228 research outputs found

    Assessing Quality of Care of Elderly Patients Using the ACOVE Quality Indicator Set: A Systematic Review

    Get PDF
    Background: Care of the elderly is recognized as an increasingly important segment of health care. The Assessing Care Of Vulnerable Elderly (ACOVE) quality indicators (QIs) were developed to assess and improve the care of elderly patients. Objectives: The purpose of this review is to summarize studies that assess the quality of care using QIs from or based on ACOVE, in order to evaluate the state of quality of care for the reported conditions. Methods: We systematically searched MEDLINE, EMBASE and CINAHL for English-language studies indexed by February 2010. Articles were included if they used any ACOVE QIs, or adaptations thereof, for assessing the quality of care. Included studies were analyzed and relevant information was extracted. We summarized the results of these studies, and when possible generated an overall conclusion about the quality of care as measured by ACOVE for each condition, in various settings, and for each QI. Results: Seventeen studies were included with 278 QIs (original, adapted or newly developed). The quality scores showed large variation between and within conditions. Only a few conditions showed a stable pass rate range over multiple studies. Overall, pass rates for dementia (interquartile range (IQR): 11%-35%), depression (IQR: 27%-41%), osteoporosis (IQR: 34%-43%) and osteoarthritis (IQR: 29-41%) were notably low. Medication management and use (range: 81%-90%), hearing loss (77%-79%) and continuity of care (76%-80%) scored higher than other conditions. Out of the 278 QIs, 141 (50%) had mean pass rates below 50% and 121 QIs (44%) had pass rates above 50%. Twenty-three percent of the QIs scored above 75%, and 16% scored below 25%. Conclusions: Quality of care per condition varies markedly across studies. Although there has been much effort in improving the care for elderly patients in the last years, the reported quality of care according to the ACOVE indicators is still relatively lo

    Body odor quality predicts behavioral attractiveness in humans

    Get PDF
    Growing effort is being made to understand how different attractive physical traits co-vary within individuals, partly because this might indicate an underlying index of genetic quality. In humans, attention has focused on potential markers of quality such as facial attractiveness, axillary odor quality, the second-to-fourth digit (2D:4D) ratio and body mass index (BMI). Here we extend this approach to include visually-assessed kinesic cues (nonverbal behavior linked to movement) which are statistically independent of structural physical traits. The utility of such kinesic cues in mate assessment is controversial, particularly during everyday conversational contexts, as they could be unreliable and susceptible to deception. However, we show here that the attractiveness of nonverbal behavior, in 20 male participants, is predicted by perceived quality of their axillary body odor. This finding indicates covariation between two desirable traits in different sensory modalities. Depending on two different rating contexts (either a simple attractiveness rating or a rating for long-term partners by 10 female raters not using hormonal contraception), we also found significant relationships between perceived attractiveness of nonverbal behavior and BMI, and between axillary odor ratings and 2D:4D ratio. Axillary odor pleasantness was the single attribute that consistently predicted attractiveness of nonverbal behavior. Our results demonstrate that nonverbal kinesic cues could reliably reveal mate quality, at least in males, and could corroborate and contribute to mate assessment based on other physical traits

    Urinary C-Peptide of Insulin as a Non-Invasive Marker of Nutritional Status: Some Practicalities

    Get PDF
    Nutritional status is a critical element of many aspects of animal ecology, but has proven difficult to measure non-invasively in studies of free-ranging animals. Urinary C-peptide of insulin (UCP), a small polypeptide cleaved in an equimolar ratio from proinsulin when the body converts it to insulin, offers great promise in this regard, and recent studies of several non-human primate species have utilized it with encouraging results. Despite this, there are a number of unresolved issues related to the collection, processing, storage and transport of samples. These include: contamination of samples on collection (most commonly by dirt or faeces), short-term storage before returning to a field station, differences in processing and long-term storage methods (blotting onto filter paper, freezing, lyophilizing), and for frozen samples, transportation while keeping samples frozen. Such issues have been investigated for urine samples in particular with respect to their effects on steroid hormone metabolites, but there has been little investigation of their effects on UCP measurement. We collected samples from captive macaques, and undertook a series of experiments where we systematically manipulated samples and tested the effects on subsequent UCP measurements. We show that contamination of urine samples by faeces led to a decrease in UCP levels by >90%, but that contamination with dirt did not have substantial effects. Short-term storage (up to 12 hours) of samples on ice did not affect UCP levels significantly, but medium-term storage (up to 78 hours) did. Freezing and lyophilization for long-term storage did not affect UCP levels, but blotting onto filter paper did. A transportation simulation showed that transporting frozen samples packed in ice and insulated should be acceptable, but only if it can be completed within a period of a few days and if freeze-thaw can be avoided. We use our data to make practical recommendations for fieldworkers

