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Abstract

Double field theory provides T-duality covariant generalized tensors that are natural
extensions of the scalar and Ricci curvatures of Riemannian geometry. We search for
a similar extension of the Riemann curvature tensor by developing a geometry based
on the generalized metric and the dilaton. We find a duality covariant Riemann tensor
whose contractions give the Ricci and scalar curvatures, but that is not fully determined
in terms of the physical fields. This suggests that o corrections to the effective action
require o/ corrections to T-duality transformations and/or generalized diffeomorphisms.
Further evidence to this effect is found by an additional computation that shows that
there is no T-duality invariant four-derivative object built from the generalized metric
and the dilaton that reduces to the square of the Riemann tensor.
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A Relation to frame formalism

1 Introduction

Among the celebrated dualities of string theory T-duality is arguably the most intriguing, for it
directly hints at novel geometrical structures, transcending the usual framework of differential
geometry. Recently, a so-called double field theory has been constructed that manifests some
of these features at the level of space-time theories for the massless sector of string theory.
Specifically, here the space-time coordinates are doubled in order to realize the ‘T-duality
group’ O(D, D) geometrically, while introducing an O(D, D) covariant constraint that locally
removes the dependence on half of the coordinates [IH3]. (See [4-26] for previous work and
further developments.)



The formulation of double field theory that is perhaps the most intuitive and which will be
used throughout this paper is the generalized metric formulation. The generalized metric Hysn
is the O(D, D)-valued symmetric tensor

g” —g™ b
bikg™  gij — birg” by

which combines the space-time metric g;; and the Kalb-Ramond two-form b;;. Here, M, N, ... =
1,...,2D are fundamental O(D, D) indices, where D denotes the total number of space-time
dimensions. Being an element of O(D, D), the generalized metric satisfies

HMEW ey = My, (1.2)

where

0 1
HYN = M N e MY = ’ (1.3)
10
and n™¥ is the O(D, D) invariant metric that will be used to raise and lower O(D, D) indices.
The theory also includes the duality invariant dilaton field d related to the standard dilaton ¢
via the field redefinition e=2¢ = \/ge—%.

Double field theory features a gauge symmetry parameterized by an O(D, D) vector pa-
rameter M = (52 ,&%) that combines the diffeomorphism parameter ¢ and the b-field gauge
parameter &. We will refer to this gauge symmetry as ‘generalized diffeomorphisms’. It acts
on the fundamental variables as:

SeHun = E0pHun + (0mE" — 076 ) Hpn + (OnE" — 07 En)Hup |

(1.4)
6§(6_2d) — 8M(§M€_2d),

where Oy = (5i,8i) is the partial derivative with respect to the doubled coordinates XM =
(%, 2%). We see that e~2? transforms as a scalar density. The transformation rule in the top line
of (L)) defines a generalized Lie derivative 6¢Hyn = 257-[ MmN, that can be defined similarly for
arbitrary O(D, D) tensors. An O(D, D) tensor transforming under generalized diffeomorphisms
with a generalized Lie derivative is called a generalized tensor. The double field theory action

can be written as

s = / deds e 2 R(H, d) | (1.5)
where R is an O(D, D) invariant function of H and d that is a generalized scalar,
55R(H7d) = gpaPR(;LLd) ’ (16)

making the gauge invariance of (L3]) manifest. In order to verify the gauge variation (L6 the
following ‘strong constraint’ is required:

" Noyoy = oMoy = 0, (1.7)

when acting on arbitrary fields and parameters and all their products. This constraint implies
that locally all fields depend only on half of the coordinates, e.g., only the z’.



The scalar R can be viewed as a generalized scalar curvature: it reduces to the scalar
curvature when we set b = ¢ = 0 and choose the duality frame d=0. Moreover, the variation
of (L) with respect to Han gives rise to an O(D, D) tensor Ryrn(H,d) that is in fact a
generalized tensor and can be viewed as a generalized Ricci tensor; its non-vanishing components
reduce to the Ricci tensor when we set b = ¢ = 0 and choose the duality frame d = 0. Given
this similarity with the corresponding tensors of Riemannian geometry it is natural to look for
a systematic way to construct these curvatures starting with Christoffel-like connections and
a generalized version of the Riemann tensor. Indeed, it would be useful to have a T-duality
covariant generalization of the full Riemann tensor in order to write general higher-derivative
or o corrections to the effective action.

In searching for a generalized four-index Riemann tensor Ryrnvpg it is useful to make a list
of properties that we may want this tensor to satisfy:

1. It is a tensor under O(D, D).
2. It is a tensor under generalized diffeomorphisms.
3. It gives the generalized tensors Rjsny and R upon suitable contractions.

4. It is expressed in terms of the physical fields H sy and d.

Property (1) ensures proper behavior under T-duality and property (2) ensures proper behav-
ior under gauge transformations. Property (3) implies that, as in Riemannian geometry, the
Riemann tensor contains the information in Ricci and the information in the scalar curvature
Property (4) means that the tensor is ‘physical’, or fully determined. We could also demand
some additional properties that would establish a close relation of Raypg to the familiar
Riemann tensor. In analogy to the situation with Ry/n and R we could demand that

(A) For b=¢ =0 and d = 0 some components of Rysnpg reduce to the Riemann tensor.

If property (4) holds, property (A) has a clear meaning. If property (4) does not hold some
components of Rysypg may be determined and some may not; we need only study the former
to test (A).

Some time ago Siegel developed a vielbein formalism with a local GL(D) x GL(D) tan-
gent space symmetry [4]. Introducing connections for this tangent space symmetry he defined
invariant curvatures, but not all connections can be expressed in terms of the physical fields
by imposing covariant constraints. The scalar curvature and Ricci tensor can be defined in a
way that is independent of the undetermined connections, but there does not appear to be an
uncontracted Riemann tensor that depends only on physical fields. Interestingly, in Batalin-
Vilkovisky quantization, a formalism based on antisymplectic geometry, a similar phenomenon
occurs: connections exist for which their undetermined components drop out of the curvature
scalar [2§].

In this paper we will revisit these issues in a purely metric-like formalism. We work solely
with the generalized metric Hj;n and the dilaton and there are no additional gauge redun-
dancies. This is equivalent to Siegel’s formulation and may be derived from it by imposing a

!The analogy with Riemannian geometry is not complete: there is no contraction of Rasn that gives R.



vielbein postulate that relates the Christoffel-like connections to the spin-connection [7]. This
will be briefly explained in the appendix. We find it simpler and more illuminating, however, to
present the metric-like formalism in a self-contained fashion. A closely related formulation has
been developed before in useful papers by Jeon, Lee, and Park [I8[19]. Many of our results have
a direct analogue in the frame formalism of Siegel and some have appeared in [I8,[19]. Finally,
generalized geometry [27] also features closely related connections and curvatures; see [26] for

a recent concise exposition.

We investigate systematically within the formalism if there is a Ry/nvpg that satisfies the
properties listed above ((1) through (4), and (A)). Our investigation confirms the existence of
a duality covariant generalized Riemann tensor that determines R sy and R. Thus properties
(1), (2), and (3) hold. We find, however, that Ry;npg is not fully determined in terms of the
physical fields: property (4) does not hold. We show that this is a simple consequence of an
algebraic Bianchi identity of the Riemann tensor. In fact, property (A) does not hold either:
the components of Ry/npg that do not contain undetermined connections are zero.

The generalized metric formulation differs from Riemannian geometry in that the metric is

a constrained object; it satisfies (L2)—(L.3]). As a consequence, there are projectors

N —

satisfying P+ P = 1, PP = 0, P2 = P and P? = P. They allow us to project onto a ‘left-
handed’ or ‘right-handed’ subspace. This is the analogue of the factorized tangent space group
GL(D) x GL(D) in the frame formulation, and equivalence of the two formalisms then requires
the projectors to be covariantly constant. Jeon, Lee and Park [I8|[19] postulate an expression
for the Christoffel symbols in terms of the physical fields that satisfies this condition. The
resulting ‘covariant derivatives’, however, do not transform covariantly in general, but only for
certain projections and contractions. The reason is that the imposition of covariant constraints
only determines part of the connections, and their ansatz effectively sets the undetermined
connections to zero, thereby violating covariance. Here we follow a somewhat different route.
As in the frame formalism, we work with proper connections and fully covariant expressions
by keeping those connection components that are not determined by the physical fields. For
the final results on Ricci and scalar curvature tensors for which the undetermined connections
drop out, our results are in full agreement with the most recent work [19]. We also establish
differential Bianchi identities that have not appeared before in such a metric-like formalism.

An important motivation for this work was the construction of higher-derivative or o/ cor-
rections involving the full Riemann tensor. Thus, in the second part of this paper we ask
if there is a manifestly O(D, D) invariant function of the generalized metric (L), quartic in
derivatives, that reduces to the square of the Riemann tensor in some T-duality frame. In fact,
even if there is no physical Rasnpg, one can imagine an expression that reproduces the square
of the Riemann tensor, but is not the square of an O(D, D) tensor. We find, however, that
for general D such a construction is impossible, showing that generic o corrections cannot be
written in terms of the generalized metric defined in terms of g and b as in (I.T).

In hindsight, this result is not too surprising in view of similar results obtained for di-
mensionally reduced theories. It has been shown by Meissner that o/-corrected supergravity,



reduced to one dimension, can be written in a T-duality invariant way if the formula for the
generalized metric in terms of the physical fields receives o corrections [29]. We discuss in the
conclusions the possible implications of this fact for our analysis.

2 Christoffel connections and invariant curvatures

In this section we introduce Christoffel-type connections and determine their transformation
behavior by requiring that they give rise to derivatives that are covariant under generalized
diffeomorphisms. In terms of these connections we define an O(D, D) covariant Riemann tensor
that is also a generalized tensor. Next, we impose covariant constraints on the connections in
order to express them in terms of the physical fields. It turns out that this leaves undetermined

components, which we analyze systematically.

