589 research outputs found

    Massive Type II in Double Field Theory

    Full text link
    We provide an extension of the recently constructed double field theory formulation of the low-energy limits of type II strings, in which the RR fields can depend simultaneously on the 10-dimensional space-time coordinates and linearly on the dual winding coordinates. For the special case that only the RR one-form of type IIA carries such a dependence, we obtain the massive deformation of type IIA supergravity due to Romans. For T-dual configurations we obtain a `massive' but non-covariant formulation of type IIB, in which the 10-dimensional diffeomorphism symmetry is deformed by the mass parameter.Comment: 21 page

    On the Riemann Tensor in Double Field Theory

    Get PDF
    Double field theory provides T-duality covariant generalized tensors that are natural extensions of the scalar and Ricci curvatures of Riemannian geometry. We search for a similar extension of the Riemann curvature tensor by developing a geometry based on the generalized metric and the dilaton. We find a duality covariant Riemann tensor whose contractions give the Ricci and scalar curvatures, but that is not fully determined in terms of the physical fields. This suggests that \alpha' corrections to the effective action require \alpha' corrections to T-duality transformations and/or generalized diffeomorphisms. Further evidence to this effect is found by an additional computation that shows that there is no T-duality invariant four-derivative object built from the generalized metric and the dilaton that reduces to the square of the Riemann tensor.Comment: 36 pages, v2: minor changes, ref. added, v3: appendix on frame formalism added, version to appear in JHE

    Differential geometry with a projection: Application to double field theory

    Full text link
    In recent development of double field theory, as for the description of the massless sector of closed strings, the spacetime dimension is formally doubled, i.e. from D to D+D, and the T-duality is realized manifestly as a global O(D,D) rotation. In this paper, we conceive a differential geometry characterized by a O(D,D) symmetric projection, as the underlying mathematical structure of double field theory. We introduce a differential operator compatible with the projection, which, contracted with the projection, can be covariantized and may replace the ordinary derivatives in the generalized Lie derivative that generates the gauge symmetry of double field theory. We construct various gauge covariant tensors which include a scalar and a tensor carrying two O(D,D) vector indices.Comment: 1+22 pages, No figure; a previous result on 4-index tensor removed, presentation improve

    N=1 Supersymmetric Double Field Theory

    Full text link
    We construct the N=1 supersymmetric extension of double field theory for D=10, including the coupling to an arbitrary number n of abelian vector multiplets. This theory features a local O(1,9+n) x O(1,9) tangent space symmetry under which the fermions transform. It is shown that the supersymmetry transformations close into the generalized diffeomorphisms of double field theory.Comment: 22 pages, v2: minor corrections, ref. added, to appear in JHE

    Ramond-Ramond Cohomology and O(D,D) T-duality

    Full text link
    In the name of supersymmetric double field theory, superstring effective actions can be reformulated into simple forms. They feature a pair of vielbeins corresponding to the same spacetime metric, and hence enjoy double local Lorentz symmetries. In a manifestly covariant manner --with regard to O(D,D) T-duality, diffeomorphism, B-field gauge symmetry and the pair of local Lorentz symmetries-- we incorporate R-R potentials into double field theory. We take them as a single object which is in a bi-fundamental spinorial representation of the double Lorentz groups. We identify cohomological structure relevant to the field strength. A priori, the R-R sector as well as all the fermions are O(D,D) singlet. Yet, gauge fixing the two vielbeins equal to each other modifies the O(D,D) transformation rule to call for a compensating local Lorentz rotation, such that the R-R potential may turn into an O(D,D) spinor and T-duality can flip the chirality exchanging type IIA and IIB supergravities.Comment: 1+37 pages, no figure; Structure reorganized, References added, To appear in JHEP. cf. Gong Show of Strings 2012 (http://wwwth.mpp.mpg.de/members/strings/strings2012/strings_files/program/Talks/Thursday/Gongshow/Lee.pdf

