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Abstract

Finite gauge transformations in double field theory can be defined by the exponential

of generalized Lie derivatives. We interpret these transformations as ‘generalized coor-

dinate transformations’ in the doubled space by proposing and testing a formula that

writes large transformations in terms of derivatives of the coordinate maps. Successive

generalized coordinate transformations give a generalized coordinate transformation that

differs from the direct composition of the original two. Instead, it is constructed using

the Courant bracket. These transformations form a group when acting on fields but,

intriguingly, do not associate when acting on coordinates.
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1 Introduction

Double field theory is a spacetime description of the massless sector of closed string theory

that makes T-duality manifest by doubling the coordinates. In addition to the usual spacetime

coordinates xi, i “ 0, . . . ,D ´ 1, there are dual ‘winding’ coordinates x̃i, which together with

the xi combine into coordinates XM “ px̃i, xiq transforming in the fundamental representation

of the T-duality group OpD,Dq. This theory has been formulated in [1–4]. Earlier important

work can be found in [5–7] and further developments have been discussed in [8–35].

There are various formulations of double field theory. This paper uses the generalized metric

formulation [4], in which the fundamental dynamical field is the OpD,Dq matrix

HMN “
˜

gij ´gikbkj

bikg
kj gij ´ bikg

klblj

¸
, (1.1)
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that unifies the spacetime metric gij and the Kalb-Ramond two-form bij and that transforms

covariantly under OpD,Dq. In addition, the theory features the dilaton d, which is a scalar

under OpD,Dq. This dilaton field is a spacetime density and is related to the scalar dilaton φ

through the field redefinition e´2d “ ?´ge´2φ. The double field theory action can be written

in terms of a generalized curvature scalar R that is a function of H and d [4],

SDFT “
ż
dxdx̃ e´2d RpH, dq . (1.2)

This curvature scalar is a manifestly OpD,Dq invariant expression in terms ofH, d and ‘doubled’

derivatives BM “ pB̃i, Biq, and so the OpD,Dq invariance of (1.2) is manifest. This theory also

features a gauge invariance whose infinitesimal transformations are parametrized by an OpD,Dq
vector parameter ζM “ pζ̃i, ζ iq that combines the diffeomorphism parameter ζ i and the b field

gauge parameter ζ̃i. It acts on the physical fields as

δζHMN “ ζPBPHMN `
`
BMζP ´ BP ζM

˘
HPN `

`
BN ζP ´ BP ζN

˘
HMP ,

δζd “ ζMBMd ´ 1

2
BM ζM .

(1.3)

We may define a generalized Lie derivative pLζ acting on OpD,Dq tensors with arbitrary index

structure. For the generalized metric the above gauge transformation is in fact the generalized

Lie derivative: δζHMN “ pLζHMN . Under these variations R transforms as a generalized scalar,

δζR “ ζMBMR, from which the gauge invariance of (1.2) immediately follows. More precisely,

in order to verify this invariance the following ‘strong constraint’ is required:

BMBM ” ηMNBMBN “ 0 , with ηMN “
˜
0 1

1 0

¸
. (1.4)

The above constraint must hold when acting on arbitrary fields and parameters and all their

products (so that BMBMA “ 0 and BMA BMB “ 0 for any fields or parameters A and B).

Here ηMN denotes the OpD,Dq invariant metric. This constraint actually implies that one can

always find an OpD,Dq rotation into a T-duality frame in which the coordinates depend only,

say, on the xi.

Satisfying this constraint by setting B̃i “ 0, the action (1.2) reduces to the standard low-

energy effective action for the NS-NS sector of closed string theory. Moreover, the gauge

variations (1.3) reduce for the components in (1.1) precisely to the standard (infinitesimal)

general coordinate transformations and b field gauge transformations. We stress that the gauge

transformations (1.3) are not infinitesimal diffeomorphisms on the doubled space, because they

do not close according to the Lie bracket but rather according to the ‘C-bracket’ [2, 4, 5],

“
δζ1 , δζ2

‰
“ ´δ rζ1,ζ2sc ,

“
ζ1, ζ2

‰M
c

” ζN1 BN ζM2 ´ 1

2
ζ1NBM ζN2 ´ p1 Ø 2q , (1.5)

which is the OpD,Dq covariant extension of the Courant bracket of generalized geometry.

In this paper we will investigate the finite or large gauge transformations corresponding to

the infinitesimal variations (1.3). Since these gauge variations do not represent infinitesimal

diffeomorphisms of the doubled space we cannot resort to Gauss and Riemann and postulate

the usual coordinate transformation rules of vectors and one-forms. In fact, inspection of (1.3)
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shows that each index appears to be some ‘hybrid’ between covariant and contravariant indices.

It is thus not clear how finite transformations can be consistently defined.

We find, however, that it is possible to view finite gauge transformations as arising from

some suitably defined ‘generalized coordinate transformations’. We introduce such coordinate

transformations with the features that are expected from the infinitesimal gauge transforma-

tions. This implies that they do not satisfy all the properties of diffeomorphisms. For instance,

two successive diffeomorphisms give a third diffeomorphism that is simply defined by direct

composition of the first two. Two successive ‘generalized coordinate transformations’ also re-

sult in a generalized coordinate transformation, but the resulting transformation is not obtained

by the direct composition of the two maps. This is the group manifestation of the fact that the

gauge algebra is governed by the Courant bracket (1.5) rather than the Lie bracket.

Given a generalized coordinate transformation X Ñ X 1 “ fpXq, we propose the following

associated transformation for an OpD,Dq vector AM :

A1
M pX 1q “ FM

NAN pXq , (1.6)

where the matrix F is defined by

FM
N ” 1

2

´ BXP

BX 1M

BX 1
P

BXN

` BX 1
M

BXP

BXN

BX 1P

¯
. (1.7)

Here the indices on coordinates are raised and lowered with the OpD,Dq invariant metric,

XM “ ηMNXN “ pxi, x̃iq, etc. More generally, a tensor with an arbitrary number of OpD,Dq
indices transforms ‘tensorially’, with each index rotated by the matrix F . We show that F is in

fact an OpD,Dq matrix. In ordinary geometry we would simply have FM
N “ BXN

BX1M . In double

field theory the dilaton d provides the scalar density expp´2dq. We give the transformation law

for this density under large coordinate transformations in (2.23).

We will show that the transformation rule in (1.6) and (1.7) implies the infinitesimal trans-

formations (1.3) when we set X 1 “ X ´ ζpXq. We have also verified that this transformation

satisfies the following consistency requirements: It implies the usual formulae for coordinate

transformations that transform only the xi or only the x̃i. It leaves the OpD,Dq invariant met-

ric in (1.4) invariant, i.e., this metric takes the same constant form in all coordinate systems,

something required in double field theory but inconsistent in conventional differential geometry.

Moreover, the strong constraint (1.4) in one coordinate system implies the strong constraint in

all other coordinate systems.

As mentioned above, the generalized coordinate transformations do not compose like ordi-

nary diffeomorphisms. In order to elucidate this point, it is useful to introduce an alternative

form of the finite gauge transformations. The rule (1.6) defines the transformed tensor by giv-

ing its transformed components at the transformed point X 1. As in general relativity, this can

be seen as a passive transformation, but it is useful to also have an active form of the gauge

transformations which transforms the field components, but not the coordinates. For general

relativity this problem has been discussed in the literature, see, e.g., [36, 37], where it is found

that gauge transformations connected to the identity can be realized as an exponential of the

Lie derivative. Thus, given an ordinary vector field Ampxq we have the transformed field A1
mpxq
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given by

A1
mpxq “ eLξ Ampxq , (1.8)

where Lξ is the Lie derivative in the representation appropriate for a vector, and all fields and

parameters depend on x. It can be shown that this transformation is induced by the following

diffeomorphism

x1m “ e´ξkBk xm . (1.9)

In double field theory we can follow the above strategy. Even though the Courant bracket

does not define a Lie algebra, generalized Lie derivatives define a Lie algebra under commutators.

We can therefore realize a finite gauge transformation by exponentiating the generalized Lie

derivative:

A1
M pXq “ e

pLξ AM pXq , (1.10)

where all fields and parameters depend onX. If finite gauge transformations are defined this way

it is simple to use the Baker-Campbell-Hausdorff formula to show that the field transformations

form a group and compose according to the Courant bracket. Our key technical result is the

determination of the generalized coordinate transformation

X 1M “ e´ΘKpξqBKXM , ΘKpξq ” ξK ` Opξ3q , (1.11)

so that (1.6) and (1.7) lead to the transformation (1.10), at least to Opξ4q. The composition

rule for generalized coordinate transformations, calculable from the definition (1.10), will be

verified explicitly with F expanded to quadratic order in ξ. We note in passing that while the

exponential (1.10) only makes sense for gauge transformations connected to the identity, the

generalized coordinate transformations may be applicable more generally.

Even though the composition rule is non-standard, we are intrigued that the simple gener-

alization of conventional tensor transformations given by (1.6) and (1.7) exists, seems to pass

all consistency checks, and is, plausibly, the unique form compatible with (1.10). Surprisingly,

while generalized coordinate transformations form a group when acting on fields, they do not

satisfy associativity at the level of coordinate maps. Further discussion of this result and other

open questions can be found in the concluding section.

2 Finite gauge transformations

In this section we propose finite gauge transformations for double field theory. These transfor-

mations are induced by (and written in terms of) generalized coordinate transformations. We

begin by discussing these coordinate transformations and compute the derivatives of the maps

using a simple parameterization. We show that the strong constraint is preserved by these

coordinate transformations and that applying the transformation rule to BM is consistent with

the chain rule. Finally, ηMN is an invariant tensor so that F is actually an OpD,Dq matrix.

2.1 Coordinate transformations and strong constraint

In this subsection we describe some generalized coordinate transformations of the doubled

coordinates. We will use throughout section 2 and 3 – but not in the rest of the paper – a
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parameterization with a parameter ζM pXq and new coordinates X 1 given by the exact relation

X 1M “ XM ´ ζMpXq . (2.1)

It follows by differentiation that

BX 1Q

BXP
“ δP

Q ´ BP ζQ , (2.2)

and in matrix notation we write this as

´BX 1

BX
¯ Q

P
” BX 1Q

BXP
“

`
1 ´ a

˘
P
Q , with aP

Q ” BP ζQ . (2.3)

Note that when representing coordinate derivatives as matrices we will always associate the

first index (row index) with the coordinate in the denominator and the second index (column

index) with the coordinate in the numerator. The matrix inverse provides us with the other

derivatives

´ BX
BX 1

¯ P

M
” BXP

BX 1M
“

´ 1

1 ´ a

¯
M

P “
´
1 ` a ` a2 ` a3 ` . . .

¯
M

P , (2.4)

or, more explicitly,

BXP

BX 1M
“ δM

P ` BMζP ` BMζLBLζP ` BMζLBLζRBRζP ` Opζ4q . (2.5)

Let us now consider the strong constraint (1.4). In this setup with large coordinate trans-

formations we assume that ζM as well as all X-dependent fields satisfy the strong constraint:

ηMNBNA BMB ” BMA BMB “ 0 , BP BPA “ 0 . (2.6)

In the above, ApXq and BpXq can be ζM or any field of the theory, like the dilaton or the

generalized metric. The strong constraint implies that the product ata vanishes:

ata “ 0 . (2.7)

Indeed,

0 “ BP ζM BP ζN “ aPM aPN “ patqMP aPN “ pataqMN . (2.8)

We claim that if the strong constraint holds for all fields and parameters in coordinate

system X it will then hold for coordinate system X 1. We begin by proving the following lemma

in which two functions A and B of X are differentiated with mixed-type derivatives:

BM 1A BMB “ 0 , BM 1 BM A “ 0 . (2.9)

To see this we note that a primed derivative, with the help of (2.5), can be written as

B1M ” ηMNB1
N “ ηMN BXP

BX 1N
BP

“ ηMN
`
δN

P ` BNζP ` BNζKBKζP ` BN ζKBKζQBQζP ` ¨ ¨ ¨
˘
BP

“
`
ηMP ` BM ζP ` BM ζKBKζP ` BM ζKBKζQBQζP ` ¨ ¨ ¨

˘
BP

“ BM ` BM ζKpδKP ` BKζP ` BKζQBQζP ` ¨ ¨ ¨
˘
BP .

