate causal SNPs for each of 39 

different diseases, and examined whether they were enriched within the enhancers most 

specific to each cell type (defined as being in the top 15th percentile of H3K27ac signal 

compared to other cell types, and with > 1 normalized mean H3K27ac ChIP-seq extended 

reads/base). To compare enhancer regions across different cell types, we first subdivided 

regions of the genome that were marked as enhancers into enhancer segments ~1kb in size. 

Next, H3K27ac read density at each enhancer segment in the genome was compared across 

all 33 cell types to determine the cell types in the top 15th percentile (H3K27ac signal was 

quantile normalized across the cell types prior to comparison). The heatmap (Fig. 3) depicts 

p-values for the enrichment of PICS SNPs for each disease in H3K27ac elements for each 

cell type, as calculated by the chi square test. For this comparative analysis, enrichment of 

PICS SNPs was measured against a background of all common 1000 Genomes SNPs. We 

used this approach because the goal was to highlight cell type-specificity of the diseases, 

which would have been normalized out by the rigorous locus controls used above, and given 

that the specificity of PICS SNPs for enhancers within the loci was already established. We 

also mapped the expression patterns of genes with PICS candidate causal coding SNPs 

associated with Crohn’s disease, MS and rheumatoid arthritis (Extended Data Fig. 8).

Super-enhancer Enrichment

The full set of loci called as super-enhancers18 in CD4+ T-cell subsets (Tnaive, Tmem, Th17, 

ThStim) were merged and identified as CD4+ T-cell super-enhancer regions. These regions 

often contain clusters of discrete enhancers marked with H3K27ac, separated by non-

acetylated regions. We assessed if PICS SNPs mapping to super-enhancers were more likely 
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to occur in H3K27ac-marked enhancer regions than in intervening regions. Within CD4+ T-

cell super-enhancer regions, we compared overlap of PICS candidate causal SNPs with 

CD4+ T-cell H3K27ac regions, compared to frequency-matched background SNPs drawn 

from these same regions (Extended Data Fig. 7). H3K27ac intervals in CD4+ T-cell super-

enhancers were called based on being in the top 15th percentile in mean H3K27ac in T-cells 

compared to the other 25 cell types. In addition, we assessed overlap between PICS SNPs 

and H3K27ac elements preferential to either stimulated or unstimulated CD4+ T-cells. 

Stimulated CD4+ T-cell elements were defined as those with a mean increase of >25% in 

H3K27ac in the (average of) Th17, ThStim, Th0, Th1, Th2 cells, compared to the Tnaive, 

Tmem, Treg; the remainder of the CD4+ T-cell set were defined as unstimulated elements.

Fig. 4 shows that some sub-elements within IL2RA super-enhancer locus appear bound by 

T-cell master regulators based on published ChIP-Seq data, including FOXP3 in Tregs, 

TBET in Th1 cells, and GATA3 in Th2 cells65,66.

Noncoding RNA Analysis

We next examined the set of disease-associated enhancers, i.e. immune enhancers 

containing PICS autoimmunity SNPs, and their association with noncoding RNAs. 

Noncoding RNA transcripts were called based on a RNA-seq read density of 0.5 genome-

normalized reads per bp over a window size of at least 2kb, excluding RNA transcripts 

overlapping annotated exons or gene bodies. We found that enhancers containing PICS 

autoimmunity SNPs were enriched for noncoding transcript production, primarily consistent 

with unspliced enhancer-associated RNAs. Candidate causal SNPs were enriched 1.6-fold 

within T-cell enhancers that transcribed noncoding RNAs, compared to T-cell enhancers 

overall (p<0.01).

H3K27ac and DNase Profiles

We measured H3K27ac profiles and DNase hypersensitivity profiles in a 12kb window 

centered around candidate causal SNPs, taking the average signal for the 14 immune cell 

types for which H3K27ac was available, and immune cell types from ENCODE26 for which 

DNase was available (CD14+, GM12878, CD20+, Th17, Th1, Th2). Average normalized 

reads for H3K27ac and DNase centered at PICS SNPs are displayed in Fig. 5A.

Transcription Factor ChIP-Seq Binding Site Analysis

We compared the enrichment of PICS autoimmunity SNPs at TF binding sites identified by 

ENCODE ChIP-Seq67, relative to random SNPs drawn from the same loci (50kb window 

around the candidate causal SNPs, frequency matched). We show the results for the 31 TFs 

whose binding sites are most significantly enriched for PICS SNPs (Fig. 5B).