2.1 Connections and curvatures

O(D, D) tensors are said to be generalized tensors if they transform with generalized Lie deriva-
tives under generalized diffeomorphisms parametrized by ¢™. The generalized Lie derivative is
defined on generalized vectors as
§eAM = LeAM = NoyAM 1 (0Mey — aneM) AN |
. (2.1)
SeAy = LeAy = NonvAm + (0mEN —0Vén) A

and is defined similarly on tensors with an arbitrary number of upper and lower O(D, D) indices.
For a generalized scalar S the generalized Lie derivative is just given by the transport term.
The partial derivative of a scalar is a generalized vector since

55 (OmS) = O (§P8PS) = §P8p(8MS) + apr opS — apr opS , (2.2)

where we are allowed to add the last term because it vanishes by the constraint (L7). Next,
we define a covariant derivative of a vector by introducing a connection I':

VuAy = OyAy —Tun™Ag, )
(2.3
VMAN = OMAN + FMKNAK .

The transformation property of the connection is determined by the condition that the above
derivatives be generalized tensors. A short calculation shows that one must have

(5§FMNP = ESFMNP + 8M(9N§P — 8M(9P§N . (2.4)

The first two terms on the right-hand side are familiar and the last one is due to the extra terms
in the generalized Lie derivative. That last term implies that the connection cannot be chosen
to be symmetric in its first two indices M and N. We will let A¢ denote all non-covariant terms
in a trasformation law: 0:W = ZgW + AW, for any O(D, D) tensor W. We then have

Al ynk = 200Nk (2.5)



where, as usual, we raise and lower all indices with 7.

Given these connections we can define curvature and torsion through the commutator of

covariant derivatives,

(Var, VN]Axk = —Runk™Ap — Tun"™ Vi Axk . (2.6)
One finds
Runk® = 0Tk — OnTuk™ + T Tnk® — Tno Tuk©
(2.7)
Tun™ = 2Tpn™ .
By definition R is antisymmetric on the first two indices,
Runk® = —Rnux”. (2.8)
There will also be an antisymmetry in the last two indices after the imposition of constraints.
Lowering the L index in Ry;n xY we have
Runkr = OuTnkr — OnT ks + Tl vk ® — TvorT vk . (2.9)

It turns out that neither R nor 7T is a generalized tensor. The non-covariant transformation
of the torsion tensor follows directly by applying (Z3]) to the definition in (27)). The non-
covariant transformation of R follows by a slightly longer but straightforward computation. In
total, one finds

AeRynk"™ = =207 0mén Trx”,
(2.10)
ATun® = —20%96n, -

While each of the two terms on the right-hand side of (2.6 fails to transform covariantly the
sum must since the left-hand side is manifestly covariant. This can be readily checked; acting
with A¢ on the right-hand side of (2.6]) gives

—AeRynk" Ap — ATyn" Vi Ak = 20007 En Tr” AL + 201,07 En (0 Ak — Tp"AL)
where use was made of (2.10). The term with a Op Ak vanishes by the strong constraint and
the other two terms cancel each other so that, as expected,

A¢(—Rynk™ AL — Tun® Vi Ag) = 0. (2.11)

Although RNk is not a generalized tensor it can be made so by the simple following
modification. Note that the first equation in (2.I0]) can be written as

AeRunkr = —2000uén T = — (Acloun) T9L, (2.12)
by use of (Z.5). This equation makes it easy to see that Ry/nkr, defined by

Runkr = Runkr+ Rxoun +TounT%kr (2.13)
is a generalized tensor. By definition R is symmetric under the interchange of the first and
second pair of indices:

RuNkL = RKLMN - (2.14)

The antisymmetry Ry nvxr = —Rym i in the first pair of indices does not immediately carry
over to Rysnkr but it will after the imposition of constraints on the connection.



2.2

Constraints on the connection

We now impose four constraints in order to determine part of the connections in terms of the

physical fields H and d. These constraints follow from the constraints of Siegel’s frame formalism

given in [4], as will be reviewed in the appendix, and are also satisfied by the connection-like

objects postulated in [19]. The first two set some components of the connection equal to zero

and do not involve H or d. The third constraint involves H and the fourth involves the dilaton

d. As we will see in the following section, the connection is not fully determined by these four

constraints.

(1)

(3)

Covariant constancy of nasn:

Vanne = Ounve—Tun®nor—Tup®invg = 0 = Tunp+lupy = 0, (2.15)

where we recall that 7 is a constant matrix and that indices are lowered with n. This
equation means that the connection is antisymmetric in the last two indices,

Tune = -Typn. (2.16)

Generalized torsion constraint: We demand that the generalized Lie derivative of a vector
can be evaluated with an identically looking formula where partial derivatives are replaced

by covariant derivatives,
LV = VonVir +200m VY = VNV +2Vién VY = LY Var. (2.17)

Here Egv denote the generalized Lie derivative with 0 replaced by V. Put differently, we
are setting to zero a generalized torsion tensor 7 defined by [26]

(LY — Le)Vir = Tunk€VE . (2.18)
A short calculation gives [18]
Tunk = Tunk —Tnukx +Trkmun = Tunk +Trun - (2.19)

As defined in ([ZI8) 7Nk is manifestly a generalized tensor, and this can also be checked
directly with (235]). Our constraint sets this generalized torsion to zero:

Tunk = vk —Tnmk +Trun = 0. (2.20)
Using constraint (1) we find that the sum of cyclic index permutations vanishes:

'ming + '+ Ty = 0. (2.21)

This property, given constraint (1), is equivalent to the condition that the totally anti-

symmetric part of the connection vanishes:
Pivvk) = 0. (2.22)
Covariant constancy of Hsn:

VvHNkg = aMHNK—PMNP'HpK—FMKP'HNP = 0. (2.23)



(4) Partial integration in presence of dilaton density:

/ e My v = — / e Xy My V. (2.24)
This condition results in
Iy = v = —20u4d. (2.25)
Equivalently, this condition means that the covariant divergence of a vector is computed
using the density e2%:
ViV = oy AM 4 Ty e™MAK = €249 (e721A4M) . (2.26)

2.3 Solving the constraints
2.3.1 The first constraint

We can derive a number of conclusions from constraint (2.15]) that states the covariant constancy
of the O(D, D) metric nasy. This constraint makes the connection antisymmetric on its last
two indices. Now consider the curvature Ry/yrr in (Z29). Using the antisymmetry condition,
the last two terms are rewritten as

Runkr = OuUnkr — ONCukr — Tvrol k@ + Tukolnn? (2.27)

making it clear that Ry;nxr is now also antisymmetric in the last two indices. Since it is also

antisymmetric in its first two indices we have in total

Rynkr = —BynukrL = —RunLk - (2.28)

Still, there is no simple relation between Ry/nir and Riryn. It also follows from the above
and (2.13) that R shares those same symmetries,

RunkrL = —RynumkrL = —RuMNLK - (2.29)

Together with (2.14]) we see that Ry/nrr satisfies the familiar properties of the Riemann
tensor. One missing property, the algebraic Bianchi identity, will follow after the imposition of

the second constraint.

2.3.2 The second constraint

Let us now see what conclusions follow from the vanishing of the generalized torsion. First, we
note that the formula for the torsion in terms of the connection can be simplified. With ([2.19])
it follows from Ty nr = 0 that

Tunkg = —Tkxun - (2.30)

An important consequence of the first two constraints is that we have the Bianchi identity

Rimnkir = 0, (2.31)



as also noted in [19]. Given the symmetries (Z29)), this is equivalent to

Ryunkr +Rykmr +Rrxune = 0. (2.32)

In Riemannian geometry this formula follows directly from the expression for the Riemann
tensor in terms of a torsion-less connection. In the present case the equation requires

Rynkr + Bvkmr + Rkune
+RigrunN + Rurnk + BNLem (2.33)
+ FQMNFQKL + FQNKFQML + PQKMFQNL = 0.

This equation is readily verified using (2.7)): there are twelve terms of the form OT" that combine
into four groups of three terms that vanish separately, there are fifteen I'l" terms that combine

into three groups of five terms that vanish separately.

Finally, we derive a formula for the exact variation of Rpy/nykr upon a finite variation
I' - T' 4 oI of the connection. Beginning with (2.9]), a short calculation gives

Ryngr(I'+6T") = RMNKL(P) + 2V[M5PN}KL (2 34)

In obtaining the above we only had to use the antisymmetry of the connection in the last two
indices (constraint 1). The covariant derivatives on the above right-hand side use I". To obtain
the analogous result for Ry nir we use the above and (2I3]). This time a short calculation

gives

RunxrL(L+ 1) = Runkrn(T) + 2V[M5PN}KL + 2V[K6PL]MN
(2.35)
+ 20T 1or) T nx? + 20T k10w 0T @ + ST oun 6Tk .

In deriving this result we had to use the second constraint in the form (2.2I]). Note that the
terms of the form I'6I" in R(I" + I") cancel out in R(I" + dT").