(2.10)
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We see that structurally this takes the form

B1M “ BM ` pBM ζKqUK
P BP , (2.11)

where U is a matrix function of X whose expression is in fact not important. The lemmas now

follow easily:

B1MA BMB “
´

BMA ` pBM ζKqUK
P BPA

¯
BMB “ 0 , (2.12)

by use of the strong constraint as in (2.6). Similarly,

B1M BMA “
´

BM ` pBM ζKqUK
P BP

¯
BMA “ 0 . (2.13)

Using the lemma and (2.11) it now follows that

B1MA B1
MB “ 0 , B1MB1

MA “ 0 . (2.14)

These can be viewed as the statement that the strong constraint holds in the primed coordinates.

2.2 Large gauge transformations

For a scalar SpXq the coordinate transformation will be taken to be the usual one,

S1pX 1q “ SpXq . (2.15)

It then follows to first order in ζ that

S1pXq ´ ζMBMS “ SpXq ñ δζS ” S1pXq ´ SpXq “ ζMBMS . (2.16)

For a generalized vector AM we need a transformation rule that acts on it like for a one-form

and a vector simultaneously. Indeed, here our main clue is the infinitesimal transformation

δAM ” A1
M pXq ´ AM pXq “ pLζAM “ ζPBPAM `

`
BM ζN ´ BN ζM

˘
AN . (2.17)

This must be reproduced by the formula we propose once the parameter ζ is taken to be small.

We propose the transformation

A1
M pX 1q “ 1

2

´ BXP

BX 1M

BX 1
P

BXN
` BX 1

M

BXP

BXN

BX 1P

¯
AN pXq . (2.18)

In here we have defined XN ” ηNMXM and X 1
N ” ηNMX 1M . Expanding to first order in ζ we

find with (2.2) and (2.5)

A1
M pXq ´ ζPBPAM pXq “ 1

2

´`
δM

P ` BM ζP
˘`
δNP ´ BN ζP

˘

`
`
δPM ´ BP ζM

˘`
δP

N ` BP ζN
˘¯

AN pXq

“ 1

2

´
2δM

N ` 2BM ζN ´ 2BN ζM

¯
AN pXq ` Opζ2q

“ AM pXq `
`
BMζN ´ BN ζM

˘
AN pXq ` Opζ2q ,

(2.19)
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which indeed reproduces (2.17). The transformation (2.18) is not fully determined by the

constraint that the infinitesimal transformations arise correctly. A number of options allow for

this result. Other consistency checks appear to select (2.18) as the only possible choice, as we

will discuss in this and the following section.

Before we proceed with the analysis of the transformation (2.18) we introduce some notation.

We write

A1
M pX 1q “ FM

NAN pXq , (2.20)

where the matrix F is defined by

FM
N ” 1

2

´ BXP

BX 1M

BX 1
P

BXN

` BX 1
M

BXP

BXN

BX 1P

¯
. (2.21)

More generally, any OpD,Dq tensor we require to transform under generalized coordinate trans-

formations such that each index is rotated by the matrix FM
N .

Double field theory also requires the definition of a scalar density. The transformation (1.3)

of the dilation d implies that

δζe
´2d “ BM

`
ζMe´2d

˘
. (2.22)

This is the infinitesimal transformation of a scalar density, and it is the same transformation

that we have in ordinary differential geometry. Thus, the finite gauge transformation of this

density must be given by

e´2 d1pX1q “
ˇ̌
ˇdet BX

BX 1

ˇ̌
ˇ e´2 dpXq . (2.23)

Of course, using (2.5) and expanding this to first order in ζ it is easily seen that the variation

δζd “ d1pXq ´ dpXq coincides with that given in (1.3). Further exploration of the consistency

of (2.23) will be discussed in sections 4.2, 5.2, and 5.3.

The transformation (2.18) can be expanded to all orders in ζ. In the matrix notation we

have used for coordinate derivatives we have

FM
N pX 1,Xq “ 1

2

´ BX
BX 1

´BX 1

BX
¯t

`
´BX 1

BX
¯t BX

BX 1

¯ N

M
. (2.24)

We have added the coordinate arguments in a specific order: the first input is the new coordinate

and the second input is the old coordinate. We will only use those arguments when needed

explicitly. In index-free notation we write

FpX 1,Xq “ 1

2

´ BX
BX 1

´BX 1

BX
¯t

`
´BX 1

BX
¯t BX

BX 1

¯
. (2.25)

Note that F is in fact an anticommutator of partial derivatives:

FpX 1,Xq “ 1

2

! BX
BX 1

,
´BX 1

BX
¯t )

. (2.26)

Using our expansions (2.3) and (2.4) we immediately write

FM
N “ 1

2

´´ 1

1 ´ a

¯
p1 ´ atq ` p1 ´ atq

´ 1

1 ´ a

¯¯
M

N

“ 1

2

´
1 ` pa ´ atq ` pa2 ´ aatq ` pa3 ´ a2atq ` ¨ ¨ ¨

` 1 ´ at ` a ` a2 ` a3 ` ¨ ¨ ¨
¯
M

N ,

(2.27)
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where we used the strong constraint ata “ 0 and expanded in the last equation. We also note

that by the strong constraint between ζ and any field it follows that if A satisfies the strong

constraint, so does A1 defined by (2.18). Combining these terms gives us the result

F “ 1 ` a ´ at `
8ÿ

n“2

`
an ´ 1

2
an´1at

˘
. (2.28)

Let us finally note that for aat “ 0 the two lines in the second equation of (2.27) are equal,

which in turn means that the two terms in the definition of F coincide, and so (2.25) reduces

to one term,

aat “ 0 ñ FpX 1,Xq “ BX
BX 1

´BX 1

BX
¯t

“
´BX 1

BX
¯t BX

BX 1
. (2.29)

Although this does not hold in general, it does hold for a few special cases that we inspect in

section 3.

We now perform a basic consistency check. We should be able to use the transformation

(2.18) for partial derivatives, which also have an index down. Therefore, we must have

B1
M “ 1

2

´ BXP

BX 1M

BX 1
P

BXN

` BX 1
M

BXP

BXN

BX 1P

¯
BN . (2.30)

On the other hand, partial derivatives must also transform with the chain rule

B1
M “ BXN

BX 1M

B
BXN

“ BXN

BX 1M
BN . (2.31)

The two expressions are consistent thanks to the strong constraint. For this note that the first

expression can be written as

B1
M “ 1

2

BXP

BX 1M
pδNP ´ BN ζP qBN ` 1

2
pδPM ´ BP ζM q B1

P . (2.32)

By the lemmas (2.9) the term pBP ζM qB1
P vanishes acting on any function. Moreover, the term

pBN ζP qBN also vanishes. Bringing the right-most non-vanishing term to the left-hand side, we

have
1

2
B1
M “ 1

2

BXP

BX 1M
BP , (2.33)

showing that the usual transformation of derivatives is consistent with (2.30).

Our final check here is that the metric ηMN is an invariant tensor. For this we must have

ηMN “ FM
R FN

S ηRS . (2.34)

This equation states that FM
N is in fact an OpD,Dq matrix.1 Raising the N index we have

δM
N “ FM

RFN
R “ pF F t q N

M , (2.35)

and therefore we must check that

F F t “ 1 . (2.36)

1It should be noted, however, that we cannot think of the generalized coordinate transformations as local

OpD,Dq transformations with an X-dependent OpD,Dq matrix h “ FpXq. The reason is that in the transfor-

mation of the argument we would need X 1M “ F
M

NXN , which in general is different from the actual X 1.
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We thus calculate with (2.27)

FF t “ 1

2

´ 1

1 ´ a
p1 ´ atq ` p1 ´ atq 1

1 ´ a

¯ 1

2

´
p1 ´ aq 1

1 ´ at
` 1

1 ´ at
p1 ´ aq

¯
. (2.37)

The cross terms give multiples of the unit matrix, but the other two terms are more complicated,

FF
t “ 1

2
` 1

4

´ 1

1 ´ a
p1 ´ atqp1 ´ aq 1

1 ´ at
` p1 ´ atq 1

1 ´ a

1

1 ´ at
p1 ´ aq

¯
. (2.38)

We note that if the order of the second and third factors in the first term was opposite we

would have a simple product. The same holds for the first and second factors in the second

term. The computation is thus helped by the use of the following commutators:

“
1 ´ at, 1 ´ a

‰
“ ´aat ,

”
1 ´ at,

1

1 ´ a

ı
“ 1

1 ´ a
aat . (2.39)

With these (2.38) becomes

FF
t “ 1 ` 1

4

´
´ 1

1 ´ a
aat

1

1 ´ at
` 1

1 ´ a
aat

1

1 ´ at
p1 ´ aq

¯
. (2.40)

The terms in parenthesis cancel: in the second one we can bring the at in aat to the right,

where it kills a. We thus proved that F F t “ 1. This implies the desired gauge invariance of

η or, equivalently, its independence of the chosen coordinate system. Moreover, it proves that

FM
N is an OpD,Dq matrix.

It is also straightforward to verify that, as expected, F and F t are also inverses of each

other in the other direction:

F
t
F “ 1 . (2.41)

Indeed, this time we get

F tF “ 1

2
` 1

4

´
p1 ´ aq 1

1 ´ at
1

1 ´ a
p1 ´ atq ` 1

1 ´ at
p1 ´ aqp1 ´ atq 1

1 ´ a

¯
. (2.42)

The simplest way to evaluate the left-over terms is to expand using ata “ 0. Each of the two

summands gives in fact simple expressions:

F tF “ 1

2
` 1

4

´
p1 ´ aatq ` p1 ` aatq

¯
“ 1 . (2.43)

The coordinate transformation for a generalized tensor with an upper index is obtained

from (2.20) by raising the index:

A1M pX 1q “ FM
NAN pXq . (2.44)

Of course, the indices on F are raised and lowered with η, so that (2.21) gives

F
M

N “ 1

2

´ BXP

BX 1
M

BX 1P

BXN
` BX 1M

BXP

BXN

BX 1
P

¯
. (2.45)

Consistent with the invariance of η, it follows that the contraction of upper and lower indices

gives a tensor of lower rank, e.g.,

A1MB1
M “ F

M
NAN

FM
KBK “ AN pF t

FqNKBK “ ANδN
KBK “ ANBN . (2.46)
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Let us comment on inverse transformations. If we perform a coordinate transformation

X Ñ X 1 followed by X 1 Ñ X the result should be no coordinate transformation. In the

notation of (2.24) we should have

FM
N pX,X 1qFN

P pX 1,Xq “ δM
P . (2.47)

As we would expect, this is closely related to the OpD,Dq properties of F noted above. We see

from (2.25)

FpX,X 1q “ 1

2

´ BX 1

BX
´ BX

BX 1

¯t

`
´ BX

BX 1

¯t BX 1

BX
¯

“ 1

2

´ BX
BX 1

´BX 1

BX
¯t

`
´BX 1

BX
¯t BX

BX 1

¯t

“ FpX 1,Xqt .
(2.48)

With indices, we write

FM
N pX,X 1q “ F

N
M pX 1,Xq . (2.49)

Back on the left-hand side of (2.47) we have

FN
M pX 1,XqFN

P pX 1,Xq “ pF tFqMP “ δM
P . (2.50)

This confirms that the postulated transformation is consistent with the independent definition

of the inverse.