Motif Creation / Disruption Analysis

We downloaded consensus motifs from Selex28 and Xie et al.29 (represented as degenerate 

nucleotide codes). We used the 853 highest probability non-coding PICS SNPs (mean 

probability = 0.30, cutoff >0.1187), representing 403 different GWAS signals. For each 

candidate causal SNP, we examined whether it created or disrupted a known motif from 

Selex or Xie et al. For comparison, we ran 1000 iterations using frequency-matched random 
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SNPs drawn from the same loci (within 50kb of the PICS SNPs). We found several known 

motifs (Extended Data Fig. 9) to be significantly enriched, including AP1, ETS, NFKB, 

SOX, PITX, as well as several unknown conserved motifs (Extended Data Fig. 9). 

Subtracting the number of motifs found to be disrupted against that expected by background, 

and dividing by the total number of GWAS signals, we estimate that approximately 11% of 

noncoding GWAS hits can be attributed to direct disruption or creation of TF binding 

motifs.

Neighboring Motif Analysis

We compared the sequence within 100nt of high-likelihood PICS SNPs (cutoff >0.1187) 

against random flanking sequence (10kb away on either side from the causal SNPs) and 

looked for enriched motifs using HOMER (http://homer.salk.edu/homer/)63. We found 

significant enrichments for NFKB, RUNX, AP1, ELF1, and PU1 (Extended Data Fig. 9). 

Interestingly, there was a palindromic unknown motif TGGCWNNNWGCCA (p<10−4) that 

was significant both in this method and in the motif disruption/creation analysis, suggesting 

a yet uncharacterized TF motif with relevance in autoimmunity.

Expression Quantitative Trait Loci (eQTL) Analysis

We used PICS to predict causal SNPs from a peripheral blood eQTL dataset with 1000 

Genomes summary statistic data available for all cis-eQTLs. We required a gene to have a 

cis-eQTL with a p-value < 10−6 for this analysis, giving us 4136 genes. For each gene we 

applied PICS. We considered a GWAS hit to score as an eQTL if any GWAS PICS SNP in 

the locus coincided with an eQTL PICS SNP with average probability >0.01%. We found 

that 11.6% (74/636) of GWAS hits were also eQTL hits. In addition, 18.5% (15/81) of 

coding GWAS hits also showed eQTL effects, suggesting that they may actually operate at 

the transcriptional level, in addition to any coding effects they may have.

To quantify overlap of candidate causal eQTL SNPs with functional elements, we compared 

PICS eQTL SNPs against frequency-matched background SNPs drawn from the same loci 

(within 50kb) in 1000 iterations. These comparisons are shown in signal-to-background bar 

graphs for both coding/transcript-related functional elements and for enhancers and 

promoters (Extended Data Fig. 10). The signal above mean background was calculated for 

each functional category, and these results were compared against the results for GWAS hits 

in the pie charts shown in Fig. 6A.

We further examined whether the magnitudes of disease-associated eQTLs differed, 

compared to the space of all eQTLs (Extended Data Fig. 10). Disease-associated variants 

had modestly larger effects on gene expression (p<10−6 by rank-sum test), but did not 

necessarily correspond to the strongest eQTLs.
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Extended Data

Extended Data Figure 1. GWAS Result for IBD Immunochip data at IL23R locus (actual data a–
c, simulated permutationd d–e)
(a) Each of the 500 SNPs in the IL23R densely genotyped locus is plotted according to its 

association signal and position along the chromosome. The R381Q missense variant is 

circled in red. (b) Each of the 500 SNPs in the IL23R densely genotyped locus is plotted 

according to its association signal and r2 linkage to R381Q. (c) Same as (b), but showing the 

association signal on the y-axis in chi-square units. Over the range of values typically 

encountered in GWAS analyses, chi-square units and log p-value are asymptotically linear. 

(d) Simulated permutation analysis of signal at IL23R locus. 1.2-fold odds ratio signal was 

simulated at the R381Q SNP by fixing the association signal at R381Q, but permuting cases 

and controls such that all other SNPs are neutral and vary only with statistical noise. Four 

representative results from the simulations are shown, with the panels on the left showing 
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the association signal in genomic space, and the panels on the right (e) showing the 

association signal for each SNP in relation to r2.

