57 research outputs found

    A Mechanistic Basis for the Coordinated Regulation of Pharyngeal Morphogenesis in Caenorhabditis elegans by LIN-35/Rb and UBC-18–ARI-1

    Get PDF
    Genetic redundancy, whereby two genes carry out seemingly overlapping functions, may in large part be attributable to the intricacy and robustness of genetic networks that control many developmental processes. We have previously described a complex set of genetic interactions underlying foregut development in the nematode Caenorhabditis elegans. Specifically, LIN-35/Rb, a tumor suppressor ortholog, in conjunction with UBC-18–ARI-1, a conserved E2/E3 complex, and PHA-1, a novel protein, coordinately regulates an early step of pharyngeal morphogenesis involving cellular re-orientation. Functional redundancy is indicated by the observation that lin-35; ubc-18 double mutants, as well as certain allelic combinations of pha-1 with either lin-35 or ubc-18, display defects in pharyngeal development, whereas single mutants do not. Using a combination of genetic and molecular analyses, we show that sup-35, a strong recessive suppressor of pha-1–associated lethality, also reverts the synthetic lethality of lin-35; ubc-18, lin-35; pha-1, and ubc-18 pha-1 double mutants. SUP-35, which contains C2H2-type Zn-finger domains as well as a conserved RMD-like motif, showed a dynamic pattern of subcellular localization during embryogenesis. We find that mutations in sup-35 specifically suppress hypomorphic alleles of pha-1 and that SUP-35, acting genetically upstream of SUP-36 and SUP-37, negatively regulates pha-1 transcription. We further demonstrate that LIN-35, a transcriptional repressor, and UBC-18–ARI-1, a complex involved in ubiquitin-mediated proteolysis, negatively regulate SUP-35 abundance through distinct mechanisms. We also show that HCF-1, a C. elegans homolog of host cell factor 1, functionally antagonizes LIN-35 in the regulation of sup-35. Our cumulative findings piece together the components of a novel regulatory network that includes LIN-35/Rb, which functions to control organ morphogenesis. Our results also shed light on general mechanisms that may underlie developmental genetic redundancies as well as principles that may govern complex disease traits

    A biologically inspired network design model

    Get PDF
    A network design problem is to select a subset of links in a transport network that satisfy passengers or cargo transportation demands while minimizing the overall costs of the transportation. We propose a mathematical model of the foraging behaviour of slime mould P. polycephalum to solve the network design problem and construct optimal transport networks. In our algorithm, a traffic flow between any two cities is estimated using a gravity model. The flow is imitated by the model of the slime mould. The algorithm model converges to a steady state, which represents a solution of the problem. We validate our approach on examples of major transport networks in Mexico and China. By comparing networks developed in our approach with the man-made highways, networks developed by the slime mould, and a cellular automata model inspired by slime mould, we demonstrate the flexibility and efficiency of our approach

    The Influences of H2Plasma Pretreatment on the Growth of Vertically Aligned Carbon Nanotubes by Microwave Plasma Chemical Vapor Deposition

    Get PDF
    The effects of H2flow rate during plasma pretreatment on synthesizing the multiwalled carbon nanotubes (MWCNTs) by using the microwave plasma chemical vapor deposition are investigated in this study. A H2and CH4gas mixture with a 9:1 ratio was used as a precursor for the synthesis of MWCNT on Ni-coated TaN/Si(100) substrates. The structure and composition of Ni catalyst nanoparticles were investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The present findings showed that denser Ni catalyst nanoparticles and more vertically aligned MWCNTs could be effectively achieved at higher flow rates. From Raman results, we found that the intensity ratio of G and D bands (ID/IG) decreases with an increasing flow rate. In addition, TEM results suggest that H2plasma pretreatment can effectively reduce the amorphous carbon and carbonaceous particles. As a result, the pretreatment plays a crucial role in modifying the obtained MWCNTs structures

    Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms

    Get PDF
    Coronary artery disease (CAD) is a leading cause of morbidity and mortality worldwide. Although 58 genomic regions have been associated with CAD thus far, most of the heritability is unexplained, indicating that additional susceptibility loci await identification. An efficient discovery strategy may be larger-scale evaluation of promising associations suggested by genome-wide association studies (GWAS). Hence, we genotyped 56,309 participants using a targeted gene array derived from earlier GWAS results and performed meta-analysis of results with 194,427 participants previously genotyped, totaling 88,192 CAD cases and 162,544 controls. We identified 25 new SNP-CAD associations (P < 5 × 10(-8), in fixed-effects meta-analysis) from 15 genomic regions, including SNPs in or near genes involved in cellular adhesion, leukocyte migration and atherosclerosis (PECAM1, rs1867624), coagulation and inflammation (PROCR, rs867186 (p.Ser219Gly)) and vascular smooth muscle cell differentiation (LMOD1, rs2820315). Correlation of these regions with cell-type-specific gene expression and plasma protein levels sheds light on potential disease mechanisms.J.D. is a British Heart Foundation Professor, European Research Council Senior Investigator and NIHR Senior Investigator. J.D.E. and A.D.J. were supported by NHLBI Intramural Research Program funds. N.F. is supported by R21HL123677-01 and R56 DK104806-01A1. N.S. is supported by the British Heart Foundation and is an NIHR Senior Investigator. T.L.A. is supported by NIH career development award K23DK088942. This work was funded by the UK Medical Research Council (G0800270), the British Heart Foundation (SP/09/002), the UK National Institute for Health Research Cambridge Biomedical Research Centre, the European Research Council (268834), European Commission Framework Programme 7 (HEALTH-F2-2012-279233) and Pfizer. The eQTL database construction was supported by NHLBI intramural funds

    WSES guidelines for management of Clostridium difficile infection in surgical patients

    Get PDF
    In the last two decades there have been dramatic changes in the epidemiology of Clostridium difficile infection (CDI), with increases in incidence and severity of disease in many countries worldwide. The incidence of CDI has also increased in surgical patients. Optimization of management of C difficile, has therefore become increasingly urgent. An international multidisciplinary panel of experts prepared evidenced-based World Society of Emergency Surgery (WSES) guidelines for management of CDI in surgical patients.Peer reviewe

    WSES guidelines for management of Clostridium difficile infection in surgical patients

    Full text link

    Calcium orthophosphate-based biocomposites and hybrid biomaterials

    Full text link

    A microfluidic countercurrent reactor for accelerating enzymatic reactions

    No full text
    [[abstract]]Enzymes are important catalysts in biochemical reactions with superior regio, stereo, and substrate selectivity. However, enzymatic reaction systems have drawbacks including product inhibition, difficulty recycling, and poor stability. Importantly, the rate of an enzyme catalyzed reaction diminishes rapidly due to product inhibition and substrate depletion, making it difficult for many enzymes to catalyze a reaction to completion. The outcome is a mixture of unreacted substrates being present in the final reaction, necessitating additional separation steps that increase costs. This study presents a microfluidic reactor for accelerating enzyme catalyzed reactions using a countercurrent design that continuously removes products and adds fresh substrate into the reaction, allowing enzymes to operate under better reaction conditions. It demonstrates that countercurrent flow accelerates enzymatic reactions in our system up to 36 % for horseradish peroxidase and 21 % for & beta;-glucosidase compared to cocurrent flow, and the resulting reaction solution contains highly pure product with minimal substrate contamination

    Self-concentrating buoyant glass microbubbles for high sensitivity immunoassays

    No full text
    [[abstract]]Here, we report the novel application of a material with self-concentrating properties for enhancing the sensitivity of immunoassays. Termed as glass microbubbles, they are antibody functionalized buoyant hollow glass microspheres that simultaneously float and concentrate into a dense monolayer when dispensed in a liquid droplet. This self-concentrating charactaristic of the microbubbles allow for autonomous signal localization, which translates to a higher sensitivity compared to other microparticle-based immunoassays. We then demonstrated a "microbubble array" platform consisting of the glass microbubbles floating in a microfluidic liquid hemisphere array for performing multiplex immunoassays
    corecore