Our computations used at various points the strong constraint. This constraint implies

unusual relations. For example we have found that

´ 1 ` BX
BX 1

`
´BX 1

BX
¯t

“
´BX 1

BX
¯t BX

BX 1
, (2.51)

which is readily checked using (2.3) and (2.4). This relation allows us to write F differently,

but not in any simpler way. Using the above and (2.26) we have, for example,

F “ ´1 ` BX
BX 1

`
´BX 1

BX
¯t

`1

2

” BX
BX 1

,
´BX 1

BX
¯tı

. (2.52)

Using relations like this we have experimented with various other candidate expressions for F ,

but have not found an equally natural expression that passes all consistency requirements.

3 Special gauge transformations and OpD,Dq

The purpose of this section is two-fold. We first show, in subsection 3.1, how the standard,

finite coordinate transformations of the non-doubled fields arise from the finite transformations

generated by F in the doubled theory. In subsection 3.2 we discuss to what extent finite

OpD,Dq transformations are contained in the gauge group. Viewing the OpD,Dq rotation of

coordinates directly as a generalized coordinate transformation leads to a puzzling result: the

gauge transformed field and the OpD,Dq transformed field differ by one power of the OpD,Dq
rotation. Resolving this paradox we find that only the geometric subgroupGLpD,Rq˙R

1

2
DpD´1q

can always be realized as special coordinate transformations, but that in the context of a

reduction on the torus T d, the full Opd, dq subgroup of OpD,Dq is part of the gauge group.
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3.1 General coordinate and b-field gauge transformations

We will now show that the postulated finite coordinate transformations in double field theory

reduce for special cases to the standard finite gauge transformations, namely general coordinate

transformations and b-field gauge transformations. It turns out that these transformations,

c.f. (3.3), (3.6) and (3.8) below, are special transformations X Ñ X 1 for which the two terms

in (2.18) are actually equal so that F simplifies to one term, as in (2.29),

BX 1
M

BXP

BXN

BX 1P
“ BXP

BX 1M

BX 1
P

BXN
ñ FM

N “ BX 1
M

BXP

BXN

BX 1P
“ BXP

BX 1M

BX 1
P

BXN
. (3.1)

We recall from (2.29) that this holds if aat “ 0, which by (2.3) means

paatqMN “ aM
PaNP “ BMζP BN ζP . (3.2)

If we have either ζ i “ 0 or ζ̃i “ 0 the OpD,Dq invariant sum over P vanishes and (3.1) holds.

This will apply below, since we will consider general coordinate and b-field gauge transforma-

tions separately.

We start with a vector AM pxq independent of x̃ and a coordinate transformation

xi Ñ xi1 “ xi1pxq , x̃1
i “ x̃i . (3.3)

Since this transformation leaves x̃i invariant, the corresponding parameter ζ̃i is zero, and thus

we can apply (3.1). Specializing (2.20) to Ai and using the second form of F in (3.1) we get

A1
ipx1q “ BXP

Bxi1
BX 1

P

BXN

AN pxq “ Bxp
Bxi1

Bx̃1
p

Bx̃n
Anpxq “ Bxp

Bxi1 δ
n
p Anpxq “ Bxp

Bxi1 Appxq , (3.4)

which is precisely the standard general coordinate transformation of a co-vector. Specializing

(2.20) to Ai we get

Ai1px1q “ BXP

Bx̃1
i

BX 1
P

BXN

AN pxq “ Bx̃p
Bx̃1

i

Bxp1

Bxn Anpxq “ δip
Bxp1

Bxn Anpxq “ Bxi1
Bxn Anpxq , (3.5)

which is the general coordinate transformation of a vector.

If we consider now a field depending only on x̃ and a transformation

x̃i Ñ x̃1
i “ x̃1

ipx̃q , xi1 “ xi , (3.6)

that transforms only the x̃ we have ζ i “ 0 and so we can again apply (3.1). We get by a

completely analogous computation

A1
ipx̃1q “ Bx̃1

i

Bx̃n
Anpx̃q , Ai1px̃1q “ Bx̃p

Bx̃1
i

Appx̃q . (3.7)

Therefore, they transform conventionally, where we recall that for dual coordinate transforma-

tions the notion of covariant and contravariant indices is interchanged.

Let us now consider b-field gauge transformations, which should follow from

x̃1
i “ x̃i ´ ζ̃ipxq , xi1 “ xi . (3.8)
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As ζ̃i depends on x this transformation mixes x and x̃, but still satisfies condition (3.1) since

ζ i “ 0. We first compute

BX 1M

BXN
“

˜
Bx̃1

i

Bx̃j

Bxi1

Bx̃j

Bx̃1
i

Bxj
Bxi1

Bxj

¸
“

˜
δi

j 0

´Bj ζ̃i δj
i

¸
, (3.9)

and the inverse

BXM

BX 1N
“

˜
Bx̃i

Bx̃1
j

Bxi

Bx̃1
j

Bx̃i

Bxj1
Bxi

Bxj1

¸
“

˜
δi

j 0

Bj ζ̃i δj
i

¸
. (3.10)

We will now show that (3.8) indeed leads to the expected b-field gauge transformations. We

apply a finite gauge transformation to the generalized metric

HMN “
˜
Hij Hi

j

Hi
j Hij

¸
“

˜
gij ´gikbkj

bikg
kj gij ´ bikg

klblj

¸
, (3.11)

which reads

H
1
MN pX 1q “ BXP

BX 1M

BX 1
P

BXK

BXQ

BX 1N

BX 1
Q

BXL
HKLpXq . (3.12)

Specializing to the component Hij, we get

H1 ij “ BXP

Bx̃1
i

BX 1
P

BXK

BXQ

Bx̃1
j

BX 1
Q

BXL

HKL , (3.13)

and we assume that H depends initially only on x so that by (3.8) H1 has the same coordinate

dependence, which we suppress. Inserting the non-vanishing derivatives we get

H
1 ij “ Bx̃p

Bx̃1
i

Bx1p

Bxk
Bx̃q
Bx̃1

j

Bx1q

Bxl H
kl “ δip δ

p
k δ

j
q δ

q
l H

kl “ H
ij , (3.14)

and comparing with (3.11) we deduce that

gij 1 “ gij . (3.15)

Thus, as expected, the metric is invariant under b-field gauge transformations. Specializing now

to the component Hi
j and inserting the non-vanishing derivatives we get

H
i
j

1 “ BXP

Bx̃1
i

BX 1
P

BXK

BXQ

Bxj1

BX 1
Q

BXL
HKL

“ Bx̃p
Bx̃1

i

Bx1p

Bxk
Bxq
Bxj1

Bx̃1
q

Bx̃l
Hk

l ` Bx̃p
Bx̃1

i

Bx1p

Bxk
Bxq
Bxj1

Bx̃1
q

Bxl H
kl ` Bx̃p

Bx̃1
i

Bx1p

Bxk
Bx̃q
Bxj1

Bxq1

Bxl Hkl

“ δp
i δk

p δj
q δq

l
H

k
l ` δp

i δk
p δj

q p´Blζ̃qqHkl ` δp
i δk

p pBj ζ̃qqδlq Hkl

“ Hi
j ´ Blζ̃j Hil ` Bj ζ̃l Hil .

(3.16)

Making use of (3.11) we then find that

´ gik 1 b1
kj “ ´gikbkj ´ gikpBk ζ̃j ´ Bj ζ̃kq . (3.17)

From this and (3.15) we infer that

b1
ij “ bij ` Biζ̃j ´ Bj ζ̃i , (3.18)

showing that the generalized coordinate transformations reproduce precisely the finite b-field

gauge transformations.
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3.2 The relation between OpD,Dq and gauge symmetries

We ask now to what extent OpD,Dq transformations are generalized coordinate transforma-

tions. Consider the finite OpD,Dq transformation

X 1M “ hMNXN , or X 1 “ hX , (3.19)

which, by definition, acts on a vector field as

A1
M pX 1q “ AN pXq

`
h´1

˘N
M or A1pX 1 “ hXq “ ApXqh´1 . (3.20)

As a first naive attempt let us view (3.19) as a generalized coordinate transformation and

compute its action on a vector AM pXq. The derivatives are

BX 1M

BXN
“ hMN ,

BXM

BX 1N
“ ph´1qMN , (3.21)

or in matrix notation
BX 1

BX “ ht ,
BX
BX 1

“ ph´1qt . (3.22)

We can then use (2.24) to write the gauge transformation, including the OpD,Dq metrics that

are implicit in (2.21) in the PP contractions and the coordinates with lowered indices:

A1
M pX 1q “ 1

2

´
ph´1qtη´1hη ` η´1hηph´1qt

¯
M

NAN pXq . (3.23)

We have hηht “ η, from which we conclude for the first term

ph´1qtη´1hη “ ph´1qtη´1ηphtq´1 “
“
ph´1qt

‰2
, (3.24)

and for the second

η´1hηph´1qt “ η´1ηphtq´1ph´1qt “
“
ph´1qt

‰2
. (3.25)

Thus, the transformation rule is

A1
M pX 1q “

”`
ph´1qt

˘2ı
M

NAN pXq “ AN pXq
“`
h´1

˘2‰N
M . (3.26)

In index-free notation,

A1pX 1 “ hXq “ ApXqph´1q2 . (3.27)

Comparing with (3.20) we infer that the gauge symmetry gives the square of the matrix we

want! This is the finite version of the same phenomenon encountered at the infinitesimal level

in [3]. There we saw that the infinitesimal version of the naive ansatz (3.19) leads to a relative

factor of two between the transport term and the rest.

The reason that the above does not indicate an inconsistency is that, viewed as a general

coordinate transformation, the ansatz (3.19) is not allowed in general by the strong constraint.

We will use (3.27) as a guide to modify the generalized coordinate transformation associated

to the duality transformation (3.19). While the coordinate transformation will differ from the

duality transformation in the way coordinates are rotated, the field transformations can be

made to agree, under conditions to be explained below.
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Consider first the geometric subgroup GLpD,Rq ˙ R
1

2
DpD´1q of OpD,Dq, whose elements

do not mix the x and x̃ coordinates. This subgroup, we claim, can be realized as (generalized)

coordinate transformations. To prove this claim, we work in a frame in which the fields do not

depend on x̃. Consider the dualities defined by a constant Λ P GLpD,Rq embedded in OpD,Dq
as Λ Ñ hpΛq, with

ph´1qNM pΛq “
˜

ph´1qji ph´1qji
ph´1qji ph´1qj i

¸
“

˜
Λi

j 0

0 pΛ´1qj i

¸
. (3.28)

The corresponding OpD,Dq transformation (3.20) on a vector AM “ pAi, Aiq then gives

A1
ipx1q “ pΛ´1qj i Ajpxq , Ai1px1q “ Λi

j A
jpxq , (3.29)

where only the transformation of x is relevant in the argument of the fields. The associated

generalized coordinate transformation is

x1i “ Λi
j x

j , x̃1
i “ x̃i , Λ P GLpD,Rq . (3.30)

As anticipated above, this is not the coordinate rotation induced by GLpD,Rq Ă OpD,Dq,
which would also transform x̃ (in the dual representation according to (3.28)). Equation (3.30)

is a special case of (3.3), so we can use the results of that subsection to find that this coordinate

transformation yields

A1
ipx1q “ pΛ´1qj i Ajpxq , Ai1px1q “ Λi

j A
jpxq , (3.31)

resulting in complete agreement with (3.29).