Extended Data Figure 2. Calculating the Relative Likelihood of Being the Causal SNP from 
Standard Deviation in Association Signal
(a) For each SNP in the IL23R locus, the mean association signal and the standard deviation, 

calculated across 1000 permutations (using a 1.2-fold odds ratio at the R381Q SNP), are 

shown in genomic space and (b) in terms of each SNP’s r2 linkage disequilibrium to the 

causal R381Q variant. (c) The distribution of association signals at rs77319898 (r2 = 0.71 to 

the causal variant) for 1000 permutations is shown. The distribution of association signal 

values at each SNP approximated a normal distribution. (d) PICS analysis of a two SNP 

case to determine the relative likelihood of each to explain the pattern of association at the 

locus. The SNPs represented here are R381Q (SNP A) and rs77319898 (SNP B), which has 

an r2 = 0.71 to R381Q. The signal at SNP B is well-explained by LD to SNP A, in a model 

where SNP A is treated as the putative causal variant. The error bars indicate the standard 

deviation in the association signal expected for SNP B, under the assumption that SNP A is 

causal. (e) The signal at SNP A is poorly explained by LD to SNP B, in a model where SNP 

B is treated as the putative causal variant. The error bars indicate the standard deviation in 

the association signal expected for SNP A, under the assumption that SNP B is causal.
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Extended Data Figure 3. Simulated Permutations and Empiric Curve Fitting for 30,000 GWAS 
Signals at Immunochip Loci
(a) We simulated 30,000 causal SNPs in densely mapped Immunochip regions. Plot shows 

the relationship between standard deviation in the association signal of neutral SNPs and 

their r2 to the causal SNP (neutral SNPs within r2 > 0.5 of the simulated causal variant are 

shown). The red line indicates the expected values derived from the empiric equation for the 

standard deviation of the association signal at neutral SNPs in LD with the causal SNP. (b) 
Plot shows the relationship between standard deviation in the association signals of neutral 

SNPs and the association signal of the causal SNP. Each panel represents the set of neutral 
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SNPs with the indicated r2 to the causal variant. (c) Simulated permutations over a range of 

case-control ratios. We plotted the relationship between standard deviation at neutral SNPs 

and their r2 to the causal SNP. Plots are shown for three series of simulations, with the 

percentage of cases fixed at 10%, 20%, and 50% of the total sample size, and a causal SNP 

p-value of 10−20. Red line indicates the expected values derived from the empiric equation 

for the standard deviation of the association signal at neutral SNPs in LD with the causal 

SNP in the locus. (d) Simulated permutations over a range of effect sizes. Plots are shown 

for three series of simulations, with the effect size fixed at 1.2-fold, 1.5-fold, and 2.0-fold, 

and the corresponding lead SNP p-values fixed at 10−20, 10−70, and 10−150 respectively.

Extended Data Figure 4. Comparison of PICS with prior Bayesian fine-mapping method
Bar graph shows the percentage of MS SNPs overlapping immune enhancers using different 

algorithms for calling candidate causal SNPs. The dotted line indicates the background rate 

at which random 1000 Genomes Project SNPs drawn from the same loci intersect immune 

enhancers (~8%). The categories shown are (from top to bottom): 257 SNPs called only by 

PICS, 3812 SNPs called only by the Bayesian method, 177 SNPs called by both PICS and 

the Bayesian method, all 434 SNPs called by PICS, 165 called by the Bayesian using a 

cutoff that only includes the highest confidence SNPs, and all 4070 SNPs called by Bayesian 

method.
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Extended Data Figure 5. LD Distance Between PICS lead SNPs and GWAS catalog index SNPs
Histogram indicates LD distance (in r2) between PICS fine-mapped Immunochip lead SNPs 

and previously reported GWAS catalog index SNPs from the same loci.
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Extended Data Figure 6. Purification of Human Immune Cell Subsets
(a) Immune populations subjected to epigenomic profiling in this study (red labels) or prior 

publications. (b) CD4+ cells were enriched based on CD25 expression (MACS) and 

subsequently sorted based on CD25highCD127low/− to isolate Treg cells; confirmed with 

FOXP3 intracellular staining. (c) CD4+CD25− cells were sorted to isolate Tmem 

(CD45RO+CD45RA−) and Tnaive (CD45RO−CD45RA+) cells. (d) CD4+CD25− cells were 

PMA/ionomycin stimulated and separated based on IL17 surface expression (MACS and 

FACS) to isolate Th17 cells (IL17+) and ThStim cells (IL17−). (e) Naïve 

(CD45RA+CD45RO−) and memory (CD45RA−CD45RO+) CD8+ T cells were isolated 
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using a BD FACSAria 4-way cell sorter. Results are shown from one of two large-scale 

sorts. (f) Mononuclear cells were isolated from pediatric tonsils. Following CD10 

enrichment (MACS), B centroblasts (CD19+CD10+CXCR4+CD44−CD3−) were purified by 

FACS.