2.3.3 The third constraint

The constraint (2.23]) demands the covariant constancy of the generalized metric. To explore

immediate consequences of this additional constraint consider the projectors (I.8])

P = Lo o) P = LY i) (2:30

N —

which satisfy
PP =0, P*=pP, P2=P. (2.37)

Since 7 is covariantly constant by constraint (1) and H is covariantly constant by constraint
(3), the projectors are also covariantly constant:

VrPyu = VgPy = 0. (2.38)



We now discuss how to use this result to solve completely the constraint. For this purpose
we will introduce a notation for indices that are projected. We will have two kinds of indices:
barred, with a dash on top, and un-barred, or more properly, under-barred, with a dash below.
The index type depends on the projector that is used to obtain it from the un-projected index.
The barred index is associated with the P projector and the under-barred index is associated
with the P projector. Thus, we will have

Wy = Py Wy,

- (2.39)
Wi = PuM Wy
Note that this implies that
Wy = Wy + Wy (2.40)
We raise or lower projected indices with the metric #:
wY¥ = MOy, = MR PN Wy = PMNwy,
(2.41)

W = MW, = MR PN Wy = PMNWy,
so that one can simply use the projector with indices up or down to define a projected index.
Contraction of projected indices of different types vanish. For example,
WMy, = 0. (2.42)
Contraction of like-wise projected indices can be done with a single projector:

WMy, = PMRP,RWoYe = PORWoYgR, 2.45)
2.43
WYy = PMOPRWoyRr = PORWLYR.

A contraction of unprojected indices can be written as a sum of contractions of like-wise pro-

jected indices. Indeed,
WMy = WM+ WM (v +Yy) = WYy, + Wiy, (2.44)
We will occasionally use tensors with mixed indices. So for example, we could have an object
Wunk = Pn® Wik - (2.45)

There is no possible confusion: an index without a bar or under-bar is unprojected. As a
final remark on the use of these indices we note that in any tensor equality with a number
of free unprojected indices (appearing both on the left-hand side and the right-hand side) we
can simply replace any unprojected index by like-wise projected indices on both sides of the
equality. Thus, for example, Wiy = Yan implies Wyn = Yyn, as well as several other

equalities.

When dealing with objects with projected indices, we will say that the object is of type
(k,1) if it has k under-barred indices and [ barred indices. Thus, for example, given an O(D, D)
tensor Aj;nvp we have

Type (3,0): Apnp, Type (2,1): Aygyp s Ayne > Aunp  ete (2.46)

10



Let us now consider the connection I'j;y . By repeated use of (2:40) on each index we have

Punk = Tunk +Tynie +Tunkg +Tunk
(2.47)

+P]\7UXK +P]\_ﬂyf{ +FMNI_( + TN -
From the comments above it follows that the symmetries of I' arising from the first two con-
straints carry over to the projected I'. Thus, for example, I'y;ng = —I'pygn- The cyclicity
condition on the three indices also holds for any choice of index type.

Using the symmetry conditions on I' we can rewrite (2.47]) as follows:

Punk = Twnk +Tyveg = Tuey — (CTavpie + Truw) (2.48)
2.48

— (Cyger — Trwynr) + Tiave — Uiy +Thin i -

We then regroup the terms to find

'y = F_ K+PM]\7K'

+Tunig —Uiikny —Trun + Tavmrk -

This shows that there are just four structures that need to be determined:

Tyunk, Twung, Tung, and Tyyg - (2.50)

As we will now see, the covariant constancy of the projector determines the last two of these
and leaves the first two undetermined. Indeed, consider the equation

VuPx" = 0uPx” —Tux®Po" + Tao"Pk? = 0. (2.51)

We write this as
OmPxr + PLOT vk + Px“Tuor = 0. (2.52)

Multiplying by Py the last term drops out and we get
PLOPNET o = —Pn®0mPrr = —(PouP)ni, (2.53)

or, equivalently,
Ly = —(POMP)NL - (2.54)

Acting with an additional projector we obtain,
Tpoy = —Pr™M(POMP)nL, 2.55)
Py = —Pr™(POyP) N -

This determined the advertised components. The totally under-barred component I'y/vg of
Iy Nk is not determined because it drops out of (2.52)). Indeed note that

PLoTygk + Px®Tygr = Tyrk +Tukp = 0, (2.56)

because of antisymmetry on the last two indices. Of course, the totally barred components
I'js v are also not determined.

11



2.3.4 The fourth constraint
This constraint determines the trace of the connection:
I'ny = Tunen™E = —20nd. (2.57)
To begin the analysis we compute the left-hand side of this relation using (2.49). We get
Iy = 0" T + 0" Tyng — 0" Tyxn + 0" Tk (2.58)

where we noted that contractions of  with I' are nonzero only if the two indices to be contracted
in the projected I' are of the same type. Moving the undetermined components to the left-hand
side and recalling (2.40]) we obtain

D Tunk + 0™ Tyne = Tv — 0™ Tyng + Tv — 0 Ty vk - (2.59)

From the above we obtain two equations for the two undetermined components, according to
the type of IV index:

= ¢y .

S
z
=

Il

(2.60)
MK MK _
""" Iyneg = I'n—n""Tynkg = on-

Note that ¢y and ¢y are projected objects. It is useful to show that they arise from a single
object ¢n. This is what we do now. We begin with ¢y and use (2Z.55):

oy = PR + nMEPyQ(PogP)kn

= PyR®Tp — PRQ((0gP)P)knN
_ _ 2.61
= PNRPR - PKQ ((‘?QPKR)PNR ( )
= Pv*(Tr — Pok09P%g) = Pyf(Tp — (P9?P)qn) .

We note that in the final expression the reversed index combination (P9%P)gg would give zero

contribution due to the Py projector. We can thus write,
¢y = PyR (FR ~ P aQP)[QRO . (2.62)
A completely analogous calculation gives
bx = PNR<FR — 2P 8QP)[QR}) : (2.63)
We can easily verify that the terms in parenthesis in the two equations above are equal. Indeed,
PO®P = —(1—P)0°P = —99P + PO“P — (PI®P)gp = (PO°P)igr.  (2.64)
We can therefore write

¢on = PnPor, ox = PnPor, with ¢p = —2(0rd+ (PO“P)gR)) - (2.65)

12



Let us now resume the analysis of equations (Z60). A solution of these equations is of the

form

Tunk = aPynPr%0 = o Py Py Pr? nreog

(2.66)
Tuvg = aPunPr® oo = aPuPn"Pr®nrieq,
where « is a constant to be determined. The last right-hand side on each line was written to
make it manifest that the I"’s have the correct projections. Note that this ansatz, as required,
satisfies constraints (1) and (2): I'yyg = —Tmrny and Tynvkg + Uvgar + Tgkmvy = 0. The
coefficient « is determined by contraction. We get

1 2
’I’]MKFMA]]_{ = 50&(1 — D)(ﬁ]j = QSN — o = ﬁ . (267)

Back in (2.66]) and using (2.65]) the full solution is therefore
2

_ R T
Fynk = —mPM[NPK} ¢r + Tuni
(2.68)
2 _ _ -
Fyung = _mPM[NPK}R Or+UiiNi
where T is undetermined and satisfies
nME Tyng = 0,
] (2.69)
M Tyyg = 0

2.3.5 The full Christoffel connection

To write a complete expression for the Christoffel connection we begin by adding the two
contributions in (2.68]) and use (ZG65) to find

4 L L
Tyng +Tyine = m(PM[NPK}RJFPM[NPK]R) (Ord + (POP) o)

(2.70)
+ v + v -
The full connection is then given by (2.49) which we write as
Tunvk = Cyyeg +Ting) — Cyurny +Targs)
A P 0 (2.71)
+ (D — 1) (PM[NPK} +PM[NPK] )(8Rd+ (P8 P)[QR})

The first two lines on the above right-hand side can be evaluated using equations (2.55]). These

equations imply, for example, that

Cyni +Tiivg = —(POuP)kn - (2.72)



With this one quickly verifies that the first line in the right-hand side of ([Z.71]) simplifies down
to —2(POy P)ink]- A computation of the second line then yields the complete result. We write
it as

Tuvk = Lunk + Sunk (2.73)

where T MNK is the determined part of the connection,

Punie = = 2(PouP)ink) = 2(P" P @ = Pv" Pi?)9p Pout
4 (2.74)

+ 57 (Puiv P + Pun Pro®) (9d + (PO" P)ipgy)

and X vk is the undetermined part of the connection:

Sunk = Tuvk + Tyng- (2.75)

The result ([2.74]) is equivalent to the ansatz given in eq. (15) of [19]. The Xy satisfy the
traceless condition in (2.69). Given the symmetry properties of the connection, the trace taken
on any two indices of the I’s vanishes. This completes our calculation of the connection. We
finally give the number of undetermined connection components. Since P and P are rank-
D projectors, any projected O(D, D) index represents D independent components. The two
undetermined T can thus be viewed as taking values in the (2, 1) traceless GL(D) Young tableau.
The total number of undetermined components is then found to be 2D(D + 2)(D — 2), which
is equal to the value in Siegel’s frame-like formalism, see the discussion after eq. (2.40) in [7].

We can rewrite the above I directly in terms of H and d. Using the definition of the projectors
a quick calculation shows that

1
(PE?MP)pQ = Z (—E?MHPQ + HPKaMHKQ> . (2.76)

The first term on the right-hand side is symmetric in P and ) while the second term is actually
antisymmetric in P and ). We thus have

1
(POMP)pg = ZHpKaMHKQ . (2.77)
As a result, we obtain
1 1
(PO"P)pg = i Hpxd"HE g = 1 HM Oy Hpg - (2.78)
We can quickly work out the other projectors:

BT P = Pn"Pi@ = S (o Hig? + Hin"ox?) (2.79)

o= N

PyinPry? + PynPr? = <77M[N5K]Q + HM[NHK}Q) - (2.80)

Back in the connection ([2.74]) we get
BN 1 1
F'vng = 3 HrgOmH N + §<5[NPHK}Q + H[diK]Q)(‘)pHQM
(2.81)

+ % (UM[N5K]Q + HM[NHK}Q> <an * iHPMaMHPQ) '
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3 Analysis of the generalized Riemann tensor

In this section we examine the components of the generalized tensor Rasypg using the pro-
jected barred and under-barred indices. We show that the projections in which undetermined
connections drop out vanish identically. There are four non-vanishing projections, as detailed
in equation (B.I4). We then show how the Ricci and scalar generalized curvatures arise from
RunNpg by taking contractions that make all undetermined connections disappear. An analysis
of the invariant action allows us to show that there is a single generalized Ricci curvature and
to prove differential Bianchi identities.