    Substance P induces localization of MIF/α1-inhibitor-3 complexes to umbrella cells via paracellular transit through the urothelium in the rat bladder

    Get PDF
    BACKGROUND: Macrophage migration inhibitory factor (MIF) is released into the intraluminal fluid during bladder inflammation in the rat complexed to α1-inhibitor-3 (A1-I3; a rodent proteinase inhibitor in the α-macroglobulin family). The location of A1-I3 in the bladder had not been investigated. Therefore, we examined the location of A1-I3 and MIF/A1-I3 complexes in the bladder and changes due to experimental inflammation. METHODS: Anesthetized male rats had bladders removed with no treatment (intact) or were injected with Substance P (SP; s.c.; saline vehicle). After one hour intraluminal fluid was removed, bladder was excised and MIF and A1-I3 levels were determined using ELISA and/or western-blotting. MIF co-immunoprecipitation determined MIF/A1-I3 complexes in the bladder. Bladder sections were immunostained for A1-I3 and MIF/A1-I3. RESULTS: A1-I3 immunostaining was observed in interstitial spaces throughout the bladder (including submucosa) but not urothelium in intact and saline-treated rats. RT-PCR showed that the bladder does not synthesize A1-I3, therefore, A1-I3 in the interstitial space of the bladder must be plasma derived. In SP-treated rats, A1-I3 in the bladder increased and A1-I3 was observed traversing through the urothelium. Umbrella cells that do not show MIF and/or A1-I3 immunostaining in intact or saline-treated rats, showed co-localization of MIF and A1-I3 after SP-treatment. Western blotting demonstrated that in the bladder MIF formed non-covalent interactions and also binds covalently to A1-I3 to form high molecular weight MIF/A1-I3 complexes (170, 130 and 75-kDa, respectively, verified by co-immunoprecipitation). SP-induced inflammation selectively reduced 170-kDa MIF/A1-I3 in the bladder while increasing 170 and 130-kDa MIF/A1-I3 in the intraluminal fluid. CONCLUSION: A1-I3 and MIF/A1-I3 complexes are resident in bladder interstitium. During SP-induced inflammation, MIF/A1-I3 complexes are released from the bladder into the lumen. Binding of MIF/A1-I3 complexes to urothelial cells during inflammation suggests these complexes participate in the inflammatory reaction through activation of receptors for MIF and/or for A1-I3

    Detecting Instability in Animal Social Networks: Genetic Fragmentation Is Associated with Social Instability in Rhesus Macaques

    Get PDF
    The persistence of biological systems requires evolved mechanisms which promote stability. Cohesive primate social groups are one example of stable biological systems, which persist in spite of regular conflict. We suggest that genetic relatedness and its associated kinship structure are a potential source of stability in primate social groups as kinship structure is an important organizing principle in many animal societies. We investigated the effect of average genetic relatedness per matrilineal family on the stability of matrilineal grooming and agonistic interactions in 48 matrilines from seven captive groups of rhesus macaques. Matrilines with low average genetic relatedness show increased family-level instability such as: more sub-grouping in their matrilineal groom network, more frequent fighting with kin, and higher rates of wounding. Family-level instability in multiple matrilines within a group is further associated with group-level instability such as increased wounding. Stability appears to arise from the presence of clear matrilineal structure in the rhesus macaque group hierarchy, which is derived from cohesion among kin in their affiliative and agonistic interactions with each other. We conclude that genetic relatedness and kinship structure are an important source of group stability in animal societies, particularly when dominance and/or affilative interactions are typically governed by kinship

    PrP(Sc)-specific antibodies with the ability to immunodetect prion oligomers.