Finally, consider now the constant shift transformations in the duality subgroup R
1

2
DpD´1q

of OpD,Dq. These, with constant parameter eij “ ´eji, are given by

ph´1qNM peq “
˜
δij ´eij

0 δj i

¸
. (3.32)

It is easy to check that this acts on the generalized metric by bij Ñ bij ` eij . We claim that

the associated generalized coordinate transformations are

x̃1
i “ x̃i ` 1

2
eijx

j , xi1 “ xi . (3.33)

Again, this differs (by a factor of two) from the coordinate transformations suggested by the

dualities (3.32). Equations (3.33) are a special case of (3.8), applicable for fields that depend

only on x, and also result in bij Ñ bij ` eij . Summarizing, the full geometric subgroup is part

of the gauge group.

Let us now turn to the remaining transformations that complete the geometric subgroup

to the full T-duality group OpD,Dq. Instead of (3.19) we consider the generalized coordinate

transformation

X 1M “
`?

h
˘M

NXN . (3.34)
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The square root of the group element always exists and is itself a group element for the compo-

nent connected to the identity: we may simply insert a factor of 1

2
in the exponential represen-

tation of h in order to construct
?
h. Since

?
h is an OpD,Dq element the above computation

leading to (3.27) proceeds in exactly the same way, but now we obtain

A1
M pX 1q “

“`
p
?
hq´1

˘2‰N
M AN pXq “ AN pXq

`
h´1

˘N
M . (3.35)

More schematically, and without indices, we write

A1pX 1 “
?
hXq “ ApXqh´1 . (3.36)

The right-hand side is as required by the OpD,Dq transformation (3.20), but the left-hand

side is not, because X 1 “
?
hX rather than X 1 “ hX. We conclude that in general the full

OpD,Dq cannot be seen as part of the gauge group. However, for the special case that the fields

depend only on a subset of half of the coordinates that are allowed by the strong constraint

the situation changes. In this case we can consider OpD,Dq transformations that act only on

those coordinates on which the fields do not depend. We then have A1pX 1q “ A1pXq and the

two formulas (3.20) and (3.36) coincide. We use this approach now to see that the remaining

OpD,Dq transformations can be realized as coordinate transformations, consistent with the

strong constraint. We already have the group elements (3.28) and (3.32). To generate the full

OpD,Dq we are missing the elements

hMN pfq “
˜
δi

j 0

f ij δij

¸
ñ

`?
h

˘M
N pfq “

˜
δi

j 0

1

2
f ij δij

¸
. (3.37)

The coordinate transformation (3.34) then reads

X 1M “
`?

h
˘M

NXN ñ x̃1
i “ x̃i , xi1 “ xi ` 1

2
f ijx̃j . (3.38)

The last equation implies ζ̃i “ 0, ζ i “ ´1

2
f ijx̃j , and thus the gauge parameters depend only on

the x̃i on which the above transformation acts. As discussed above, the fields are now assumed

to be independent of the dual xi coordinates, so the strong constraint is satisfied. Therefore we

have shown that these particular OpD,Dq transformations are special gauge transformations.

In other words, in the case of a torus reduction, where the fields are independent of d ă D

(internal) coordinates, we can view the full Opd, dq subgroup as part of the gauge group. This

analysis completes our previous analysis in [3] for the case of finite gauge transformations.

4 Exponentiation of generalized Lie derivatives

In this section we compare the postulated formula (2.20) for generalized coordinate transfor-

mations with an alternative definition of finite transformations as the result of exponentiation

of generalized Lie derivatives pLξ, with parameter ξ. We determine how the parameter ξ enters

into the generalized coordinate transformation X Ñ X 1 to quartic order in ξ and verify the

resulting equivalence of the two forms of finite transformations to that order.
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4.1 General coordinate transformations

We start by writing a finite coordinate transformation in terms of a parameter ξM pXq that

generates this transformation as follows

XM Ñ X 1M “ e´ξP pXqBP XM . (4.1)

In this right-hand side the exponential is meant to be expanded in a power series and the

differential operator ξMBM , written sometimes as ξ, acts to the right on a function to give a

function. We can also rewrite (4.1) as an operator equation as follows

X 1 “ e´ξ X eξ . (4.2)

This can be verified with the familiar relation eA B e´A “ B ` rA,Bs ` 1

2
rA, rA,Bss ` ¨ ¨ ¨ ,

recalling that for any function fpXq we have rξ, fpXqs “ ξMBMf . Equation (4.2) is to be

interpreted as an operator equation, in which the left-hand side is a function that is viewed as

an operator acting via multiplication.

The parameter ξ can be related to ζ defined in (5.68), ζM “ ξM ´ 1

2
ξP BP ξM ` Opξ3q, but

this will not be required in the discussion that follows. The ξ parameterization of the coordinate

change will be used henceforth unless noted otherwise. We could write X 1M
ξ to denote the ξ

dependence but we will not do so unless it is required to distinguish it from other possible

definitions of X 1. We write the above diffeomorphism more compactly as

X 1 “ e´ξX “
´
1 ´ ξ ` 1

2
ξ2 ´ . . .

¯
X , ξ ” ξMBM . (4.3)

Taking derivatives of X 1 with respect to X is not complicated and one quickly finds that

BX 1

BX “ 1 ´ a ` 1

2
pξ ` aqa ´ 1

3!
pξ ` aq2a ` 1

4!
pξ ` aq3a ` ¨ ¨ ¨ , aP

Q ” BP ξQ . (4.4)

In here the ξ operator acts on everything that stands to its right. For example, ξa2 “ pξaqa `
apξaq. The above right-hand side is a (matrix) function, not a (matrix) differential operator.

Letting the ξ act we have

BX 1

BX “ 1 ´ a ` 1

2

`
ξa ` a2

˘
´ 1

6

`
ξ2a ` pξaqa ` 2a ξa ` a3

˘
` Opξ4q . (4.5)

Equation (4.4) can be written as

BX 1

BX “
´
e´pξ`aq 1

¯
, (4.6)

where the full expansion of the exponential acts on the constant matrix 1. Since pξ ` aq1 “ a,

one sees immediately that the evaluation of (4.6) yields (4.4). We now claim that we can simply

write
BX 1

BX “ e´pξ`aqeξ . (4.7)

Here the right-hand side may seem to be a differential operator but it is in fact a function, the

function given in (4.6). To prove this define hptq by

hptq ” e´tpξ`aqetξ . (4.8)
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Taking a derivative of h with respect to t we get h1ptq “ e´tpξ`aqp´aqetξ , and note that the

object in between the exponentials is a function, not a differential operator. We can write

this as

h1ptq “ e´tpξ`aq
`
´pξ ` aq1

˘
etξ . (4.9)

Then passing from the n-th derivative to the next goes as follows

hpnqptq “ e´tpξ`aqgn e
tξ Ñ hpn`1qptq “ e´tpξ`aq

`
´pξ ` aqgn

˘
etξ . (4.10)

We note that in the expression for hpn`1q the operator ξ acts only on gn, because the term where

it acts on etξ cancels against the derivative of etξ. If gn is a function, the object in between the

exponentials in hpn`1q is also a function. The result now follows because the above establishes

that hpnqpt “ 0q “ p´1qnpξ ` aqn1, and therefore

BX 1

BX “ hpt “ 1q “
8ÿ

n“0

1

n!
hpnqpt “ 0q “

8ÿ

n“0

1

n!
p´1qnpξ ` aqn1 “ e´pξ`aq1 . (4.11)

In summary we have shown that

BX 1

BX “ e´pξ`aqeξ “
´
e´pξ`aq 1

¯
. (4.12)

With this result we can readily write out the inverse matrix

BX
BX 1

“ e´ξeξ`a “
´
1 e´

ÐÝ
ξ `a

¯
. (4.13)

The first equality follows directly from (4.12), the second by a calculation completely analogous

to that above. Here, we have introduced the notation Mp´ÐÝ
ξ ` aq ” ´pξMq ` Ma for the

action of this operator on an arbitrary matrix M. The expansion then gives

BX
BX 1

“ 1 ` a ` 1

2
ap´ÐÝ

ξ ` aq ` 1

3!
ap´ÐÝ

ξ ` aq2 ` 1

4!
ap´ÐÝ

ξ ` aq3 ` Opξ5q . (4.14)

Expanding the
ÐÝ
ξ action we find

BX
BX 1

“ 1 ` a ´ 1

2
ξa ` 1

2
a2 ` 1

6
pξ2a ´ 2pξaqa ´ aξa ` a3q ` Opξ4q . (4.15)

It is also of interest to find an expression for F , as defined in (2.25). For this we need a

formula for
`

BX1

BX

˘t
. Using equation (4.4) one quickly notes that

´BX 1

BX
¯t

“ 1 ´ at ` 1

2
atpÐÝ

ξ ` atq ´ 1

3!
atpÐÝ

ξ ` atq2 ` 1

4!
atpÐÝ

ξ ` atq3 ` ¨ ¨ ¨

“
´
1 e´p

ÐÝ
ξ `atq

¯
“ e´ξeξ´at ,

(4.16)

where in the last step we used the second equality in (4.13) with a Ñ ´at. At this point it is

useful to define a function E that appears both in (4.13) and (4.16). We take

Epkq ” e´ξeξ`k “
´
1 e´

ÐÝ
ξ `k

¯
,

“ 1 ` k ´ 1

2
ξk ` 1

2
k2 ` 1

6
pξ2k ´ 2pξkqk ´ kξk ` k3q ` . . . ,

(4.17)
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where we made use of (4.13) and its expansion (4.15). We now have

BX
BX 1

“ Epaq ,
´BX 1

BX
¯t

“ Ep´atq . (4.18)

It follows that

F “ 1

2

´
EpaqEp´atq ` Ep´atqEpaq

¯
. (4.19)

An expansion to cubic order in ξ is now easily calculated. We find

F “ 1 ` pa ´ atq ´ 1

2
ξpa ´ atq ` 1

2
pa ´ atq2

` 1

6
ξ2pa ´ atq ´ 1

3

`
ξpa ´ atq

˘
pa ´ atq

´ 1

6
pa ´ atqξpa ´ atq ` 1

6
pa ´ atq3

´ 1

12

´
pξaqat ´ aξat ` a2at ´ apatq2

¯
` Opξ4q .

(4.20)

Comparing with (4.17) we recognize that the first three lines fit precisely the cubic expansion

of Epa ´ atq, and so we can write

F “ Epa ´ atq ´ 1

12

´
pξaqat ´ aξat ` a2at ´ apatq2

¯
` Opξ4q . (4.21)

4.2 Ordinary scalar and vector

Before turning to the generalized coordinate transformations let us review for scalars and vectors

the derivation of the finite gauge transformations as exponentials of ordinary Lie derivatives

corresponding to ordinary diffeomorphisms associated with (4.1).