3.1 The components of the Riemann tensor

Before we begin the detailed discussion of the various components of the Riemann tensor, we
examine a useful property that follows from the covariant constancy of the projectors. This
property implies that:

[VM,VN]PKLVL = PKL[VM,VN]VL , (3.1)

so that expanding the commutators according to (2.6) we get
— Runk"Pp"Vi, — Tun"Vp(Pk™Vi) = —Px"Runi”Ve — Pk"Tun"VpVy . (3.2)

Using the covariant constancy again we see that the torsion terms cancel on both sides. Rela-
beling indices and dropping the V’s we obtain

RunkpP’r = RunprPTk . (3.3)

Multiplying by PXg we see that the above right-hand side vanishes due to PP = 0. We
therefore find that
RMNKPPKQPPL =0 - RMNQL = 0. (3.4)

A curvature R with mixed projections on the last two indices vanishes.

In order to find out which components of the curvature depend on undetermined connections
we use the variation formula (235 and the split (Z73]) of the connection into a determined
piece I' and an undetermined piece X. We find

RuNKL = Runkrn + 2§[MEN}KL + 2§[KEL}MN
(3.5)
+ 22[M|QL|EN]KQ + 22[K|QN\EL}MQ + EQMNEQKL .

In here all hatted quantities are ones that use L.

Let us now consider possible components of the projected curvatures R. There is one R
with all indices under-barred and one R with all indices barred — a type (4,0) curvature in the
notation introduced in (2.46). With three under-barred indices and one barred one there is just
one R since the barred index can always be chosen to be the last by using the pair exchange
symmetry and the antisymmetry in the last two indices. The same is true for the R with three
barred indices and one under-barred one. Finally for an R with two indices of each type there
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are two configurations: one in which the first and last two indices are of the same type, and

one where they are not. In summary,

The two type (2,2) curvatures are not independent. The algebraic Bianchi identity (231]) gives

0 = Ruvki +Rvemi+Reunt — Runki = Ruirni — RygmL s (3.7)

showing that the third curvature in ([B.0]) determines the fourth. The third structure, using
definition (2.I3)), is given by

The first two terms vanish because of ([8.4]) and the last one contains pieces of the connection

determined in (2.54)):
Runki = LounT9ir = (POQP)un (PO®P)kp = 0, (3.9)

using the strong constraint. The vanishing of this third structure then implies the vanishing of
the fourth, as remarked above:

With (BE) it is now easy to see that the first two and last two in (3.6) depend on the
undetermined connections. In fact, for R iz we use (3.35]) together with (275) to get

Runkr = Ruvkr + 2V Tngr + 2VikTojun
(3.11)

+ 2T 00u T nix® + 2T kjon Toyn® + Toun Tz -

In here, projected indices on covariant derivatives are defined as usual: v i = PLQﬁQ. We
note that all ¥y in (B.5) were replaced by fMM_g because the projectors discard the T NE

components. Note that the summed index @) only receives contributions from the under-barred
values. Analogous remarks apply for the fully barred structure Ry;xzr-

For the second curvature in the list, the type (3,1) tensor Runki, all Y2 terms vanish
because in each of them one ¥ has mixed barred/under-barred projections and there are no
such undetermined connections. From the VX type terms, one survives:

Runki = Runkxi — Vil'kun - (3.12)

We thus see that Ry involves undetermined connections. Similarly, we find for the (1,3)

type structure

Ryniki = Runir + Vulvir- (3.13)
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Our analysis shows that the list (3.6]) has become

Runkr  contains undetermined connections,
Rynki ~ contains undetermined connections,
= 0,

K
S (3.14)
R N[_{ - 0,

%
=2
[l

[l

Ry Nvir  contains undetermined connections,

Runiki  contains undetermined connections.

Thus, there is no Riemann tensor in terms of the physical fields.

3.2 Generalized Ricci and scalar curvatures

Undetermined connection components can drop out from traces of curvatures. In fact, we can
define a scalar curvature and a Ricci tensor. A naive candidate for the scalar curvature is

MN

Run™". Expanding the contractions in projected indices we have,

Run™Y = pMEpNER Nk = RMNMN+RMNMN+2RMNMN- (3.15)

The last term on the right-hand side vanishes by (3.9]), so that we have

RMNMN = RMNMN—FRMNMN . (3.16)

Recall from (2:43])) that contractions on projected indices are implemented by contractions
against the appropriate projector, so that

RunMY — pMEpPNLp . NkL, RMNMN = PMEPNLR yNkL - (3.17)

Back to (3.I6) we compute Ry n™Y directly from the definition (ZI3) and from (2.7):

RMNMN — 2RMNMN +FMNKPMNK
(3.18)
= 48MFM—|-2FMFM—I—ZFMNKFKMN—I—FMNKFMNK =0.

The first two terms on the right-hand side vanish using I"j; ~ 0jrd and the strong constraint.
The rest of the terms on the right-hand side vanish too:

RunMY = Tynk (PKMN+PKMN+PMNK)
(3.19)
— Tunk (PKMN_PNMK+PMNK) — 0

MN is consistent with the vanishing of the

because of I'nrng) = 0. The vanishing of Ry
flat-index combination R 4p4% in Siegel’s formalism [4]. Equation ([B.I6]) and the vanishing of
Run™MY suggest that we have to contract the fully projected tensors. We thus define the scalar
curvature R by

R = RMN,y = —RMN o (3.20)



We now use (B.I1)) to show that the undetermined connections drop out of R. Let us do one
contraction first. The tracelessness of the I' (on any pair of indices) implies that

T RyuNkL = Run®™ — 6L(fMI_@ +Trumr)
(3.21)

+TmQ" Tox® + Tk Tom® + Toumr M9%*".

A few undetermined connection coefficients dropped out but several remain. After the second
contraction with n™% we get only I'T terms that survive, but they add up to zero:

R = Ry + Ty TEMQ + Ty THED 4 Topy TV
= RMN v+ Tyop (FLMQ 4 PMQL 4 PLMQ) (3.22)
= RMN

using the generalized torsion constraint. The undetermined connections dropped out and there
is a well-defined scalar curvature R. It must be proportional to the scalar curvature defined
in [3]. One may fix the normalization by inserting the explicit connection components, say,
focusing on the dilaton-dependent terms. We then find that ([3:20) equals the curvature scalar
defined in eq. (4.24) in [3].

Equation ([B.2I]) shows that we cannot get a well-defined Ricci tensor with two under-barred
(or two barred) indices. The Ricci tensor is of type (1,1), and we can define such an object by
contraction with 7 of a curvature with (1,3) or (3,1) index structure. We define the following
objects starting with the (3, 1) index structure:

o K KL _
Run = Rxkpyn~ = n " Rgune

(3.23)
Ryy = Rewy™ = 1" "Ry -
In fact, the Bianchi identity implies they are equal:

This is the “symmetry” property of the Ricci curvature. Most importantly, undetermined
connections do not appear in the Ricci curvature. Indeed, starting from the definition (3.23])
and using (B.12)) we have

KL KL (55 S T KL

We will show in the following subsection that the Ricci tensor defined by contraction of the
(1, 3) index structure is identical to the one obtained here.

3.3 Invariant action and differential Bianchi identities

After having defined a generalized curvature scalar R we can define an invariant action for
double field theory. It reads

S = / drdze ™R = / drdz e 2 Ry MY = / drdze 2 PMEPNLR \nvier , (3.26)
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where we recalled (3I7). Since the undetermined pieces of the connection drop out (see (3.22])),

we have

S = /dazdfc €_2dPMKPNL7/€MNKL . (327)

Of course, on account of (3.:20) we also have
S = —/d$d§3 e 2d RMNMN = —/dxd:ﬁe_zdPMKPNLﬁMNKL . (3.28)

It turns out that further Bianchi-type identities for the Ricci tensor and curvature scalar can
be conveniently derived using the invariance properties of this action.

We start by discussing the variational principle based on ([B.27)). For earlier discussions of
the general variation in double field theory see [2J3l[7,819]. Variations of the generalized metric
imply variations of P or P. In fact we can think of P and P as the field variables to be varied
since the connection is written in terms of these projectors (see (274])). We must then take
into account that these are constrained to satisfy P? = P, P> = P and PP = 0. Thus if we
shift P’ = P + 0P we need to satisfy

(P2 = P+PSP+6PP = P = P+6P, (3.29)
and similarly for P. Thus, we have the constraint
0P = PéP +6PP (3.30)

and similarly for P. Acting on both sides with P from the left and the right we quickly see that
PSPP = 0. Moreover, we also see that PSPP = 0. Finally, when acting from the left with P
and the right with P, or vice versa, we get trivially satisfied identities that imply that P§PP
and PSPP are unconstrained. Thus, we can write the variation in terms of two unconstrained
matrices M and N as follows

§P = PMP+ PNP = —§P, (3.31)

where the last condition follows from P + P = 1. Since P and P are symmetric, P and 6P
should be symmetric too, requiring that M” = N. Thus, the most general variations of P and
P consistent with the constraints are

6P = PMP+PM'P = —6P. (3.32)

Let us now consider the general variation of the action (B8.27)) for variations § P and dd. Of
course such variations result in variations 6 I of the determined parts of the connection. The
undetermined parts need not be varied since they and their variations drop out of the action.
We thus get

55 =6 / dadi e PMEPNLR vk
(3.33)
- / dwds e=2¢ (—25dR +26PMEPNLR vk + 4PMKPNL§[M6FN}KL) :

where we employed (2.35]) since this relation holds for any shift of the connection. The covariant
derivative in VII' can be partially integrated: it ignores the dilaton density and gives zero
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acting on the P’s (note that both V and ¥ have such properties). This term is therefore a
total derivative, in complete analogy to standard Einstein gravity. The variation of d then
implies the vanishing of the scalar curvature, R = 0. This is a well-known result in double field
theory [2133], but here we understand more clearly why the variations of d inside R add up to

a total derivative.