Extended Data Figure 7. PICS SNPs Localize to Immune Enhancers and Stimulus-Dependent 
H3K27ac Peaks in Super-enhancers
(a) Correlation matrix of 56 cell types, clustered by similarity of H3K27ac profiles 

(high=red, low=blue). (b) Enrichment of noncoding autoimmune disease candidate causal 

SNPs within immune enhancers and promoters compared to background. The background 

expectation is based on frequency-matched control SNPs drawn from within 50kb of the 

candidate causal SNPs. Candidate causal SNPs that produced coding changes or were in LD 

with a coding variant (paired bars on the right) showed a smaller degree of enrichment in 

immune enhancers and promoters compared to background. (c) Overlap of PICS SNPs with 

H3K27ac peaks within T-cell super-enhancers. Bar plot shows overlap of PICS SNPs with 

H3K27ac peaks in super-enhancers in CD4+ T-cells, compared to random SNPs drawn from 

within the same super-enhancers (All CD4+; left bar graph). Adjacent bars show overlap to 
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H3K27ac peaks within CD4+ T-cell super-enhancers that do (Stim) or do not (Unstim) 

increase their acetylation upon stimulation.

Extended Data Figure 8. Expression Pattern of Genes with PICS Autoimmunity Coding SNPs
Heatmap shows the relative expression levels of genes with coding SNPs associated with 

Crohn’s disease, multiple sclerosis, and rheumatoid arthritis.
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Extended Data Figure. 9. Motifs Directly Altered by or Adjacent to Candidate Causal SNPs
(a) Known motifs (identified by conservation or SELEX) created or disrupted by candidate 

causal SNPs at a higher frequency than expected by chance when compared to control SNPs 

drawn from the same loci. (b) Additional motifs, identified by conservation, created or 

disrupted by candidate causal SNPs more frequently than by chance. (c) Known motifs 

significantly enriched within 100bp of candidate causal SNPs, compared to background 

control SNPs drawn from the same loci.
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Extended Data Figure 10. Enrichment of Candidate Causal eQTL SNPs in Functional Elements
(a) PICS was used to identify candidate causal SNPs for 4136 eQTL signals in peripheral 

blood. Bar plot show their overlap with indicated functional genic annotations. Background 

expectation was calculated based on frequency-matched control SNPs drawn from within 

50kb of the candidate causal SNPs. (b) Overlap of candidate causal eQTL SNPs with 

immune enhancers and promoters, versus background. (c) Magnitudes of disease-associated 

eQTLs compared to the space of all eQTLs. Histogram compares the magnitudes of PICS 

eQTL SNPs that overlap PICS autoimmunity SNPs against the full set of PICS eQTL SNPs.
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Figure 1. Genetic fine-mapping of human disease
a, GWAS catalog loci were clustered to reveal shared genetic features of common human 

diseases and phenotypes. Color scale indicates correlation between phenotypes (high=red, 

low=blue). b, Association signal to MS for SNPs at the IFI30 locus. c, Scatter plot of SNPs 

at the IFI30 locus demonstrates the linear relationship between LD distance (r2) to 

rs1154159 (red) and association signal. d, Candidate causal SNPs were predicted for 21 

autoimmune diseases using PICS. Histogram indicates genomic distance (bp) between PICS 

Immunochip lead SNPs and GWAS catalog index SNPs. e, Histogram indicates number of 

candidate causal SNPs per GWAS signal needed to account for 75% of the total PICS 

probability for that locus. f, Plot shows correspondence of PICS SNPs to indicated 

functional elements, compared to random SNPs from the same loci (error bars indicate 

standard deviation from 1000 iterations using locus-matched control SNPs).
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Figure 2. Epigenetic fine-mapping of enhancers
a, Heatmaps show H3K27ac and H3K4me1 signals for 1000 candidate enhancers (rows) in 

12 immune cell types (columns). Enhancers are clustered by the cell type-specificity of their 

