1,481 research outputs found

    Allocating the Burdens of Climate Action: Consumption-Based Carbon Accounting and the Polluter-Pays Principle

    Get PDF
    Action must be taken to combat climate change. Yet, how the costs of climate action should be allocated among states remains a question. One popular answer—the polluter-pays principle (PPP)—stipulates that those responsible for causing the problem should pay to address it. While intuitively plausible, the PPP has been subjected to withering criticism in recent years. It is timely, following the Paris Agreement, to develop a new version: one that does not focus on historical production-based emissions but rather allocates climate burdens in proportion to each state’s annual consumption-based emissions. This change in carbon accounting results in a fairer and more environmentally effective principle for distributing climate duties

    Temperature dependence of optical transitions in AlGaAs

    Get PDF
    AlGaAs structures with different aluminum concentration (x = 0.0, 0.17, 0.30, and 0.40) were characterized by photoluminescence and photoreflectance techniques. The temperature dependence of optical transitions in the temperature ranging from 2 to 300 K were investigated. Y. P. Varshni [Physica (Utrecht) 34, 194 (1967)], L. Vina [Phys. Rev. B 30, 1979 (1984)], and R. Passler [Phys. Status Solidi B 200, 155 (1997)] models were used to fit the experimental points. The Passler model gave the best adjustment to the experimental points. The tree models showed that the empirical parameters obtained through the adjustment of the experimental data in the three different models are aluminum composition dependent in the ternary alloy. (C) 2001 American Institute of Physics.891116159616

    HIV Types, Groups, Subtypes and Recombinant Forms: Errors in Replication, Selection Pressure and Quasispecies

    Get PDF
    HIV-1 is a chimpanzee virus which was transmitted to humans by several zoonotic events resulting in infection with HIV-1 groups M P, and in parallel transmission events from sooty mangabey monkey viruses leading to infections with HIV-2 groups A H. Both viruses have circulated in the human population for about 80 years. In the infected patient, HIV mutates, and by elimination of some of the viruses by the action of the immune system individual quasispecies are formed. Along with the selection of the fittest viruses, mutation and recombination after superinfection with HIV from different groups or subtypes have resulted in the diversity of their patterns of geographic distribution. Despite the high variability observed, some essential parts of the HIV genome are highly conserved. Viral diversity is further facilitated in some parts of the HIV genome by drug selection pressure and may also be enhanced by different genetic factors, including HLA in patients from different regions of the world. Viral and human genetic factors influence pathogenesis. Viral genetic factors are proteins such as Tat, Vif and Rev. Human genetic factors associated with a better clinical outcome are proteins such as APOBEC, langerin, tetherin and chemokine receptor 5 (CCR5) and HLA B27, B57, DRB1{*}1303, KIR and PARD3B. Copyright (C) 2012 S. Karger AG, Base

    Predicting consumer biomass, size-structure, production, catch potential, responses to fishing and associated uncertainties in the world's marine ecosystems

    Get PDF
    Existing estimates of fish and consumer biomass in the world’s oceans are disparate. This creates uncertainty about the roles of fish and other consumers in biogeochemical cycles and ecosystem processes, the extent of human and environmental impacts and fishery potential. We develop and use a size-based macroecological model to assess the effects of parameter uncertainty on predicted consumer biomass, production and distribution. Resulting uncertainty is large (e.g. median global biomass 4.9 billion tonnes for consumers weighing 1 g to 1000 kg; 50% uncertainty intervals of 2 to 10.4 billion tonnes; 90% uncertainty intervals of 0.3 to 26.1 billion tonnes) and driven primarily by uncertainty in trophic transfer efficiency and its relationship with predator-prey body mass ratios. Even the upper uncertainty intervals for global predictions of consumer biomass demonstrate the remarkable scarcity of marine consumers, with less than one part in 30 million by volume of the global oceans comprising tissue of macroscopic animals. Thus the apparently high densities of marine life seen in surface and coastal waters and frequently visited abundance hotspots will likely give many in society a false impression of the abundance of marine animals. Unexploited baseline biomass predictions from the simple macroecological model were used to calibrate a more complex size- and trait-based model to estimate fisheries yield and impacts. Yields are highly dependent on baseline biomass and fisheries selectivity. Predicted global sustainable fisheries yield increases ≈4 fold when smaller individuals (< 20 cm from species of maximum mass < 1kg) are targeted in all oceans, but the predicted yields would rarely be accessible in practice and this fishing strategy leads to the collapse of larger species if fishing mortality rates on different size classes cannot be decoupled. Our analyses show that models with minimal parameter demands that are based on a few established ecological principles can support equitable analysis and comparison of diverse ecosystems. The analyses provide insights into the effects of parameter uncertainty on global biomass and production estimates, which have yet to be achieved with complex models, and will therefore help to highlight priorities for future research and data collection. However, the focus on simple model structures and global processes means that non-phytoplankton primary production and several groups, structures and processes of ecological and conservation interest are not represented. Consequently, our simple models become increasingly less useful than more complex alternatives when addressing questions about food web structure and function, biodiversity, resilience and human impacts at smaller scales and for areas closer to coasts