We focus on the remaining variation which reads with (3.32])

0SS = 2/d$d53 e~ 2d (pMPMpQPQK + PMQMPQPPK) PNL']/?\,MNKL
) / dadz e > Mpg (ﬁ@% +7€QU’L) (3.34)

- 9 / dzdi e Mpg (RLP9L+RLQPL) = —4 / dzdz e 2 MNM RE o

where we were able to remove the hats at the point where we know all undetermined connections
drop out. In the last step we used ([3.24]) and relabeled indices. Thus, we get the field equation

Ryy = REyng =0, (3.35)

recovering the Ricci tensor defined above.

An alternative definition for the Ricci tensor is obtained by tracing the curvature with (1, 3)
index structure (one under-barred, three barred). We will show now that the resulting object,

Riemn K does not provide a new tensor. To this end we vary the alternative form of the action
indicated in (B3.:28]):
58 = —6 / dods e 24 PMEPNLR v kr - (3.36)

Using 6P = —6P we arrive at

(55 = 2/d$di€_2d5PMKPNL7/€MNKL

= —2/dxd:i e 24 (pMPMPQPQK + PMQMPQPPK) ﬁEMKE
(3.37)
- —2/dmdi e_zd./\/po ('RLPQE + RLQ PL)

— —4/dxd:f:e_2deQ REQPE = —4/dmd:ﬁe‘2dMNMRKMNK.

Here we combined the two terms in the third line using the analogue of (3.:24]) and removed
the hats, since the objects in question are well-defined. As this variation must agree with the
variation (3.34]) for all M we conclude

REyvk = R¥unk (3.38)
proving that there is a single generalized Ricci tensor.

Let us relate the above definition of a Ricci tensor to a similar tensor defined in [3], where
we considered the variation of A rather than P. The variation (832]) implies the following

variation for H
" = —2(PMP+PM'P), (3.39)
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where we used (L8) and én = 0. Up to the factor of —2 this coincides with the variation given
in eq. (4.54) in [3] if we assume M to be symmetric. The variation considered in [3] was not
the most general, because M need not be symmetric, but it can be proved that the resulting
field equations are equivalent to the ones obtained for general M. To see this, consider a
general action S based on a Lagrangian L£(P) that we view as a function of P (suppressing the
dependence on other fields). Using ([3.32), its variation with respect to P then reads

55 = / dadz e (Pry MMN Py p, + Py MMN Py )

0Pk
~ —2d MN (D D oL
= drdzx e M (PMKPNL + PMLPNK) (340)
0Pk
= 2/dxd§;e_2dMMN]5MKPNL oL s
0Pk

where we used in the last step the symmetry of §£/6Pg . As Mjsn is unconstrained, the field
equations read

_ oL
EMN = PMKPNL = 0. (341)
5PKL

An interesting property of tensors defined like this is that they vanish if and only if their

symmetric projection E(,syy) vanishes. For suppose

1,- _ oL
Eauny = 3 (PvxPnr + Py Pur) s 0. (3.42)

We can then contract with PrM | after which the second term vanishes by PP = 0, implying
Erny = 0, as we wanted to show. Thus, the field equations obtained by variation with a
symmetric or general M are equivalent.

After this preliminary discussion it is straightforward to relate the Ricci tensor in [3] to the
one discussed here. We consider the variation of the action (3.26) under ([8:39)) (or, equivalently,
B31)), with M symmetric,

0S8 = _2/d$d536_2dMMNRMN - _4/dxdje_szMNPMKPNLRPKLP- (3.43)

The first equality can be seen as the definition of Ry, where we included a factor of —2 such
that the variation and hence the tensor Ry have the same normalization as in [3]. For the

second equality we used ([B.34]). Since we assumed M to be symmetric, Ry is symmetric,
too, and from (B.43]) given by

Run = (PMKPNL + PNKPML)RpKLP . (3.44)
Writing the right-hand side out in terms of projected indices and using ([B:24]) we get
Run = Ryn+Run - (3.45)

The generalized tensor Rpn thus obtained has no projected indices. We can think of Ry
and Ry N as the projections of Rysny. The symmetric field equation Rasn = 0 is equivalent to
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We close this section by deriving a differential Bianchi identity following from the ¢ gauge
invariance of (327). First, we need to rewrite the gauge transformations. Using (2:26]) the
transformation of the dilaton reads

dee 2 = Oy (e M) = eV M (3.46)

For the projector P we have d¢Pyy = EgPMN because H transforms with a generalized Lie
derivative (L4]) and L¢n = 0 [3]. Due to the torsion constraint (ZIT), all partial derivatives in
Lie derivatives can be replaced by covariant derivatives. We thus have

SePun = 5V Pyn + 2V g PN + 2V (nEg PR s (3.47)
Using the covariant constancy of P this becomes
dePun = 2Vpény + 2V inéu - (3.48)
Writing out the antisymmetrizations and using (2.40]) we have
0¢Pyn = Vuéy —Vnénm + Vi — Vuén

= Vuén + Virdy — Vnéu — Vnén

(3.49)
+ VN + Véy — Vuéy — Vuéy
= Vuéy — Vnéi + Vréu — Vuéy -
We can now write separate gauge transformations with respect to £y and £y
SePun = Viyéy + Vg,
- (3.50)
0gPun = —(Vuéy + Vné) -
For the dilaton we have, from (3.46]),
dee 2 =720y
N (3.51)

55 6_2d — 6_2d VMé-M )

Consider now the gauge variation d¢ of the action ([B.27]). Recalling that the curvature itself
does not need to be varied because it contributes only total derivatives, as in ([8.33]), we have

0= 55/dxdf€_2dPMKPNL7/€MNKL
= / dwdi e~ (vggff R+ 2(VMEE 4 vEM )PN%MNKL) (3.52)
_ —/dazdie_Qdf]—D (VER + 49" Ry p™)

where we also used the property ([8.24]). The last contraction is (minus) the Ricci tensor, and
since (3.52)) holds for arbitrary ¢£ we conclude

VPR — 4V Rpy = 0. (3.53)
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Using the invariance under 55- we get a similar looking equation with an opposite relative sign:
VpR + 4VM¥Ry 5 = 0. (3.54)

These are the differential Bianchi identities of double field theory [4L[7L[8]. We have not been
able to find an uncontracted differential Bianchi identity for the full Riemann tensor, and we
suspect that such an identity does not exist. In fact, it is not hard to convince oneself that the
naive Bianchi identity V(R ykjpg = 0 does not hold by writing it out in terms of connections.
As a further check, it is also straightforward to see that the double contraction of this naive
Bianchi identity would give rise to an invalid contracted differential Bianchi identity.

4 Riemann-squared and the generalized metric

Here we will investigate if there exist manifestly O(D, D) invariant terms quartic in derivatives
and written with the generalized metric that, for b = ¢ = 0, reduce to the square of the
Riemann tensor in some T-duality frame. First, we work out the square of the Riemann tensor
in terms of the metric g. Then we identify one tensor structure that cannot be reproduced from

a generalized metric expression, answering the above question in the negative.

4.1 Outline of the approach

Our results of the previous section indicate that natural steps do not yield a physical Riemann
tensor in double field theory. They give a four-index generalized tensor Ry npg that is not
fully determined in terms of the physical fields, but whose contractions give physical scalar and
Ricci curvatures that were expected to exist. It seems unlikely that there is a way to define a
physical Rysvpg that is an O(D, D) tensor, a generalized tensor, and reduces to the Riemann

tensor for particular combinations of indices.

We will show in this section that the Riemann-squared scalar, familiar in o’ corrections to
the low-energy effective action of string theory, cannot be obtained from a T-duality covariant
expression built with the generalized metric and the dilaton. More explicitly, we claim that
there is no O(D, D) scalar Z(H,d) such that it reduces to Riemann squared when we set d=0,
set the antisymmetric field b;; to zero, and set the dilaton d to the value that corresponds to
¢ = 0 in the relation e 2% = v—ge 2%, namely d = d, = —%ln v/—g. In other words, the
answer to the following question is negative:

Is there an O(D, D) scalar Z(H,d) such that RyuR9* = Z(H,d) 7 (4.1)

9=0, b;;=0, d=d,
This happens because certain tensor structures appearing in the square of the Riemann tensor
cannot be reproduced from O(D, D) invariant terms. This is a strong result, for the obstruction
occurs just by demanding that Z be an O(D, D) scalar. An Z(H,d) useful for double field theory
would also have to be a generalized scalar. This result implies that even if there was a physical
Rumnpg that is both an O(D, D) and a generalized tensor, and contained components that give
the Riemann tensor (after setting d=0, bij =0, d = d.) it could not be of use in constructing
Riemann squared: O(D, D) contractions would lead to canceling contributions.
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Using the curvature scalar R and the Ricci tensor Ry, both of which are O(D, D) tensors
and generalized tensors, we can extend the double field theory action by the addition of higher-

derivative terms with arbitrary coefficients a and b:
SprTr — SprT + o / dxdz e (aR2 + bRMNRMN) . (4.2)

Setting d = 0 this reduces to terms containing the square of the conventional Ricci tensor and
Ricci scalar. It is known, however, that in string theory also higher powers of the full Riemann
tensor enter, and therefore (£2]) is not general enough to first order in o’. A correction AS
proportional to Riemann squared in the low energy action would take the form

AS ~ a'/da:\/—ge_%RijklRijkl = o//dm e_2dRijklRijkl. (4.3)
If there had been an Z(H, d) that satisfies (A1) the term
ASppr ~ o / drdi e 2 T(H,d), (4.4)

would have provided a suitable double field theory extension (if Z was also a generalized tensor).
In the absence of Z(H,d) we can entertain some other possibilities. It may be that a variant of
(1) holds up to terms that can be dropped from an action because they are total derivatives:
e 2R R = T(H,d)|. + 9(--). (4.5)

0=0,b;;=0
We will not explore this possibility in here, but it seems unlikely to work. It seems to us more
likely that o corrections require modifying the definition of the generalized metric, as will be

explained in the discussion section.