Consider the general situation of a field Ψ whose infinitesimal gauge transformation is

given by the action of an operator Mξ linear in the infinitesimal gauge parameter ξ but field

independent. We write

Ψ1pXq “ ΨpXq ` MξΨpXq , (4.22)

or, more schematically,

Ψ1 “ Ψ ` MξΨ . (4.23)

In order to construct a finite transformation with finite parameter ξ we define ΨpX; tq in such

a way that ΨpX; t “ 0q “ ΨpXq and

ΨpX; t ` dtq “ ΨpX; tq ` MdtξΨpX; tq , (4.24)

which states that a change of parameter dt is implemented by a gauge transformation with

parameter dtξ. One can view ΨpX; tq as the gauge-transformed field obtained for gauge pa-

rameter tξ and the fully transformed field is ΨpX; t “ 1q. Because of the linearity of Mξ in ξ,

the above equation implies that

dΨpX; tq
dt

“ MξΨpX; tq . (4.25)
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Since Mξ is field independent, we integrate this immediately and find

ΨpX; tq “ etMξΨpX; t “ 0q . (4.26)

In conclusion, the fully transformed field Ψ1pXq “ ΨpX; t “ 1q is given by

Ψ1pXq “ eMξ ΨpXq . (4.27)

This is the desired large gauge transformation.

As a warmup let us consider the case of a scalar field. Then the infinitesimal gauge trans-

formation reads

φ1pXq “ φpXq ` ξPBPφpXq “ φpXq ` LξφpXq . (4.28)

Here Lξ denotes the usual Lie derivative, and it is acting on the scalar. The above discussion

implies that the large gauge transformation is given by

φ1pXq “ eLξ φpXq “ eξ φpXq , (4.29)

since ξ “ ξMBM coincides with the Lie derivative acting on a scalar. We now want to show

that this result follows from the basic transformation law

φ1pX 1q “ φpXq , (4.30)

for the coordinate transformation (4.1). As written in (4.3) we have

X 1 “ e´ξX Ñ eξX 1 “ X . (4.31)

The last equation requires a little explanation. The ξ operator must act through the chain rule,

as it involves X-derivatives. The result is a function, as all derivatives must act on something.

We now use that for a general (analytic) function f

peξfqpX 1q “ eξfpX 1qe´ξ “ fpeξX 1e´ξq “ fpXq , (4.32)

using (4.2) and the logic that led to it. Thus, eξ acts on any (analytic) function by turning X 1

into X. Therefore,

eξφ1pX 1q “ φ1pXq , (4.33)

where here and henceforth we omit the parenthesis around eξφ1. Therefore, using also the scalar

property (4.30) we have

φ1pXq “ eξφ1pX 1q “ eξ φpXq “ eLξ φpXq , (4.34)

just as we had in (4.29). This is what we wanted to show.

For a scalar density ΦpXq such as e´2d in (2.23) we have infinitesimally

Φ1pXq “ ΦpXq ` BM
`
ξM Φq “ ΦpXq ` LξΦpXq , (4.35)

where here Lξ denotes a Lie derivative on the density. This derivative, so defined to act on a

density, satisfies the algebra “
Lξ1 ,Lξ2

‰
“ ´Lrξ1,ξ2s . (4.36)
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This is the same algebra of diffeomorphisms that Lie derivatives satisfy acting on arbitrary

tensors.

Let us now consider an ordinary vector field, whose infinitesimal coordinate transformation

takes the form2

A1
M “ AM ` ξKBKAM ` pBM ξKqAK “ AM ` pLξAqM . (4.37)

All fields here are evaluated at the common argument X. In index free notation we have

A1 “ A ` ξA ` aA “ A ` LξA , (4.38)

which shows that, on the vector, we can view L as the matrix operator

Lξ “ ξ ` a . (4.39)

It then follows that the large coordinate transformation of the vector is given by

A1 “ eLξA “ eξ`aA . (4.40)

We now compare with the large gauge transformation derived from the usual coordinate

transformation of a vector,

A1
M pX 1q “ BXN

BX 1M
AN pXq Ñ A1pX 1q “ BX

BX 1
ApXq . (4.41)

Following (4.33) we write

A1pXq “ eξA1pX 1q “ eξ
BX
BX 1

ApXq , (4.42)

or, leaving out the common argument,

A1 “ eξ
BX
BX 1

A . (4.43)

The above partial derivatives were calculated in (4.13). Using them we have

A1 “ eξ
`
e´ξeξ`a

˘
A “ eξ`aA , (4.44)

in agreement with (4.40).

4.3 Generalized vector and reparameterized diffeomorphisms

The case of a generalized scalar is no different from the ordinary scalar. For generalized vectors,

however, the situation is quite different. The infinitesimal transformation of a generalized vector

is given by the generalized Lie derivative,

A1
M “ AM ` ξKBKAM `

`
BMξK ´ BKξM qAK “ AM ` p pLξAqM . (4.45)

2 Ordinary and generalized vectors will be denoted by the same symbol AM and are recognized by the context.
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In index-free notation we have

A1 “ A ` ξA `
`
a ´ at

˘
A “ A ` pLξA , (4.46)

which shows that on a generalized vector we can view the generalized Lie derivative as the

operator
pLξ “ ξ ` a ´ at . (4.47)

It follows that the large gauge transformation of the vector is then given by

A1pXq “ e
pLξ A “ eξ`pa´atq A . (4.48)

We now must compare with the transformation (2.20) we postulated. Following the steps

that are by now familiar, we have

A1
M pXq “ eξA1

M pX 1q “ eξFM
NAN pXq , (4.49)

or in matrix notation

A1pXq “ eξ F A . (4.50)

Equality with (4.48) would require

F “ e´ξeξ`pa´atq ? (4.51)

Using the definition (4.17) we are thus asking if

F “ Epa ´ atq ? (4.52)

In here, F is calculated using the diffeomorphism X 1 “ expp´ξqX and its definition (2.25). The

result to cubic order was given in (4.20) and (4.21). We found there that the above relation

holds up to quadratic order, but not to cubic order:

F “ Epa ´ atq ´ ∆F , (4.53)

where the correction ∆F is given by

∆F “ 1

12

´
pξaqat ´ a ξat ` a2at ´ apatq2

¯
` Opξ4q . (4.54)

This is an apparent failure of consistency. But there is some freedom in double field theory

that is not available in ordinary field theory. We can use that freedom to alter the parameteri-

zation of the diffeomorphism in such a way that the vector field transformations work out. In

doing so we must be careful not to spoil the already achieved agreement for the scalar field.

The diffeomorphism we have been considering so far is

X 1M
ξ ” e´ξP BPXM , (4.55)

where we have added the subscript ξ to emphasize the role of this parameter. Now we consider

a different diffeomorphism

X 1M
Θ ” e´ΘP BPXM “ XM ´ ΘM ` 1

2
ΘPBPΘM ´ 1

3
ΘPBP ΘKBKΘM ` OpΘ4q . (4.56)
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We are to design the new diffeomorphism – or equivalently to fix Θpξq – so that FΘ, given by

FΘ ” 1

2

´ BX
BX 1

Θ

´BX 1
Θ

BX
¯t

`
´BX 1

Θ

BX
¯t BX

BX 1
Θ

¯
, (4.57)

satisfies the requisite relation

FΘ “ Epa ´ atq , (4.58)

that guarantees that FΘ generates the same transformation as the exponential of the generalized

Lie derivative. In here we will achieve the above equality up to terms of order ξ3 and in the

appendix we extend the result to order ξ4.

We now consider the case when Θ equals ξ to leading order but has higher order corrections.

Since ∆F is cubic in ξ we have no use for quadratic corrections and we write

ΘM “ ξM ´ δM3 pξq ` . . . (4.59)

The subscript in δ indicates that this term is cubic in ξ. We will also assume that in δM3 the

index M is carried by a derivative. Schematically,

ΘM “ ξM `
ÿ

i

ρi BMχi , (4.60)

with ρi and χi functions of ξ. Because of the strong constraint, the action of ΘP BP on fields

(like ξ, or Θ, but not X), reduces to the action of ξPBP :3

ΘP BP pfields q “ ξP BP pfields q . (4.61)

Applied to (4.56) this gives

X 1M
Θ ” e´ΘP BPXM “ XM ´ ΘM ` 1

2
ξP BPΘM ´ 1

3!
ξP BP ξKBKΘM ` Opξ4q

“ XM ´ ΘM ` 1

2
ξΘM ´ 1

3!
ξξΘM ` Opξ4q .

(4.62)

On a scalar the new diffeomorphism results in the same large coordinate transformation. Since

X 1
Θ “ e´ΘP BPX Ñ X “ eΘ

P BPX 1 , (4.63)

we have, as before (see the discussion starting with (4.31) and leading to (4.33)),

φ1pXq “ eΘ
P BPφ1pX 1q “ eΘ

P BP φpXq “ eξ
P BP φpXq “ e

pLξφpXq . (4.64)

We now aim to compute FΘ. First, using (4.59) and (4.62), we can write the relation

between the two X’s as

X 1M
Θ “ X 1M

ξ ` δM3 ` Opξ4q . (4.65)

We then have

BX 1
Θ

BX “
BX 1

ξ

BX ` ∆3 , p∆3qQM ” BQδ M
3 “ pBδ3qQM ,

BX
BX 1

Θ

“ BX
BX 1

ξ

´ ∆3 .

(4.66)

3We note that this modification is consistent with the transformation of a density like the dilaton, which is

unmodified compared to ordinary geometry, see (2.23), because by the strong constraint the extra term BMξM

in the transformation rule is also unchanged when replacing ξ by Θ.
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We use the definition (4.57) to find that

FΘ “ Fξ ` ∆t
3 ´ ∆3 . (4.67)

In this light we have from (4.53)

FΘ “ Epa ´ atq ´ ∆F ` ∆t
3 ´ ∆3 . (4.68)

We are to design the new diffeomorphism so that FΘ is equal to Epa ´ atq, and therefore we

must find a Θpξq for which

∆t
3 ´ ∆3 “ ∆F . (4.69)

We claim that Θ is given by

ΘM “ ξM ` 1

12
pξξLqBM ξL ` Opξ4q , (4.70)

or equivalently

δ3 “ ´ 1

12
pξξLqBM ξL . (4.71)

We confirm this quickly. The definition of ∆3 in (4.66) gives

∆3 “ Bδ3 “ ´ 1

12

`
pξaqat ` a2at

˘
´ 1

12
pξξLqBBξL , (4.72)

where the matrix indices are carried by the partial derivatives BB in the second term. Moreover

∆t
3 ´ ∆3 “ 1

12

´
pξaqat ` a2at ´ aξat ´ apatq2

¯
. (4.73)

This coincides exactly with ∆F in (4.54). Thus equation (4.69) holds and we have completed

the verification of (4.58) to order ξ3:

FΘ “ Epa ´ atq ` Opξ4q . (4.74)

In Appendix A we carry the computation to quartic order and show that the above δ3 suffices

to generate the terms that must be cancelled. Thus the above actually holds with Opξ5q. We

expect that there will be a need for a correction δ5 to quintic order.