    Influence of the temperature on the carrier capture into self-assembled InAs/GaAs quantum dots

    Get PDF
    Photoluminescence (PL) spectroscopy and atomic-force microscopy (AFM) were used to investigate the size evolution of InAs quantum dots on GaAs(001) as a function of the amount of InAs material. Different families of islands were observed in the AFM images and unambiguously identified in the PL spectra, together with the signal of the wetting layer. PL measurements carried out at low and intermediate temperatures showed a thermal carrier redistribution among dots belonging to different families. The physical origin of this behavior is explained in terms of the different temperature dependence of the carrier-capture rate into the quantum dots. At high temperatures, an enhancement of the total PL-integrated intensity of the largest-sized quantum dots was attributed to the increase of diffusivity of the photogenerated carriers inside the wetting layer. (C) 2003 American Institute of Physics.931016279628

    Genetic diversity of Brazilian isolates of feline immunodeficiency virus

    Get PDF
    We isolated Feline immunodeficiency virus (FIV) from three adult domestic cats, originating from two open shelters in Brazil. Viruses were isolated from PBMC following co-cultivation with the feline T-lymphoblastoid cell line MYA-1. All amplified env gene products were cloned directly into pGL8MYA. The nucleic acid sequences of seven clones were determined and then compared with those of previously described isolates. The sequences of all of the Brazilian virus clones were distinct and phylogenetic analysis revealed that all belong to subtype B. Three variants isolated from one cat and two variants were isolated from each of the two other cats, indicating that intrahost diversity has the potential to pose problems for the treatment and diagnosis of FIV infection

    Scaling properties of protein family phylogenies

    Get PDF
    One of the classical questions in evolutionary biology is how evolutionary processes are coupled at the gene and species level. With this motivation, we compare the topological properties (mainly the depth scaling, as a characterization of balance) of a large set of protein phylogenies with a set of species phylogenies. The comparative analysis shows that both sets of phylogenies share remarkably similar scaling behavior, suggesting the universality of branching rules and of the evolutionary processes that drive biological diversification from gene to species level. In order to explain such generality, we propose a simple model which allows us to estimate the proportion of evolvability/robustness needed to approximate the scaling behavior observed in the phylogenies, highlighting the relevance of the robustness of a biological system (species or protein) in the scaling properties of the phylogenetic trees. Thus, the rules that govern the incapability of a biological system to diversify are equally relevant both at the gene and at the species level.Comment: Replaced with final published versio

    Wanted dead or alive : high diversity of macroinvertebrates associated with living and ’dead’ Posidonia oceanica matte