4.2 Terms quadratic in the Riemann tensor

In this section we will compute the terms appearing in the square of the Riemann tensor that
are relevant for the comparison with the generalized metric formulation to be discussed in the
next subsection. In our conventions, which follow the book by Dirac [31], the Riemann tensor
with all indices lowered is given by

Rijii = =(0;0kg9a — 0;0kgt — 0;019ik + 0i01g;k) + Lparl P jie — TpirTPj1 (4.6)

DO | =

with the Christoffel symbols

1 i i
Lijr = 5(31@91'3' + 059k — 0igjk) e = 9Tk (4.7)
We also write (4.0]) as
Rijkl - R?jk‘l + 2Fp2[lrpk]j 5 (48)
where
Riw = 20,04 gy - (4.9)
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with [ab] = 1 (ab — ba), and we have underlined indices in order to avoid ambiguities in anti-
symmetrizations. R? shares the symmetries of the full Riemann tensor,

Riojkl = _R?ikl = _R?jlk = Rglij' (4.10)

Let us now consider the square of the Riemann tensor,
(Riem)2 = RijklRijkl = Rjju g"gjsgktgl“ Rstu - (4.11)

From the definition (46]) we infer that this square contains three different structures that are
schematically

(00g::)*,  (00gus)(0gex)?,  (9ges)* . (4.12)

In order to establish our result it is sufficient to work out the first two. We will see that while
the first structures can be reproduced from O(D, D) invariant terms, this is not so for the
second structures, proving that the full square of the Riemann tensor cannot be reproduced
from an O(D, D) invariant expression.

We begin by computing the terms of the first type, (00g.)?, from [@II)). Since terms
involving the square of Christoffel symbols always contain the structure (ag**)2, the terms we
consider here originate only from the square of RY. With (Z9) we then have

(Riem)? 000y = 20011 19" 99" g™ Ry, = 20;0k90 9" 9° 9" 9" Rsr
= 8jakgil girgjsgktglu (8satgru - 8ratgsu - 8saugrt + araugst) ( )
4.13

= 8jakgil girgjsgktglu 8satgru - 2ajakgil girgjsgktglu 8ratgsu

+ ajal'cgil girgjsgktglu 87’8ugst )

where we combined in the third line two terms using the symmetry properties of g and of second
partial derivatives. After relabeling indices, this reads

(Riem)? o0 97" g™ gP1 0,01 gimp 0;019ng — 2 97 g g™ GPT OkOmGip O;On i

kl _mn

+ g7 g™ g™ g" 0;0k Gimp OnOqgii

= 976" 5" (9i019mp 0i019n — 2 OxOmip 00914 + D:DxGump InDagit) -
(4.14)

Let us now turn to the second structure in (@I2)). It originates from cross terms of R? and
the I'? term in (F). Thus,

(Riem)2 ) == 4R0nikmrrnmrrik

RO nikm (amgrn + angrm — argnm) gm (&‘gks + ak.gis - asgik) .
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Using the symmetries (410) we can exchange m <+ n and i <+ k simultaneously. It then follows
that several terms combine, giving

(Riem)2 , = RO m'kmgT’S (2 8mgr’n aigks + 2 amgrn 8kgi8
(009..)(9-) (4.16)

-2 amgrn 8392’19 -2 8rgnm 82'9198 + argnm asgik) .

4.3 Obstructions on the generalized metric formulation

We attempt now to write O(D, D) invariant expressions in terms of the generalized metric that
reproduce the above structures (4.14]) and (4.16)) when setting d" = 0 and bi; = 0. In this
situation the generalized metric reads

HiT K gi 0
H = , U - . 4.17

Specifically, we will see that the only candidate O(D, D) invariant expression that could re-

produce a certain tensor structure in the square of the Riemann tensor is actually zero as a
consequence of the group properties of H sy

We start with the (00gs)? terms in (@I4]). It turns out that they are reproduced by a term
Z(22)(H) defined by

T3 = — 2HIIHEL 90,179 8,0, Hig
; (4.18)

+ 2HITHEL 9,0 HMN 0j0MHLN + 815]7-[[“’ OO H .

The superscripts on Z indicate the derivative structure of the terms: they are the product of
a factor with two derivatives and another factor with two derivatives. In order to evaluate the
reduction of Z(>?) (H) we set 9" = 0 and insert (IT7). First note that any derivative must have
a lower index, 0x — Ok, and the index contracted with this derivative also becomes k:

1 .
702 = — CHIHMN 001" 9;aH pg
(4.19)

+ 2HIHFE 9,0, H™N 8,0, Hin + 0,0,HN OO HY .

Because of the diagonal form of H in (@I7) any mixed-index structure H*® will only receive
contributions when K is an upper lowercase index, giving H*, with the k also appearing
elsewhere as a lower index. Thus in the second term above we can simply replace L — [ and
N — n. In the first term there are two contributions for P and @, one with structure HP9 - - - H,p,
and the other H,,---HP?. Both turn out to give the same answer and we therefore have:

I (g) = — g9gM 00,71 9;019p + 297 " D0kg™ 0;Omgin + 0:0;6" ND1gV . (4.20)

We can now transform the double derivatives of upper-indexed metrics to derivatives of lower-

indexed metrics using
8i0;9~" = — (g '05997")
(4.21)
= 9 (3i9)97 1 (959)9”" — g 3:059)97 " + 97 (9;9)97 (Dig)g
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In components this reads
hg” = —g" g %0igrs + 29" 979" 0 9pr Op 9as - (4.22)
We use this in ([£.20) and collect only the terms with two derivatives on g:

Z82(9)] spye = 979" (67 00k9019"") 0101990 = 2979 (97°0:019:19"™) 01O in o
. 4.23

+ (9" 0:0;95t9") (6" OkO1gung™) -

After a straightforward relabeling of indices one can compare with (4.14]) and confirm that

7(2:2) = (Riemann)? . 4.24

(9) (009..)7 ( ) (009012 (4.24)

This shows that the proposed generalized metric combination (£I8]) correctly reproduces the

portion of (Riemann)? with two derivatives on each field. But, as we will see, it does not
produce all of (Riemann)?.

Let us now consider the (99g.)(0gss)? terms. Note that (@2ZI) implies that Z(2?) produces
already several terms of this type. It is convenient to begin again with ([420) to do this

systematically. Converting one of the §2¢g** metrics in the last term of Z(>?) in [@20) into gy,
we find

1%D(g) = — g™ g" 0i0kg" (9;019pq — 20105914 + OpDa9;1) (425
+ 297 9" 9" 009" 0y gjr 041 - '
The terms in parenthesis are proportional to R and thus we conclude
I3 (g) = —20;009" 9" 9" R, + 297 M 9" 0:04 9710595+ Og s - (4.26)
The second term in here is produced by minus 1(271’1)(7-[), defined by
TGN () = —oH I HEENES 90k HPCOpH yr doH LS - (4.27)
We can therefore write
I3 (g) + I3 (g) = —20,009™ g7 g™ R, . (4.28)

We have shown that the terms on the right-hand side of this equation are reproduced from the

generalized metric expression Z(2:2) 4 7(211),

We next investigate how much the right-hand side of (£28]) differs from the square of the
Riemann tensor. For this purpose we first convert the leftover 0%2¢** in ([@28) into g,
1(2,2) + 1(2,1,1) — 2gpmgqnaiakgmn gijgklejlp - 4gpmgqngrsa@gmrak)gns gijgklejlp ] (429)

The 0%¢,s structure in the first term inherits the antisymmetries from R? and so this term is
actually (R?)2. Thus,

722 4 7211 — gipgqukmgan?jkleqmn — QROMkM TS (9,0 Ot s + Oxgmr Digns) - (4.30)
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In here, the first term gives precisely the (90g.x)? terms, as discussed above, while the second
one gives some of the (09¢.x)(9gsx)? terms. Comparing these with the actual terms of this type
appearing in the square of the Riemann tensor (4.16]) finally implies

RMRijy = I3 (g) + T3V (g)
- R nikm rs( 20k9mr Oigns — 20mGrn OkGis — OrGmn Osgix + 40mGrn 8897,19) (431)
+0((99)").