5 Composition of generalized coordinate transformations

In this section we study the composition of gauge transformations. As we will argue, our previ-

ous results that relate large gauge transformations to exponentials of Lie derivatives guarantee

the existence of a composition law. This is true both for the ordinary and for the general-

ized case. It will also become clear here that in the generalized case the composition of the

underlying coordinate transformations is exotic.
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5.1 Facts on composition

To begin we consider two diffeomorphisms

X 1 “ e´ξ1pXqX ,

X2 “ e´ξ2pX1qX 1 .
(5.1)

We also consider a diffeomorphism from X to X2

X2 “ e´ξ12pXqX . (5.2)

If this diffeomorphism is induced by the composition of the previous two diffeomorphisms we

have X2 “ e´ξ2pX1qe´ξ1pXqX and therefore

e´ξ12pXq “ e´ξ2pX1q e´ξ1pXq . (5.3)

In order for the argument of ξ2 to become X we multiply the right hand side by unity, expressed

as e´ξ1pXqeξ1pXq:

e´ξ12pXq “ e´ξ1pXq
`
eξ1pXqe´ξ2pX1q e´ξ1pXq

˘
. (5.4)

Recall from (4.32) that eξ1fpX 1qe´ξ1 “ fpXq, for any regular function fpXq. Using this we

find the relations

e´ξ12pXq “ e´ξ1pXq e´ξ2pXq ,

e ξ12pXq “ e ξ2pXq e ξ1pXq ,
(5.5)

where the second line is obtained by taking the inverse of the first line. We are now in a position

to use the Baker-Campbell-Hausdorff (BCH) relation to write an explicit expression for ξ12:

ξ12 “ ξ2 ` ξ1 ` 1

2

“
ξ2, ξ1

‰
` 1

12

`“
ξ2,

“
ξ2, ξ1

‰‰
`

“
ξ1,

“
ξ1, ξ2

‰‰˘
` . . . (5.6)

For our applications here we will just need this formula to quadratic order in ξ:

ξ12 “ ξ1 ` ξ2 ´ 1

2

“
ξ1 , ξ2

‰
` Opξ3q . (5.7)

A useful alternative picture of the situation involves the Lie derivative operator Lξ. The

key properties of this operator are its linearity in ξ and the commutator rLξ1 ,Lξ2s “ ´Lrξ1,ξ2s.
4

We can combine the exponentials of two such operators as follows

eLξ1pXqeLξ2pXq “ eL ξ12pXq , (5.8)

where we claim that ξ12 is the one determined above. To see this, let the above operator

equation act on a scalar field S. On a scalar the Lie derivative acts just like the vector operator:

LξS “ ξS, and we therefore get

eLξ1pXqeξ2pXqS “ eξ2pXqeLξ1pXqS “ eξ2pXqeξ1pXqS “ eξ12pXqS , (5.9)

4Let us note that here and below (see eq. (5.9)), we employ the convention that the (generalized) Lie derivatives

act on the fields first. The opposite convention according to which the Lie derivatives are operators acting

equitably on everything on the right leads to a different sign in the commutator of Lie derivatives.
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consistent with (5.5). We can also explicitly combine the operators on the left-hand side of

(5.8) using BCH:

eLξ1pXqeLξ2pXq “ eLξ1
`Lξ2

` 1

2
rLξ1

,Lξ2
s`... “ eLξ1

`Lξ2
´ 1

2
Lrξ1,ξ2s`... “ e

L
ξ1`ξ2´ 1

2
rξ1,ξ2s`... . (5.10)

This, of course, gives the same determination of ξ12.

In the generalized case the coordinate transformations become subtle to handle, but the

analogy to Lie derivatives holds. Thus, in view of (5.8) we now consider the corresponding

exponentials of generalized Lie derivatives,

e
pLξ1pXqe

pLξ2pXq “ e
pL ξc

12
pXq . (5.11)

As for the BCH relation, the only difference with ordinary Lie derivatives is that the commutator

of generalized Lie derivatives gives a generalized Lie derivative with parameter equal to (minus)

the Courant bracket of the parameters. It follows that the parameter ξc12 written above is in

fact given by the same formula (5.6) that gives ξ12 but this time using the Courant bracket:

ξc12 “ ξ2 ` ξ1 ` 1

2

“
ξ2, ξ1

‰
c

` 1

12

`“
ξ2,

“
ξ2, ξ1

‰
c

‰
c

`
“
ξ1,

“
ξ1, ξ2

‰
c

‰
c

˘
` . . . . (5.12)

It is important to clarify the notation in the above formula. In the generalized theory, due to

the strong constraint, it is not synonymous to speak of the components AM of a vector, or the

vector operator AMBM . The above equation must be thought of as an equation for components:

pξc12qM “ ξM2 ` ξM1 ` 1

2

“
ξ2, ξ1

‰M
c

` . . . . (5.13)

This distinction is relevant: while the vector components pξc
12

qK and pξ12qK are not equal, we

claim that the strong constraint implies the equality of the corresponding vector operators

pξc12qKBK “ pξ12qKBK . (5.14)

We can write this as ξc12 “ ξ12 when no confusion is possible, but recalling that the vectors do

not have the same components. In order to prove (5.14) we first recall that the C-bracket (1.5)

differs from the Lie bracket by a vector whose index is carried by a derivative:

rA,BsKc “ rA,BsK ` p¨ ¨ ¨ BK ¨ ¨ ¨ q , (5.15)

where the expressions indicated by dots are not presently relevant. It then follows by the strong

constraint that

rA,BsMc BM “ rA,BsMBM . (5.16)

Next we verify the following relation for Lie brackets:

“
χ , p¨ ¨ ¨~B ¨ ¨ ¨ q

‰
“ p¨ ¨ ¨~B ¨ ¨ ¨ q . (5.17)

This states that the Lie bracket of an arbitrary vector with a vector whose index is carried by

a derivative is again a vector whose index is carried by a derivative. This is readily verified

computing the M -th component of the following commutator:

“
χ , ρ~B η

‰M “ χKBKpρ BMηq ´ pρBKηqBKχM “ χKBKpρ BMηq , (5.18)
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and, as claimed, the right hand side is a vector whose index is carried by a derivative. We can

now see that a double nested C-commutator also reduces to a Lie commutator:
“
χ1 , rχ2, χ3sc sMc BM “

“
χ1 , rχ2, χ3sc sMBM

“
“
χ1 , rχ2, χ3s sMBM `

“
χ1 , p¨ ¨ ¨~B ¨ ¨ ¨ q sMBM ,

(5.19)

using (5.16) and then (5.15). We now use (5.17) to conclude that, as claimed

“
χ1 , rχ2, χ3sc sMc BM “

“
χ1 , rχ2, χ3s sMBM ` p¨ ¨ ¨ BM ¨ ¨ ¨ qBM “

“
χ1 , rχ2, χ3s sMBM . (5.20)

It is now easy to make an inductive argument to show that

“
χ1 , rχ2, rχ3 ¨ ¨ ¨ rχn´1 , χnscsc . . .sc sMc BM “

“
χ1 , rχ2, rχ3 ¨ ¨ ¨ rχn´1 , χns s . . .s sMBM . (5.21)

Indeed, in such an argument one may assume that all commutators are Lie except for the most

nested one. Then one uses (5.15) for this commutator to get the desired term with all brackets

of Lie type and an extra term where that most nested commutator is replaced by a vector with

index carried by a derivative. Then successive application of (5.17) gives the desired result.

Having shown this, and given the form of ξc12 in (5.12), we see that (5.14) is true.

5.2 General argument for composition

For the ordinary vector we wrote

A1pX 1q “ GpX 1,XqApXq , (5.22)

and with the diffeomorphism

X 1 “ e´ξX , (5.23)

we found that

GpX 1,Xq “ BX
BX 1

, (5.24)

can be written as

GpX 1,Xq “ e´ξ e ξ`a . (5.25)

Moreover, with these results we also found that transformation (5.22) implies

A1pXq “ eLξApXq “ e ξ`aA . (5.26)

As indicated above, acting on vectors, Lξ “ ξ ` a. Therefore, when the operators in (5.8) are

acting on a vector we have

eξ2`a2 eξ1`a1 “ eξ12`a12 . (5.27)

We now verify that the composition property of G,

GpX2,X 1qGpX 1,Xq “ GpX2,Xq , (5.28)

is a consequence of (5.27).5 Given (5.25) the above equation requires that

e´ξ2pX1q e ξ2pX1q`a1
2 e´ξ1pXq e ξ1pXq`a1 “ e´ξ12pXq e ξ12pXq`a12 . (5.29)

5Eqn. (5.28) follows directly from (5.24), but such derivation is not available for the generalized case.

26



Let us show that this gives us (5.27). Acting with e ξ12pXq

eξ12pXqe´ξ2pX1q e ξ2pX1q`a1
2 e´ξ1pXq e ξ1pXq`a1 “ e ξ12pXq`a12 . (5.30)

Then using (5.3)

eξ1pXq e ξ2pX1q`a1
2 e´ξ1pXq e ξ1pXq`a1 “ e ξ12pXq`a12 . (5.31)

The first three factors on the left-hand side give6 the factor eξ2pXq`a2 . Thus (5.31) becomes

ǫξ2pXq`a2 e ξ1pXq`a1 “ e ξ12pXq`a12 , (5.32)

which is identical to (5.27).

We can now turn to the generalized case. The composition law on a scalar is no different

from that in ordinary geometry and holds as in that case. For the scalar density we have that

the Lie derivatives Lξ considered in (4.35) lead to

eLξ1pXqeLξ2pXq “ eL ξ12pXq . (5.33)

But for the scalar density (or the scalar) Lie derivatives take the same form as generalized Lie

derivatives, so we have

e
pLξ1pXqe

pLξ2pXq “ e
pL ξ12pXq . (5.34)

Moreover, acting on a scalar density (or a scalar) any contribution to ξM of the form ¨ ¨ ¨ BM ¨ ¨ ¨
will vanish on pLξ. Thus by virtue of (5.14) we can replace ξ12 by ξc12 in the above, finding that

on a scalar density we have

e
pLξ1pXqe

pLξ2pXq “ e
pL ξc

12
pXq . (5.35)

The integration of the infinitesimal transformation of the scalar density leads to (2.23) and by

the above argument, such transformation must be consistent with composition, as expressed in

the generalized case by the equation above. We verify this explicitly at the end of section 5.3.

Let us now consider the large transformation of the vector field is represented by the relation

A1pX 1q “ FpX 1,XqApXq , (5.36)

with

FpX 1,Xq “ 1

2

´ BX
BX 1

BX 1

BX
t

` BX 1

BX
t BX
BX 1

¯
. (5.37)

We have already shown that

X 1 “ e´ΘpξqX , Θpξq “ ξ ` Opξ3q , (5.38)

leads to

FpX 1,Xq “ e´ξ e ξ`k , k “ a ´ at , (5.39)

at least to Opξ5q. Moreover, this and (5.36) imply that

A1pXq “ e
pLξApXq “ e ξ`kA . (5.40)

6Note that a1
2 goes to a2 because pa1

2qQ
P “ B1

Qξ2pX 1qP “ hpX 1qQ
P is ultimately a function of X 1 so that

eξ1pa1
2qQ

P e´ξ1 “ eξ1hpX 1qQ
P e´ξ1 “ hpXqQ

P “ BQξ2pXqP “ pa2qQ
P .
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Note that on generalized vectors pLξ “ ξ ` k. It now follows that the composition (5.11) of

exponentials of generalized Lie derivatives, applied to generalized vectors, gives

eξ2pXq`k2eξ1pXq`k1 “ eξ
c
12

pXq`kc
12 . (5.41)

We claim that composition of F holds in the following sense:

e´ξ2pX1q e ξ2pX1q`k1
2 e´ξ1pXq e ξ1pXq`k1 “ e´ξc

12
pXq e ξc

12
pXq`kc

12 . (5.42)

This means that

FpX2,X 1qFpX 1,Xq “ FpX2,Xq , (5.43)

where the F on the right-hand side is built from X2 “ e´Θpξc
12

qX. To prove (5.42) we first

multiply it by eξ1pXqeξ2pX1q to get

eξ1pXq e ξ2pX1q`k1
2 e´ξ1pXq e ξ1pXq`k1 “ eξ1pXqeξ2pX1qe´ξc

12
pXq e ξc

12
pXq`kc

12 . (5.44)

Consider the first three factors on the above right-hand side. Given (5.14) we can replace ξc12

by ξ12 (since here they are operators) and then use (5.3) to find that these factors give the unit

matrix:

eξ1pXqeξ2pX1qe´ξc
12

pXq “ eξ1pXqeξ2pX1qe´ξ12pXq “ 1 . (5.45)

On the left-hand side of (5.44) we see that the first and third factor implement the change

X 1 Ñ X on the second factor. All in all (5.44) becomes

e ξ2pXq`k2 e ξ1pXq`k1 “ e ξc
12

pXq`kc
12 . (5.46)

This is indeed identical to (5.41), as we wanted to show. Note that the above right-hand side

is also equal to e ξ12pXq`kc
12 , but kc12 is built from the components pξc12qM , and therefore cannot

be traded for k12 which is build from the components pξ12qM .