    Get PDF
    The development of antibodies with binding capacity towards soluble oligomeric forms of PrPSc recognised in the aggregation process in early stage of the disease would be of paramount importance in diagnosing prion diseases before extensive neuropathology has ensued. As blood transfusion appears to be efficient in the transmission of the infectious prion agent, there is an urgent need to develop reagents that would specifically recognize oligomeric forms of the abnormally folded prion protein, PrPSc.To that end, we show that anti-PrP monoclonal antibodies (called PRIOC mAbs) derived from mice immunised with native PrP-coated microbeads are able to immunodetect oligomers/multimers of PrPSc. Oligomer-specific immunoreactivity displayed by these PRIOC mAbs was demonstrated as large aggregates of immunoreactive deposits in prion-permissive neuroblastoma cell lines but not in equivalent non-infected or prn-p(0/0) cell lines. In contrast, an anti-monomer PrP antibody displayed diffuse immunoreactivity restricted to the cell membrane. Furthermore, our PRIOC mAbs did not display any binding with monomeric recombinant and cellular prion proteins but strongly detected PrPSc oligomers as shown by a newly developed sensitive and specific ELISA. Finally, PrioC antibodies were also able to bind soluble oligomers formed of Aβ and α-synuclein. These findings demonstrate the potential use of anti-prion antibodies that bind PrPSc oligomers, recognised in early stage of the disease, for the diagnosis of prion diseases in blood and other body fluids

    Investigating the conformational stability of prion strains through a kinetic replication model

    Get PDF
    Prion proteins are known to misfold into a range of different aggregated forms, showing different phenotypic and pathological states. Understanding strain specificities is an important problem in the field of prion disease. Little is known about which PrP(Sc) structural properties and molecular mechanisms determine prion replication, disease progression and strain phenotype. The aim of this work is to investigate, through a mathematical model, how the structural stability of different aggregated forms can influence the kinetics of prion replication. The model-based results suggest that prion strains with different conformational stability undergoing in vivo replication are characterizable in primis by means of different rates of breakage. A further role seems to be played by the aggregation rate (i.e. the rate at which a prion fibril grows). The kinetic variability introduced in the model by these two parameters allows us to reproduce the different characteristic features of the various strains (e.g., fibrils' mean length) and is coherent with all experimental observations concerning strain-specific behavior

    Rest-Mediated Regulation of Extracellular Matrix Is Crucial for Neural Development

    Get PDF
    Neural development from blastocysts is strictly controlled by intricate transcriptional programmes that initiate the down-regulation of pluripotent genes, Oct4, Nanog and Rex1 in blastocysts followed by up-regulation of lineage-specific genes as neural development proceeds. Here, we demonstrate that the expression pattern of the transcription factor Rest mirrors those of pluripotent genes during neural development from embryonic stem (ES) cells and an early abrogation of Rest in ES cells using a combination of gene targeting and RNAi approaches causes defects in this process. Specifically, Rest ablation does not alter ES cell pluripotency, but impedes the production of Nestin+ neural stem cells, neural progenitor cells and neurons, and results in defective adhesion, decrease in cell proliferation, increase in cell death and neuronal phenotypic defects typified by a reduction in migration and neurite elaboration. We also show that these Rest-null phenotypes are due to the dysregulation of its direct or indirect target genes, Lama1, Lamb1, Lamc1 and Lama2 and that these aberrant phenotypes can be rescued by laminins

    Urinary C-Peptide Measurement as a Marker of Nutritional Status in Macaques

    Get PDF
    Studies of the nutritional status of wild animals are important in a wide range of research areas such as ecology, behavioural ecology and reproductive biology. However, they have so far been strongly limited by the indirect nature of the available non-invasive tools for the measurement of individual energetic status. The measurement of urinary C-peptide (UCP), which in humans and great apes shows a close link to individual nutritional status, may be a more direct, non-invasive tool for such studies in other primates as well and possibly even in non-primate mammals. Here, we test the suitability of UCPs as markers of nutritional status in non-hominid primates, investigating relationships between UCPs and body-mass-index (BMI), skinfold fatness, and plasma C-peptide levels in captive and free-ranging macaques. We also conducted a food reduction experiment, with daily monitoring of body weight and UCP levels. UCP levels showed significant positive correlations with BMI and skinfold fatness in both captive and free-ranging animals and with plasma C-peptide levels in captive ones. In the feeding experiment, UCP levels were positively correlated with changes in body mass and were significantly lower during food reduction than during re-feeding and the pre-experimental control condition. We conclude that UCPs may be used as reliable biomarkers of body condition and nutritional status in studies of free-ranging catarrhines. Our results open exciting opportunities for energetic studies on free-ranging primates and possibly also other mammals
    • …
    corecore