The first line is reproduced by the generalized metric expressions (£I8) and (£27)). We will
now carefully examine the terms in the second line. We will identify one structure that cannot

be written in terms of the generalized metric.
We first expand

— RO nikm rs( 20k9mr Oigns — 20mGrn OkGis — OrGmn Osgix + 40mgrn 839”9)

1
= —59"' 9 gkl gt 675 (D,019p1 — OpOigqt — OgOrgpl + 0p0rgal)

(_2akgmr 8igns - 2amgrn 8kgis - 8T’gmn 8sgik + 4amgrn 8592%)

1
= _59 .g gklgmtgrs( 28kgmr aigns 8qalgpt + 28kgmr aigns 8palgqt

+ 2akgmr aZ'Qns aqatg]ul - 28kgmr aZ'Qns apatgql
(4.32)
- 28mgrn 81@92'3 aqalgpt + 28mgrn 81@92'3 apalgqt

+ 2amgrn akgis aqatg]ul - 28mgrn akgis apatgql

= Orgmn Os9ik Og019pt + Or Gmn Osgik; OpOigqr

+ OrGmn Osgik OgOtgpl — Or Gmn Osgik OpOigql

+ 40,911 Osgik 0qO1gpt — 40mGrn Osgik OpOigqt

— 40y 9rn OsGik 0gOrgpl, + 40mGrn Osgik OpOigqr ) -
Several terms in here can be combined,

1
= _59 .g gklgmtgrs( 28kgmr aZ'Qns aqalgpt +8 akgmr aigns 8pal.gqt

— 20k 9mr OiGns 5p5t9ql

-2 argmn 8sgik 8qalg]ut +2 8T’gmn asgik apalgqt

(4.33)
+ 4amgrn asgik aqalgpt - 4amgrn asgik apalgqt

- 4amgrn asgik aqatgpl + 4amgrn asgik apatgql

— 4amgrn akgzs aqalgpt ) ?
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where we have grouped the terms according to the index structure of the first d,¢g.. factor.

In ([4.33]) we have underlined three terms that deserve special consideration. All other terms
can be reproduced by simply replacing metrics for generalized metrics and partial derivatives
by O(D, D) covariant partial derivatives. This happens because the indices on derivatives (that
are lower, lowercase, when d = 0) are contracted in such a way that they force all other indices
to become lowercase once we recall that the generalized metric is diagonal. To make this point
more transparent, consider the second term in (£33]):

-4 gnpgiqgklgmtgrs Ok Gmr OiGns apalgqt . (4.34)

Its O(D, D) covariant extension is simply
— AHNPHIOUKEYMT YRS e Hrr O1HNs OpOLHor - (4.35)

To see that this works we just follow the indices on derivatives (which must be lower, lowercase)
and how they force indices to become lowercase. From Ox we have K — L, that is, we get k, (.
From the second derivative we get I - Q@ - 1T - M — R — S — N — P, and all indices
become as in ([4.34]). One can readily check that the same happens for all other non-underlined

terms.

Let us now consider the underlined terms in ([433]). We start with the two terms with a
single underline, which take the form

X1(g9) = g" g g " g™ g"* Oy gun OsGir OgOgpt — 29" 9" g* g™ g"* Ongrn Osgir. FpOrgar - (4.36)

On each of the terms, each of the dg factors can be transformed into derivatives of inverse
metrics via the identity dg~! = —¢g~(dg)g~ ",

Xi1(9) = g7 09" 059" 04019p — 29™ Omg”* 059" 0pOrgq - (4.37)

These two structures can also be reproduced from an expression in terms of H, with due care
to double counting and extra terms that are to be thought of as higher order. We claim that
the following is the answer

1
Ix,(H) = gHRS(?RHPT(‘)SHQL(‘)Q(‘)LHPT — HMT oy HP 0 HO OpOorHoL . (4.38)

The first step in the reduction gives

1
Ix, = §grsagHPTasgql DO Hpr — g™ 0mgP O HOLD,0, oL - (4.39)

This time we are left with contractions that give rise to two terms each,

1 1
Ialg) = 597 0rg" 09" 009 + 597 g™ Dsgun 001" (4.40)

- gmtamgps asgqlazuatgql - gmtamgps 8sgql 81uatgql .

Using (@21)) one can readily see that the second term on each line equals the first, up to (9g)*
terms. Thus, we have

Ix,(9) = Xi(9) +O((99)"). (4.41)
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This shows that the terms with a single underline can be reproduced using the generalized
metric, up to (9g)* terms that must be considered once all 92g(dg)? terms are under control.

Let us finally consider the double-underlined term in (433]), which turns out to be prob-
lematic. The term is

Z(9) = g"Pg" 9" g™ g" DG Oigns OgOigpt = —g"PG" 19" kg™ 0ignsOyOigpt » (4.42)

where we rewrote the leftmost dg in terms of 9g~!. The only candidate O(D, D) invariant term
that could reproduce this structure is proportional to

1; = ’HNP’HIQ”HKL@K”HTS@[”HNS8Q8L”HPT. (4.43)

The claim is that Zy is in fact zero up to terms (9H)* — which in turn give rise to structures
involving (9g)* and are thus of different type. To see this we raise and lower indices using 7 on
the one hand and the analogue of (4.21]) for 7 on the other:

Iz = HNEHIOHKLY 1S 01 Hns DO Hpr

= HNP”HIQHKLOK”HTS&HNS@Q8LHPT

= —Hnp HICHEEHPEHTM 90 Hps OrHNS 090 Hpy + (OH)*
(4.44)

= —HTMUKLYICY NSO Hrs OgOr Hry + (OH)*
= —HNPHIOHKLo NS 0rH N s0L00HTP + (M)

= —Iz+ (87'[)4 .

As help to the reader, the underlined factors in each term denote those factors that participate
in the simplification leading to the next term. In the step before the last line we relabeled
indices (I ++ K, Q <+ L, R - T — N, M — P). Thus, up to (OH)* terms, this structure is
minus itself and thus zero.

One may wonder if the dilaton d can be used to help reproduce the above problematic
structure. Unfortunately, this is not the case. Rather, the role of the dilaton can be understood
as follows. Whenever a tensor contains the structure ¢*'d,,gx;, the generalized metric cannot be
used to reproduce it. This follows because the corresponding O(D, D) invariant term is minus
itself by its group properties and thus vanishes:

HELOMHKL = —HirduHEE = —HELoyHKkL = 0. (4.45)

In the first step we recalled that H%” is the inverse of Hx 1, and in the second step we raised
and lowered indices with the constant ny7x. In order to reproduce the structure g*d,,gu we
can use the O(D, D) invariant dilaton d. Since e=2% = \/§6_2¢ we have, for §' = 0,

1
opd — Opd = amqb—zgkl@mgkl. (4.46)

This means that
—40yd M Gkt » 4.47
( M )5:%:0 — 9 9kl ( )
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provides the desired O(D, D) covariantization of the structure. In fact, the O(D, D) invariant
scalar curvature given in [3] can be systematically constructed as follows. Start with the scalar
curvature of Riemannian geometry written in terms of g;;. For each term that can be reproduced
using the generalized metric include the corresponding O(D, D) covariant term. All terms that
cannot be reproduced from a generalized metric expression turn out to contain the structure
"0, gr1, which is covariantized by (—40pd). Tt can be checked that this covariantization of
the Ricci scalar gives the generalized scalar R constructed in [3] and discussed in this paper.
On the other hand, for the problematic structure (4.42) the dilaton does not help, as it contains
no contractions of the ¢*d,,gi; type. As a side remark we point out that since the dilaton is
of no use in constructing the T-duality invariant extension of the Riemann tensor-squared, this
suggests that in a field basis in which the first o/ correction consists only of the square of the
Riemann tensor, the dilaton itself does not receive higher-derivative corrections. Intriguingly,
this is confirmed by explicit computations in string theory [32].

Let us point out that for low-dimensional toy models like D = 2 there may exist additional
manipulations to rewrite the structure ([4.42)) such that it can be reproduced from a generalized
metric or dilaton expression. In fact, in D = 2 the Riemann tensor is fully determined by the
scalar curvature and so the square of the generalized scalar R must contain Riemann-square.
Incidentally, note that according to our formula for the number of undetermined connections
given after (270 all connections are determined in D = 2. In contrast, it is clear that for

general D there are no additional identities that would allow for such manipulations.

Summarizing, for general D there is no O(D, D) invariant expression in terms of the gen-
eralized metric that reproduces the required structure appearing in the square of the Riemann
tensor. As a result there is no O(D, D) invariant term fourth-order in derivatives that repro-
duces the square of the full Riemann tensor.

5 Discussion: T-duality and o’ corrections

In this paper we have investigated the possible existence of a double field theory Riemann
tensor Rysnvpq satisfying conditions 1) — 4) and (A), as stated in the introduction. In the first
part of this paper we gave a self-contained presentation of a metric-like formalism introducing
connections and invariant curvatures along the lines of the frame-like approach of Siegel [4].
The main difference with the related metric-like formalism of Jeon, Lee, and Park [I§] is that
we keep track of undetermined pieces in the connection and their effects on curvatures. Our
analysis sheds new light on the Riemann tensor. Specifically, we showed that the components
that are fully determined in terms of the physical fields vanish identically as a consequence
of an algebraic Bianchi identity. Thus, within this formalism, there is no Riemann tensor
meeting all conditions 1) — 4). There is a Riemann tensor satisfying conditions 1) — 3). It is an
O(D, D) tensor, a generalized tensor, and it determines Ry and R. It is not, however, fully
determined in terms of the physical fields. The components of Rasnpg that are independent
of undetermined connections vanish.

In the second part of this paper we investigated a related question. We asked if there is
a four-derivative O(D, D) invariant function of the generalized metric and the dilaton that
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reduces in some T-duality frame (and with b;; = ¢ = 0) to the square of the Riemann tensor.
We find that the answer is negative: for general D there is no O(D, D) covariantization of
Riemann-square in terms of the generalized metric and the dilaton. Such covariantization, if it
existed, could be used as a Lagrangian for higher-derivative terms in double field theory. This
result implies that even if a double field theory Riemann tensor satisfying conditions 1) — 4)
exists, it could not provide a T-duality covariantization of Riemann-squared — its square would
have to be zero.