5.3 Testing composition

In this section we test explicitly the composition rules. This provides a confirmation of the

arguments presented above and is simply a welcome check on the formalism. While the con-

firmation to be done is certainly not novel in the ordinary geometry case, the notation to be

introduced will help the treatment of the generalized case.

For the three parameters ξ1, ξ2, and ξ12 we introduce the matrices a1, a2, and a12 as the

analogs of the matrix apξqPQ “ BP ξQ:

pa1qMN ” BMξN1 , pa2qMN ” B1
M ξN2 pX 1q , pa12qMN ” BM ξN12pXq . (5.47)

The composition law (5.28) then requires

Gpξ2qGpξ1q “ Gpξ12q , (5.48)

where we have denoted the G in terms of the parameter that generates the corresponding

transformation. This equation must determine ξ12, and we expect that this is the ξ12 obtained

before.
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Recalling that G “ BX
BX1 and making use of (4.15) we can write, to quadratic order,

Gpξ1q “ 1 ` a1 ´ 1

2
ξ1a1 ` 1

2
a1a1 ` ¨ ¨ ¨ . (5.49)

Using (5.49) for the other two ξ’s, we quickly find that (5.48) requires, to quadratic order,

1 ` a1 ` a2 ´ 1

2
ξ1a1 ´ 1

2
ξ2a2 ` a2a1 ` 1

2

`
a1a1 ` a2a2

˘
“ 1` a12 ´ 1

2
ξ12a12 ` 1

2
a12a12 . (5.50)

To linear order this requires a12 “ a1 ` a2. Writing a12 “ a1 ` a2 ` δ one readily determines δ

and concludes that the above equation is satisfied if

a12 “ a1 ` a2 ´ 1

2
ra1, a2s ` 1

2
pξ1a2 ` ξ2a1q . (5.51)

We now calculate a12, with ξ12 given in (5.7) and will show that indeed the above a12 arises.

We begin with

pa12qMN “ BM ξN12 “ BM
`
ξN1 ` ξN2 ´ 1

2
ξP1 BP ξN2 ` 1

2
ξP2 BP ξN1

˘
. (5.52)

In here we will have to evaluate the derivative BMξN
2

pXq which is closely related to a2. The

relation to quadratic order is readily found,

Bξ2pXq “ eξ1 B1ξ2pX 1qe´ξ1 “ a2 ` ξ1a2 ` Opξ3q . (5.53)

Evaluating (5.52) with the help of this relation we find

a12 “ a1 ` a2 ` ξ1a2 ´ 1

2
a1a2 ´ 1

2
ξ1a2 ` 1

2
a2a1 ` 1

2
ξ2a1 , (5.54)

and we recover precisely (5.51), completing the proof to second order.

In the generalized setting, the transformation of a gauge field is now implemented by F ,

instead of G. Our expansion of F to quadratic order is read off from (4.20):

Fpξ1q “ 1 ` k1 ´ 1

2
ξ1k1 ` 1

2
k1k1 , with k1 ” a1 ´ at1 , a1 ” Bξ1 . (5.55)

This time the composition rule requires that

Fpξ2qFpξ1q “ Fpξc12q . (5.56)

Written out to quadratic order it gives the requirement

1 ` k1 ` k2 ´ 1

2
ξ1k1 ´ 1

2
ξ1k2 ` k2k1 ` 1

2
pk1k1 ` k2k2q “ 1 ` kc12 ´ 1

2
ξ12k

c
12 ` 1

2
kc12k

c
12 . (5.57)

This equation will be satisfied if ξc
12

is such that

kc12 “ k1 ` k2 ´ 1

2
rk1, k2s ` 1

2
pξ1k2 ` ξ2k1q . (5.58)

It remains to show that this is consistent with

pξc12qM “ ξM1 ` ξM2 ´ 1

2

“
ξ1, ξ2

‰M
C

“ ξM1 ` ξM2 ´ 1

2

“
ξ1, ξ2

‰M ` 1

4
ξ1P BM ξP2 ´ 1

4
ξ2PBM ξP1 ,

(5.59)
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where we used (1.5). The new ac
12

here is equal to the old a12 in (5.51), plus the contributions

from the last two terms above,

pac12qMN “ BM ξN12 “ pa12qMN ` 1

4
BM

`
ξ1P BN ξP2 ´ ξ2PBN ξP1

˘
. (5.60)

Therefore,

ac12 “ a12 ` 1

4
pa1at2 ´ a2a

t
1q ` 1

4

`
ξ1P pBBqξP2 ´ ξ2P pBBqξP1

˘
. (5.61)

In the last couple of terms the matrix indices are carried by the partial derivatives. Now, when

we form kc
12

“ ac
12

´ pac
12

qt those terms cancel and we find

kc12 “ ac12 ´ pac12qt “ a12 ´ at12 ` 1

2
pa1at2 ´ a2a

t
1q . (5.62)

Let us now expand the right-hand side of (5.58) to see if it agrees with the above kc12:

k1` k2 ´ 1

2
rk1, k2s ` 1

2
pξ1k2 ` ξ2k1q

“ a1 ´ at1 ` a2 ´ at2 ´ 1

2
ra1 ´ at1, a2 ´ at2s ` 1

2
ξ1pa2 ´ at2q ` 1

2
ξ2pa1 ´ at1q

“ a1 ` a2 ´ 1

2
ra1, a2s ` 1

2
pξ1a2 ` ξ2a1q

´
´
at1 ` at2 ´ 1

2
rat2, at1s ` 1

2
pξ1at2 ` ξ2a

t
1

˘ ¯
` 1

2
ra1, at2s ` 1

2
rat1, a2s

“ a12 ´ at12 ` 1

2
pa1at2 ´ at2a1 ` at1a2 ´ a2a

t
1q ,

(5.63)

where we made use of (5.51) to identify the terms that comprise a12 and at
12
. We now note that

pat1a2qPQ “ pa1qMP pa2qMQ “ BMξ1P B1
M ξ

Q
2

“ 0 , (5.64)

using the strong constraint in the form (2.9). For the same reason at2a1 “ 0. As a result the last

right-hand side in (5.63) indeed equals kc12, as given in (5.62). This proves the desired result.

To conclude, we explain how the composition law for generalized coordinate transformations

is consistent with the large transformation of a scalar density, as postulated in (2.23). The

consistency requires that

det
´ BX

BX2

¯ˇ̌
ˇ
X2“e´ξ12X

“ det
´ BX

BX2

¯ˇ̌
ˇ
X2“e

´Θpξc
12

q
X

. (5.65)

On the left-hand side we have the composition of determinants computed directly by matrix

multiplication as if the generalized coordinate transformations composed directly; on the right

hand side we have the determinant of the true composite generalized transformation. To verify

this equality we recall the general identity

det p1 ` Aq “ exp
”
tr

`
A ´ 1

2
A2 ` 1

3
A3 ` ¨ ¨ ¨

˘ı
, (5.66)

and from (4.15), when X 1 “ e´ξX,

BX
BX 1

“ 1 ` A , with A “ a ´ 1

2
ξa ` 1

2
a2 ` 1

6
pξ2a ´ 2pξaqa ´ aξa ` a3q ` Opξ4q . (5.67)

30



Equation (5.65) holds if the change

ξM Ñ ξM ` ¨ ¨ ¨ BM ¨ ¨ ¨ (5.68)

leaves the computation of the determinant invariant. This is because ξ12 and ξc12 differ by such

terms, and Θpξq differs from ξ by such terms. As we can see above, the determinant is expressed

in terms of traces of A,A2, A3, . . .. We see immediately that tr a “ B¨ξ is invariant under (5.68).

So is tr ξa “ ξMBMB ¨ ξ, and

tr a2 “ BM ξN BN ξM “ BM pξN ` ¨ ¨ ¨ BN ¨ ¨ ¨ q BN pξM ` ¨ ¨ ¨ BM ¨ ¨ ¨ q (5.69)

The general term in any power of A is made of a sequence of a factors and ξ operators, and

their trace will be invariant under (5.68):

tr raa . . . pξaq . . . as “ BM ξNBN ξPBP . . . ξRpξQBQqBRξS BS . . . ξW BW ξM , (5.70)

since each ξ index must be contracted with a derivative index (there are no at’s in here). All in

all this makes it manifest that (5.65) holds and that our formula for the large transformation

of a density is consistent.

6 Conclusions and open questions

We have presented a proposal for finite gauge transformations in double field theory. These

transformations arise, in this viewpoint, from something we call generalized coordinate trans-

formations. While in ordinary geometry a vector field transforms with one power of the matrix

of derivatives of the coordinate maps, in double field theory a vector AM pXq transforms as

A1pX 1q “ FpX 1,XqApXq , (6.1)

with

FpX 1,Xq “ 1

2

´ BX
BX 1

BX 1

BX
t

` BX 1

BX
t BX
BX 1

¯
. (6.2)

Apart from passing a number of consistency conditions a key property of the above expression

is its relation to finite gauge transformations defined more directly through the exponentiation

of generalized Lie derivatives pLξ:

A1pXq “ e
pLξApXq “ e ξ`kA , k “ a ´ at , a “ Bξ . (6.3)

To establish that this transformation is equivalent to the transformation (6.1) we had to show

that there is a generalized coordinate transformation X 1 “ fξpXq in terms of ξ for which the

evaluation of F results in

FpX 1,Xq “ e´ξ e ξ`k , (6.4)

for this indeed implies the equivalence of (6.1) and (6.3). One may have thought that the

coordinate transformation X 1 “ e´ξX would do the job, but it turns out that this only leads

to (6.4) holding to order ξ2. The generalized coordinate transformation can be somewhat more
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exotic while preserving familiar results due to some flexibility afforded by use of the strong

constraint. We showed that in fact

X 1 “ e´ΘpξqX , with ΘM “ ξM ` 1

12
pξξLqBM ξL ` Opξ5q , (6.5)

leads to (6.4) up to and including Opξ4q terms. Note that ΘM equals ξM to leading order and

that the cubic correction is a vector whose index is carried by a derivative. This correction

affects the coordinate transformation but also results in ΘMBM “ ξMBM on fields (but not

on X). It remains an open problem to show that there exists a Θpξq that implies (6.4) to all

orders in ξ. It would also be of interest to understand the geometrical role of Θ.