    Incorporation of fermions into double field theory

    Get PDF
    Based on the stringy differential geometry we proposed earlier, we incorporate fermions such as gravitino and dilatino into double field theory in a manifestly covariant manner with regard to O(D,D) T-duality, diffeomorphism, one-form gauge symmetry for B-field and a pair of local Lorentz symmetries. We note that there are two kinds of fermions in double field theory: O(D,D) singlet and non-singlet which may be identified, respectively as the common and the non-common fermionic sectors in type IIA and IIB supergravities. For each kind, we construct corresponding covariant Dirac operators. Further, we derive a simple criterion for an O(D,D) rotation to flip the chirality of the O(D,D) non-singlet chiral fermions, which implies the exchange of type IIA and IIB supergravities.Comment: (v1) 1+21 pages, no figure; (v2) Refs. added, to appear in JHEP; (v3) minor change, a comment in the last section removed and Eq.(3.22) correcte

    Double field theory of type II strings

    Get PDF
    We use double field theory to give a unified description of the low energy limits of type IIA and type IIB superstrings. The Ramond-Ramond potentials fit into spinor representations of the duality group O(D, D) and field-strengths are obtained by acting with the Dirac operator on the potentials. The action, supplemented by a Spin+ (D, D)-covariant self-duality condition on field strengths, reduces to the IIA and IIB theories in different frames. As usual, the NS-NS gravitational variables are described through the generalized metric. Our work suggests that the fundamental gravitational variable is a hermitian element of the group Spin(D, D) whose natural projection to O(D, D) gives the generalized metric.United States. Dept. of Energy (cooperative research agreement DE-FG02-05ER41360)

    MFGE8 does not influence chorio-retinal homeostasis or choroidal neovascularization in vivo

    Get PDF
    Purpose: Milk fat globule-epidermal growth factor-factor VIII (MFGE8) is necessary for diurnal outer segment phagocytosis and promotes VEGF-dependent neovascularization. The prevalence of two single nucleotide polymorphisms (SNP) in MFGE8 was studied in two exsudative or “wet” Age-related Macular Degeneration (AMD) groups and two corresponding control groups. We studied the effect of MFGE8 deficiency on retinal homeostasis with age and on choroidal neovascularization (CNV) in mice. Methods: The distribution of the SNP (rs4945 and rs1878326) of MFGE8 was analyzed in two groups of patients with “wet” AMD and their age-matched controls from Germany and France. MFGE8-expressing cells were identified in Mfge8+/− mice expressing ß-galactosidase. Aged Mfge8+/− and Mfge8−/− mice were studied by funduscopy, histology, electron microscopy, scanning electron microscopy of vascular corrosion casts of the choroid, and after laser-induced CNV. Results: rs1878326 was associated with AMD in the French and German group. The Mfge8 promoter is highly active in photoreceptors but not in retinal pigment epithelium cells. Mfge8−/− mice did not differ from controls in terms of fundus appearance, photoreceptor cell layers, choroidal architecture or laser-induced CNV. In contrast, the Bruch's membrane (BM) was slightly but significantly thicker in Mfge8−/− mice as compared to controls. Conclusions: Despite a reproducible minor increase of rs1878326 in AMD patients and a very modest increase in BM in Mfge8−/− mice, our data suggests that MFGE8 dysfunction does not play a critical role in the pathogenesis of AMD

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    Large Gauge Transformations in Double Field Theory

    Get PDF
    Finite gauge transformations in double field theory can be defined by the exponential of generalized Lie derivatives. We interpret these transformations as `generalized coordinate transformations' in the doubled space by proposing and testing a formula that writes large transformations in terms of derivatives of the coordinate maps. Successive generalized coordinate transformations give a generalized coordinate transformation that differs from the direct composition of the original two. Instead, it is constructed using the Courant bracket. These transformations form a group when acting on fields but, intriguingly, do not associate when acting on coordinates.Comment: 40 pages, v2: discussion of dilaton added, to appear in JHE
    corecore