Let us now briefly discuss the significance of this result. Suppose we had succeeded in
constructing an O(D, D) invariant in terms of Hj;y and d that reduces to the square of the
Riemann tensor in some T-duality frame. Then we would be able to write a general action with
four derivatives as some arbitrary linear combination of the squares of generalized Riemann,
generalized Ricci, and generalized scalar curvature. Any of these actions would be exactly
invariant under the original forms of the T-duality and generalized diffeomorphisms that leave
the original two-derivative action invariant. This would be unexpected, for the field redefinitions

9ij — 9ij +d (a1 Rij + a2 gijR) , (5.1)

that respect diffeomorphism invariance, map o/-corrected actions into each other in that they
alter the coefficients of Ricci-squared and R-squared terms. After such field redefinitions the
T-duality transformation of g;; will acquire o’ corrections, in conflict with the above implication
of the (hypothetical) existence of a physical generalized Riemann tensor.

Useful insights into the structure of T-duality in double field theory to order o/ are suggested
by the computations of Meissner [29]@ He considered ‘cosmological’ models, i.e., the reduction
of gravitational actions with higher-order corrections to one dimension. The resulting theory
can be written in an O(D, D) invariant way only if the formula for the generalized metric in
terms of the g and b fields receives o/ corrections. For double field theory such a possibility
would imply that the theory can be written in terms of a generalized metric Hpsn(g,b) of the
form

ﬁMN(g, b) = Hun(g,b) + o OHarn(g,b) + O(O/2) , (5.2)

where H(g,b) is the generalized metric (LI)) and Hysn (g, b) is a symmetric O(D, D) matrix to
order . Since (L)) is a general parameterization of a symmetric O(D, D) matrix, this means
that one can write

Hun(g,b) = Hun(d,V), (5.3)

where (¢',b') are o/ corrected versions of (g,b). The results of [29] (see eqgs. (4.11)-(4.12))
suggest a redefinition of the type

(g/)ij = gij + a/gikgjlgpqgrs (al 87’gkp asglq + ag arbkp asblq) . (54)

It would be interesting to see if the problematic structure that we identified in the square
of the Riemann tensor can be removed with such a field redefinition. Once the action is
written in terms of Hyn(g',b'), one could view (¢', ') as the new field variables with standard
(uncorrected) T-duality transformations. The redefinition (5.4]) does not preserve manifest

*Later work of Kaloper and Meissner [30] did not use the generalized metric. It evaluated o’ corrections to
T-duality transformations arising in backgrounds with one abelian isometry.

32



general covariance because it involves first derivatives of the metric rather than tensors. Thus
generalized diffeomorphisms would receive o’ corrections. It would be interesting to see if the
field basis suggested by string field theory has to play a special role here (see [10] for the explicit
map between different field variables).

While the generalized Riemann tensor discussed in this paper is not fully determined
by the physical fields, we expect it to play a crucial role in the construction of general T-
duality invariant o corrections. As discussed in section [3.1] this tensor has components of type
(4,0),(3,1),(1,3), and (0,4):

Runkr s Runki > Rusgr, RuNRL (5.5)

all of which depend on undetermined connections. We believe that a suitable linear combination
of squares of these curvatures will have the property that the undetermined part can be removed
by a field redefinition.

It is amusing to speculate on the meaning of our results for the geometry that underlies
string theory. The absence of a physical Riemann tensor seems to follow from the requirement of
duality covariance. Since the Riemann tensor is needed for the construction of the interactions
in the theory, we are forced to learn how to work with a partially physical, generalized Riemann
tensor. This is all we seem to have. In Riemannian geometry a spacetime is flat if and only
if the Riemannian curvature vanishes. In the absence of a physical Riemann tensor in string
theory there would seem to be no obvious way to characterize flat space!
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A Relation to frame formalism

Here we explain the equivalence of the ‘metric-like’ formalism discussed in this paper and the
‘frame-like’ formalism of Siegel [4], extending the discussion given in sec. 5.3 of [7]. The vielbein
es™, with inverse ej4, carries an O(D, D) index M and a flat index A with respect to the local
tangent space group GL(D) x GL(D). This flat index splits as A = (a, a), where a refers to the
left GL(D) and a to the right GL(D). In order to describe only physical fields the vielbein e 4™
needs to satisfy constraints that are written in terms of the tangent space metric G defined by

gAB MN A

Gap = eaMepN nyy,  with inverse = pMN ey Aen? . (A.1)

Flat indices are raised and lowered with G while O(D, D) indices are raised and lowered with 7.
Moreover, en? = i NGABepN. We impose the constraints

Gy =0, sig(Gap) = (+ — ...—), sig(Gy) = (— + ... 4), (A.2)
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where ‘sig’ denotes the signature. Note that the signatures of G, and G,; are opposite in
order to be consistent with the (D, D) signature of G4p. The assignment of signatures here
complies with the conventions of [7]. By Sylvester’s theorem of inertia, the constraints (A2])
are GL(D) x GL(D) invariant.

The projectors P and P and the generalized metric H can be defined in terms of the frame
field as in [7]:

N D N

Py = eqpe™ PyN = ey e™ HaN = (PMN—PMN). (A.3)

N —

As required, these projectors satisfy P2 = P, P? = P and, using the first constraint of (A.2]),
PP =0.

Following Siegel we may now introduce spin connections w4 pc for the local GL(D) x GL(D)
symmetry and impose covariant constraints in order to determine (part of) them in terms of
the physical fields. These spin connections then uniquely determine Christoffel connections by
means of a vielbein postulate as follows. We introduce a covariant derivative D with respect
to the spin and Christoffel connection and postulate that the frame field ex™ is covariantly

constant:
DMeAN = 8M€AN+FMKN6AK+MMAB63N = 0. (A.4)
Here
WMAB = EMCWCAB
Note that
Dyéa? = 0. (A.5)

Because of the factorized gauge group, the non-vanishing spin connections are wys,® and wysz®.

The covariant derivative Dj; reduces to the covariant derivative V,; discussed in this paper
when acting on tensors with only curved indices. Moreover, the covariant derivative

DA = eAMDM (AG)

reduces to the flat covariant derivative V 4 of Siegel when acting on tensors with only GL(D) x
GL(D) indices. Thus, with the vielbein being covariantly constant, any statement about ‘tan-
gent space’ objects can be translated into a statement about ‘world’ objects and viceversa, in
precise analogy to conventional Riemannian geometry. For instance, by (A.4]) the Christoffel
connection is determined by the frame field and the spin connection according to

A B. C A
'vng = —emen"ex - wapc — en" Omear - (A7)

In the following we will show that the constraints of Siegel imply via (A4]) our constraints (1)
(4) on I' and thus that the frame formalism of Siegel is equivalent to the metric-like formalism

discussed in this paper.

The frame formulation imposes the following constraints on the spin connection:

(i) The tangent space metric (A.T]) is covariantly constant,
VaGpe = 0. (A.8)
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Since Gpe has only flat indices, the above implies that
DAgBC' =0 — DMgBC' = 0. (A.9)

Because of (A.4) and (A.5), we have that ey is also covariantly constant and thus we
can write
B, C _ _
DM(eN ex ch) =0 — Dynvg = 0, (A.10)

by use of (Adl). Since n only has O(D, D) indices, the last equation above implies
Vunnk = 0, which is constraint (1). Moreover, we now readily derive the covariant
constancy of P, P and therefore of , thus implying constraint (3). For example,

VMPNK = DMPNK = DM(eaNeaK), (A.ll)

where in the last step we noted that when Dj; acts on an object R 44 with a contracted
flat index there is no contribution from the spin connection. Given the diagonal form of
the spin connection components the same is true for the action of Dj; on an object of the
form R,* or R;*. Thus we are allowed to use the full covariant derivative D), in the last
expression above. Since D)y is a derivation and the vielbeins are covariantly constant we
conclude that V; Pyv% = 0.

The second constraint requires that in the C-bracket
M 1
[&1.&], = &ong" — 551N5Mfév - (1+2), (A.12)
we can flatten the indices by introducing covariant derivatives as follows,
A _ A M _ B a1 AeB A
(61,8 = en”[6,&]g = &'VBE 2513V & —(1+2). (A.13)
Since the derivatives act on flat indices we can replace V by D and the constraint becomes
A 1
[61.6]c = 'Dpes — SaD G — (10:2). (A.14)

This constraint implies the generalized torsion constraint (2) in the form (ZI7). In order
to see this we recall that egs. (3.29)—(3.30) in [3] show that the generalized Lie derivative
can be written in terms of the C-bracket as

LovM = [e,V]d + %OM(VN&V) = [&.V]Gea + %VM(VN&V) , (A.15)

where we used that the partial derivative of the scalar VN ¢y coincides with the covariant
derivative. Inserting (A.14]) we obtain

_ 1 1 1
LM = (éBDBVA—VBDB£A—§£BDAVB+§VBDA£B) ea+5VH(VVey) . (A16)

Using the covariant constancy of the vielbein and converting all indices into curved indices

we can replace D’s by V’s and obtain

. 1 1 1
LVM = NNV —VNONeM — ey VMV 4 SV VM EN 4 M (Ve

2 2 2 (A.17)
= NVNVM 4 (VN —vNeMYYy = LIV

We recovered (2.I7]) and thus constraint (2), as we wanted to show.
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(iii) The third constraint requires

/ ey, VA = - / e 2 yAV LV . (A.18)
We can replace V by D:
/ e VD VA = — / e 2VADLY . (A.19)

On the right-hand side we can immediately pass to O(D, D) indices. On the left-hand
side this requires use of (A.4]). We thus find

/e_2d VD VM = —/e—2d VMDY . (A.20)

Replacing D by V, as is allowed now, we obtain (2.24]), thus implying constraint (4).
Alternatively, the constraint can also be verified explicitly by inserting eq. (2.37) of [7]
into the trace of (A7), from which we recover (2.25)).

In total, the constraints (i)—(iii) of the frame formalism imply, via (A.4]), the constraints

(1)—(4) of the metric-like formalism, thereby establishing the equivalence of both formulations.
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