Generalized Lie derivatives define a Lie algebra. Indeed, we have [4]

“ pLξ1 ,
pLξ2

‰
“ ´ pLrξ1,ξ2sc , (6.6)

with r¨, ¨sc the C-bracket, and the Jacobi identity holds:

““ pLξ1 ,
pLξ2

‰
, pLξ3

‰
`

““ pLξ2 ,
pLξ3

‰
, pLξ1

‰
`

““ pLξ3 ,
pLξ1

‰
, pLξ2

‰
“ 0 . (6.7)

This happens because the C-bracket Jacobiator of pξ1, ξ2, ξ3q is a trivial parameter and gener-

alized Lie derivatives of trivial parameters are zero. For both of the above properties one must

use the strong constraint. It is then a direct consequence of (6.3) that the finite transformations

form a group. The Baker-Campbell-Hausdorff formula allows us to combine exponentials to get

e
pLξ1pXqe

pLξ2pXq “ e
pL ξcpξ2,ξ1q , (6.8)

where

ξcpξ2, ξ1q “ ξ2 ` ξ1 ` 1

2

“
ξ2, ξ1

‰
c

` 1

12

`“
ξ2,

“
ξ2, ξ1

‰
c

‰
c

`
“
ξ1,

“
ξ1, ξ2

‰
c

‰
c

˘
` . . . . (6.9)

The group associativity property is guaranteed to hold acting on fields, namely

`
e

pLξ1pXqe
pLξ2pXq

˘
e

pLξ3pXq “ e
pLξ1pXq

`
e

pLξ2pXqe
pLξ3pXq

˘
. (6.10)

This results in

exp
` pL ξcpξ3,ξcpξ2,ξ1qq

˘
“ exp

` pL ξcpξcpξ3,ξ2q,ξ1q

˘
, (6.11)

and implies that the parameters of the left-hand side and right-hand side are equal up to a

trivial parameter that does not generate a Lie derivative. A short computation shows that, in

fact,

ξc
`
ξ3 , ξ

cpξ2, ξ1q
˘

“ ξc
`
ξcpξ3, ξ2q , ξ1

˘
´ 1

6
Jpξ1, ξ2, ξ3q ` ¨ ¨ ¨ , (6.12)

where Jpξ1, ξ2, ξ3q “ rξ1, rξ2, ξ3scsc ` cycl. is the C-bracket Jacobiator that indeed is a trivial

parameter, see eq. (8.29) in [2].

In terms of generalized coordinate transformations we have two maps m1 : X Ñ X 1 and

m2 : X
1 Ñ X2,

X 1 “ e´Θpξ1qpXqX ,

X2 “ e´Θpξ2qpX1qX 1 .
(6.13)
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We are now to find the relevant map m21 : X Ñ X2. The direct composition map is not the

one we get. It would lead to a parameter built from ξ2 and ξ1 and the Lie bracket, not the

C-bracket. What we get is the map m21 “ m2 ‹ m1 defined by

X2 “ e´Θ

`
ξcp ξ2 , ξ1 qpXq

˘
X . (6.14)

It may seem paradoxical that the direct composition m2 ˝ m1 of maps does not define the map

relevant in double field theory, but this is unavoidable and consistent. Is it possible to write the

exotic composition law we have here in terms of the maps rather than in terms of the generating

ξ parameters? Should the coordinates be viewed in a different way that makes the composition

law look more natural?

The exotic composition rule has important consequences for associativity. Consider a third

map m3 : X
2 Ñ X3,

X3 “ e´Θpξ3qpX2qX2 . (6.15)

Given the three maps m1, m2 and m3, we can form a map X Ñ X3 in two different ways,

m3 ‹ pm2 ‹ m1q , pm3 ‹ m2q ‹ m1 . (6.16)

The first map leads to

X3 “ exp
`

´ Θpξcpξ3, ξcpξ2, ξ1qqq
˘
X , (6.17)

and the second map leads to

X3 “ exp
`

´ Θpξcpξcpξ3, ξ2q, ξ1qq
˘
X . (6.18)

Due to (6.12) the two maps above are not equal. Indeed, a trivial parameter like the Jacobiator

contributes to the transformation of X, see e.g. (4.62). Let us stress that this phenomenon

would occur also without the modification from ξ to Θ and that, moreover, this modification

does not compensate for the difference between (6.17) and (6.18). Therefore, even though the

generalized coordinate transformations build a group when acting on fields, the composition

rule ‹ for coordinate maps does not form a group. In this respect we note that recently there

have been proposals that in string theory there is a plausible role for string coordinates that

are non-commutative or even non-associative [38–41], and it would be interesting to investigate

if the unconventional group structure encountered here can be naturally interpreted in that

context. These are important open questions, and any progress could help us learn about the

underlying geometry of string theory.

In double field theory the strong constraint guarantees that, at least locally, we may always

rotate into a frame where the fields depend only on half of the (doubled) coordinates. It is

not yet known how to construct a non-trivial patching of local regions of the doubled manifold

leading to more general ‘non-geometric’ configurations. The notion of a ‘T-fold’, for instance,

is based on the idea that field configurations on overlaps can be glued with the use of T-duality

transformations [42]. In order to address questions of this type in double field theory we need

a clear picture of the finite gauge transformations, and in this paper we hope to have taken a

step in this direction.
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A Modifying the parameterization of the diffeomorphism

The purpose of this section is to verify that Θ, as given in (4.70), is actually correct to quartic

order. That is, no quartic term is needed and in fact

ΘM “ ξM ´ δM3 ` Opξ5q “ ξM ` 1

12
pξξLqBM ξL ` Opξ5q , (A.1)

will be sufficient to guarantee that

FΘ “ Epa ´ atq ` Opξ5q . (A.2)

We begin by considering the discrepancy ∆F between F and Epa ´ atq to quartic order in ξ.

We write

F “ Epa ´ atq ´ ∆F , (A.3)

where ∆F is calculated by expansion of (4.19) and was calculated to leading cubic order before.

This time we find

∆F “ 1

12

´
pξaqat ` a2at ´ aξat ´ apatq2

¯

´ 1

24

”
pξaqaat ´ aatξat ` pξ2aqat ´ apξ2atq

ı

´ 1

12

”
a2ξat ´ apξatqat ` a2patq2 ´ 1

2
a3at ´ 1

2
apatq3

ı
.

(A.4)

The first line contains the contributions cubic in ξ, while the other two lines contain the con-

tributions quartic in ξ. Recall the expression for X 1 and that for X 1
Θ
in (4.62)

X 1M
ξ ” XM ´ ξM ` 1

2
ξξM ´ 1

3!
ξ2ξM ` Opξ4q ,

X 1M
Θ ” XM ´ ΘM ` 1

2
ξΘM ´ 1

3!
ξ2ΘM ` 1

4!
ξ3ΘM ` Opξ5q .

(A.5)

Using (A.5) we can write the relation between the two X’s as

X 1M
Θ “ X 1M

ξ ` δM3 ` δ̂M4 ` . . . , with δ̂M4 “ ´1

2
ξδM3 . (A.6)

Now define, for i “ 3, 4, the derivatives

p∆3qQM “ BQδ M
3 , p∆4qQM “ BQδ̂ M

4 . (A.7)
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With this notation,
BX 1

Θ

BX “
BX 1

ξ

BX ` ∆3 ` ∆4 . (A.8)

A short calculation shows that

∆4 “ ´1

2
pξ ` aq∆3 . (A.9)

Now we need a formula to find the inverse of the above coordinate derivatives. Given the matrix

M expanded in powers of ξ as

M “ 1 ` A1 ` A2 ` A3 ` A4 ` Opξ5q , (A.10)

with matrix inverse M´1, we find that for the perturbed matrix

M 1 “ M ` ∆A3 ` ∆A4 ` Opξ5q , (A.11)

the inverse matrix is given by

M 1´1 “ M´1 ´ ∆A3 ´ ∆A4 ` p∆A3qA1 ` A1p∆A3q ` Opξ5q . (A.12)

Applied to (A.8) this gives

BX
BX 1

Θ

“ BX
BX 1

ξ

´ ∆3 ´ ∆4 ` p∆3p´aq ` p´aq∆3q

“ BX
BX 1

ξ

´
´
∆3 ` ∆4 ` ∆3 a ` a∆3

¯
.

(A.13)

We then find that

FΘ “ Fξ ` ∆ , (A.14)

where

∆ “ ∆t
3 ´ ∆3 ` ∆t

4 ´ ∆4 ´ p∆3a ` a∆3q ` 1

2
p∆3a

t ` a∆t
3 ` ∆t

3a ` at∆3q . (A.15)

In this light we have from (A.14) and (A.3)

FΘ “ Epa ´ atq ´ ∆F ` ∆ . (A.16)

So in order to get FΘ “ Epa ´ atq we need a Θpξq for which

∆ “ ∆F . (A.17)

Let us now confirm that our choice for Θ, defined by (A.1) with

δ3 “ ´ 1

12
pξξLqBM ξL , (A.18)

indeed produces the desired result. The definition (A.7) gives

∆3 “ ´ 1

12

`
pξaqat ` a2at

˘
´ 1

12
pξξLqBBξL , (A.19)
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where the matrix indices on the last term are carried by the partial derivatives BB. Moreover,

∆4 “ ´ 1

2
pξ ` aq∆3

“ 1

24

”
pξaqaat ` pξ2aqat ` pξaqpξatq ` 2apξaqat ` a2ξat ` a3at

ı

` 1

24
pξ ` aq

`
pξξP qBBξP

˘
.

(A.20)

Using the above we can calculate all the ingredients of ∆,

∆t
3 ´ ∆3 “ 1

12

´
pξaqat ` a2at ´ aξat ´ apatq2

¯
,

´p∆3a ` a∆3q ` 1

2
p∆3a

t ` a∆t
3 ` ∆t

3a ` at∆3q ,

“ 1

12

`
apξaqat ` a3at ´ a2patq2

˘

´ 1

24

`
pξaqpatq2 ` a2ξat

˘
` 1

24

`
apξξP qBBξP ´ pξξP qpBBξP qat

˘
,

∆t
4 ´ ∆4 “ ´ 1

24

”
pξaqaat ´ aatξat ` pξ2aqat ´ apξ2atq

ı

´ 1

24

”
2apξaqat ´ 2apξatqat ` a2ξat ´ pξaqpatq2 ` a3at ´ apatq3

ı

´ 1

24

`
apξξP qBBξP ´ pξξP qpBBξP qat

˘
,

(A.21)

where ξ2 terms on the last line cancelled because the ‘matrix’ BB is symmetric. Adding up the

above to find ∆ we get

∆ “ 1

12

´
pξaqat ` a2at ´ aξat ´ apatq2

¯

´ 1

24

”
pξaqaat ´ aatξat ` pξ2aqat ´ apξ2atq

ı

` 1

12

”
apξaqat ` a3at ´ a2patq2 ´ 1

2
pξaqpatq2 ´ 1

2
a2ξat

ı

´ 1

12

”
apξaqat ´ apξatqat ` 1

2
a2ξat ´ 1

2
pξaqpatq2 ` 1

2
a3at ´ 1

2
apatq3

ı
.

(A.22)

Combining the last two lines we get

∆ “ 1

12

´
pξaqat ` a2at ´ aξat ´ apatq2

¯

´ 1

24

”
pξaqaat ´ aatξat ` pξ2aqat ´ apξ2atq

ı

´ 1

12

”
a2ξat ´ apξatqat ` a2patq2 ´ 1

2
a3at ´ 1

2
apatq3

ı
.

(A.23)

This coincides exactly with ∆F in (A.4). Thus equation (A.17) holds and we have completed

the verification that FΘ “ Epa ´ atq up to terms quintic in ξ.
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