H3K27ac signals. Adjacent heatmap shows average RNA-seq expression for the genes 

nearest to the enhancers in each cluster. Gray-scale (right) depicts the enrichment of PICS 

autoimmunity SNPs in each enhancer cluster (hypergeometric p-values calculated based on 

the number of PICS SNPs overlapping enhancers from each cluster, relative to random 

SNPs from the same loci). The AP-1 motif is over-represented in enhancers preferentially 

marked in stimulated T-cells, compared to naïve T-cells. b, Candidate causal SNPs 

displayed along with H3K27ac and RNA-seq signals at the PTGER4 locus. A subset of 

enhancers with disease variants (shaded) shows evidence of stimulus-dependent eRNA 

transcription. c, Stacked bar graph indicates percentage overlap with immune enhancers and 

coding sequence for PICS SNPs at different probability thresholds, compared to control 

SNPs drawn from the entire genome (All SNPs) or the same loci (Locus CTRL). d, Venn 

diagram compares PICS SNPs to GWAS catalog SNPs with indicated r2 thresholds. e, Bar 

graph indicates percentage overlap with annotated T-cell enhancers for PICS SNPs, GWAS 

SNPs at indicted thresholds, locus control SNPs, and three subsets of SNPs defined and 

shaded as in panel d.

Farh et al. Page 37

Nature. Author manuscript; available in PMC 2015 August 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3. Cell-type specificity of human diseases
Heatmap depicts enrichment (red=high; blue=low) of PICS SNPs for 39 diseases/traits in 

acetylated cis-regulatory elements of 33 different cell types.
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Figure 4. Disease variants map to discrete elements in super-enhancers
a, Candidate causal SNPs for autoimmune diseases are displayed along with H3K27ac, 

RNA-seq and TF binding profiles for the IL2RA locus, which contains a super-enhancer 

(pink shade). b, For all SNPs in the IL2RA locus, scatter plot compares strength of 

association with MS versus autoimmune thyroiditis. Immunochip data resolve rs706779 

(red) as the lead SNP for autoimmune thyroiditis and rs2104286 (blue) as the lead SNP for 

MS. c, LD matrix displaying r2 between lead SNPs for different diseases at the IL2RA locus 

confirms distinct and independent genetic associations within the super-enhancer.
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Figure 5. Causal variants map to regions of TF binding
a, Plot depicts composite H3K27ac and DNase signals26 in immune cells over PICS 

autoimmunity SNPs. PICS SNPs overall coincide with nucleosome-depleted, hypersensitive 

sites, indicative of TF binding. b, Bar plot indicates TFs whose binding is enriched near 

PICS SNPs for all 21 autoimmune diseases26. Heatmap depicts enrichment of these TFs near 

variants associated with specific diseases (red:high; blue:low). c, H3K27ac, DNaseI26 and 

conservation signals, and selected TF binding intervals are shown in a SMAD3 intronic 

locus. rs17293632, a noncoding candidate causal SNP for Crohn’s disease, disrupts a 

conserved AP-1 binding motif in an enhancer marked by H3K27ac in CD14+ monocytes. 

Summing of ChIP-seq reads overlapping the SNP in the heterozygous HeLa cell line shows 

that only the intact motif binds AP-1 TFs, Jun and Fos. d, Bar graph shows the fraction of 

PICS SNPs (black) versus random SNPs from the same locus (white) that create or disrupt 

one of the significantly enriched motifs, any Selex motif, or any conserved K-mer. Error 

bars indicate standard deviation from 1000 iterations using locus-matched control SNPs.
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Figure 6. Functional Effects of Disease Variants on Gene Expression
a, Pie charts show the fraction of PICS autoimmunity SNPs (left) or peripheral blood eQTLs 

(right) explained by the indicated genomic features. b, GWAS signal for MS risk at the 

IKZF3 locus. The minor allele of rs12946510 (red) is associated with both disease risk and 

eQTL effect (decreased IKZF3 expression), while the minor allele of rs907091 (blue) scored 

as eQTL only (increased IKZF3 expression). c, eQTL association signal for IKZF3 shown 

for the same regions as in b. d, H3K27ac, DNaseI and conservation signals, and selected TF 

binding intervals are shown in the vicinity of rs12946510, which occurs in a conserved site 

marked by H3K27ac in multiple cell types, including CD20+ B-cells, and bound by multiple 

TFs. The C/T variation at this SNP does not disrupt any clearly defined DNA motif, but 

coincides with a degenerate MEF2 motif.
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