    Get PDF
    The Mediterranean endemic seagrass Posidonia oceanica forms beds characterised by a dense leaf canopy and a thick root-rhizome ‘matte’. Death of P. oceanica shoots leads to exposure of the underlying matte, which can persist for many years, and is termed ‘dead’ matte. Traditionally, dead matte has been regarded as a degraded habitat. To test whether this assumption was true, the motile macroinvertebrates of adjacent living (with shoots) and dead (without shoots) matte of P. oceanica were sampled in four different plots located at the same depth (5–6 m) in Mellieha Bay, Malta (central Mediterranean). The total number of species and abundance were significantly higher (ANOVA; P<0.05 and P<0.01, respectively) in the dead matte than in living P. oceanica matte, despite the presence of the foliar canopy in the latter. Multivariate analysis (MDS) clearly showed two main groups of assemblages, corresponding to the two matte types. The amphipods Leptocheirus guttatus and Maera grossimana, and the polychaete Nereis rava contributed most to the dissimilarity between the two different matte types. Several unique properties of the dead matte contributing to the unexpected higher number of species and abundance of motile macroinvertebrates associated with this habitat are discussed. The findings have important implications for the conservation of bare P. oceanica matte, which has been generally viewed as a habitat of low ecological value.peer-reviewe

    Analysis of Synaptic Proteins in the Cerebrospinal Fluid as a New Tool in the Study of Inborn Errors of Neurotransmission

    Get PDF
    Abstract In a few rare diseases, specialised studies in cerebrospinal fluid (CSF) are required to identify the underlying metabolic disorder. We aimed to explore the possibility of detecting key synaptic proteins in the CSF, in particular dopaminergic and gabaergic, as new procedures that could be useful for both pathophysiological and diagnostic purposes in investigation of inherited disorders of neurotransmission. Dopamine receptor type 2 (D2R), dopamine transporter (DAT) and vesicular monoamine transporter type 2 (VMAT2) were analysed in CSF samplesfrom 30 healthy controls (11 days to 17 years) by western blot analysis. Because VMAT2 was the only protein with intracellular localisation, and in order to compare results, GABA vesicular transporter, which is another intracellular protein, was also studied. Spearman’s correlation and Student’s t tests were applied to compare optical density signals between different proteins. All these synaptic proteins could be easily detected and quantified in the CSF. DAT, D2R and GABA VT expression decrease with age, particularly in the first months of life, reflecting the expected intense synaptic activity and neuronal circuitry formation. A statistically significant relationship was found between D2R and DAT expression, reinforcing the previous evidence of DAT regulation by D2R. To our knowledge, there are no previous studies on human CSF reporting a reliable analysis of these proteins. These kinds of studies could help elucidate new causes of disturbed dopaminergic and gabaergic transmission as well as understanding different responses to L-dopa in inherited disorders affecting dopamine metabolism. Moreover, this approach to synaptic activity in vivo can be extended to different groups of proteins and diseases

    Evaluation of cytotoxicity, antimicrobial activity and physicochemical properties of a calcium aluminate-based endodontic material

    Get PDF
    A calcium aluminate-based endodontic material, EndoBinder, has been developed in order to reduce MTA negative characteristics, preserving its biological properties and clinical applications. OBJECTIVES: The aim of this study was to evaluate the cytotoxicity, antimicrobial activity, pH, solubility and water sorption of EndoBinder and to compare them with those of white MTA (WMTA). MATERIAL AND METHODS: Cytotoxicity was assessed through a multiparametric analysis employing 3T3 cells. Antimicrobial activity against Enterococcus faecalis (ATCC 29212), Staphylococcus aureus. (ATCC 25923) and Candida albicans (ATCC 10556) was determined by the agar diffusion method. pH was measured at periods of 3, 24, 72 and 168 hours. Solubility and water sorption evaluation were performed following ISO requirements. Data were statistically analyzed by ANOVA and Tukey`s test with a significance level of 5%. RESULTS: EndoBinder and WMTA were non-cytotoxic in all tested periods and with the different cell viability parameters. There was no statistical differences between both materials (P>.05). All tested materials were inhibitory by direct contact against all microbial strains tested. EndoBinder and WMTA presented alkaline pH in all tested times with higher values of pH for WMTA (P<.05). Both materials showed values complying with the solubility minimum requirements. However, EndoBinder showed lower solubility than WMTA (P<.05). No statistical differences were observed regarding water sorption (P>.05). CONCLUSION: Under these experimental conditions, we concluded that the calcium aluminate-based endodontic material EndoBinder demonstrated suitable biological and physicochemical properties, so it can be suggested as a material of choice in root resorption, perforations and root-end filling
    • …
    corecore