49 research outputs found

    Fine-Scale Phylogeographic Structure of Borrelia lusitaniae Revealed by Multilocus Sequence Typing

    Get PDF
    Borrelia lusitaniae is an Old World species of the Lyme borreliosis (LB) group of tick-borne spirochetes and prevails mainly in countries around the Mediterranean Basin. Lizards of the family Lacertidae have been identified as reservoir hosts of B. lusitaniae. These reptiles are highly structured geographically, indicating limited migration. In order to examine whether host geographic structure shapes the evolution and epidemiology of B. lusitaniae, we analyzed the phylogeographic population structure of this tick-borne bacterium using a recently developed multilocus sequence typing (MLST) scheme based on chromosomal housekeeping genes. A total of 2,099 questing nymphal and adult Ixodes ricinus ticks were collected in two climatically different regions of Portugal, being ∌130 km apart. All ticks were screened for spirochetes by direct PCR. Attempts to isolate strains yielded 16 cultures of B. lusitaniae in total. Uncontaminated cultures as well as infected ticks were included in this study. The results using MLST show that the regional B. lusitaniae populations constitute genetically distinct populations. In contrast, no clear phylogeographic signals were detected in sequences of the commonly used molecular markers ospA and ospC. The pronounced population structure of B. lusitaniae over a short geographic distance as captured by MLST of the housekeeping genes suggests that the migration rates of B. lusitaniae are rather low, most likely because the distribution of mediterranean lizard populations is highly parapatric. The study underlines the importance of vertebrate hosts in the geographic spread of tick-borne microparasites

    Multipolar Spindle Pole Coalescence Is a Major Source of Kinetochore Mis-Attachment and Chromosome Mis-Segregation in Cancer Cells

    Get PDF
    Many cancer cells display a CIN (Chromosome Instability) phenotype, by which they exhibit high rates of chromosome loss or gain at each cell cycle. Over the years, a number of different mechanisms, including mitotic spindle multipolarity, cytokinesis failure, and merotelic kinetochore orientation, have been proposed as causes of CIN. However, a comprehensive theory of how CIN is perpetuated is still lacking. We used CIN colorectal cancer cells as a model system to investigate the possible cellular mechanism(s) underlying CIN. We found that CIN cells frequently assembled multipolar spindles in early mitosis. However, multipolar anaphase cells were very rare, and live-cell experiments showed that almost all CIN cells divided in a bipolar fashion. Moreover, fixed-cell analysis showed high frequencies of merotelically attached lagging chromosomes in bipolar anaphase CIN cells, and higher frequencies of merotelic attachments in multipolar vs. bipolar prometaphases. Finally, we found that multipolar CIN prometaphases typically possessed Îł-tubulin at all spindle poles, and that a significant fraction of bipolar metaphase/early anaphase CIN cells possessed more than one centrosome at a single spindle pole. Taken together, our data suggest a model by which merotelic kinetochore attachments can easily be established in multipolar prometaphases. Most of these multipolar prometaphase cells would then bi-polarize before anaphase onset, and the residual merotelic attachments would produce chromosome mis-segregation due to anaphase lagging chromosomes. We propose this spindle pole coalescence mechanism as a major contributor to chromosome instability in cancer cells

    Effectiveness of habitat management in the recovery of low-density populations of wild rabbit.

    Get PDF
    Understanding the relationship between spatial patterns of landscape attributes and population presence and abundance is essential for understanding population processes as well as supporting management and conservation strategies. This study evaluates the influence of three factors: environment, habitat management, and season on the presence and abundance of the wild rabbit (Oryctolagus cuniculus), an important prey species for Mediterranean endangered predator species. To address this issue, we estimated wild rabbit presence and abundance by latrine counting in transects located in 45 plots within a 250×250 m grid from June 2007 until June 2009 in a 1,200 ha hunting area in southern Portugal.We then analyzed how wild rabbit presence and abundance correlatewith the aforementioned factors. Our results showed that the main variable influencing wild rabbit presence and abundance was the distance to the artificial warrens. North and northeast slope directions were negatively related to wild rabbit presence. Conversely, rabbit presence was positively correlated with short distances to ecotone, artificial warrens, and spring. Regarding rabbit abundance, in addition to artificial warrens, soft soils, bushes, and season also had a positive effect. We found that environmental variables, management practices, and season each affect wild rabbit presence and abundance differently at a home range scale in low-density population. Thus, our major recommendations are reducing the distance to artificial warrens and ecotone, ideally to less than 100 m, and promoting habitat quality improvement on slopes with plenty of sun exposure

    An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: impacts on organisms and ecosystems

    Get PDF
    New information on the lethal and sublethal effects of neonicotinoids and fipronil on organisms is presented in this review, complementing the previous WIA in 2015. The high toxicity of these systemic insecticides to invertebrates has been confirmed and expanded to include more species and compounds. Most of the recent research has focused on bees and the sublethal and ecological impacts these insecticides have on pollinators. Toxic effects on other invertebrate taxa also covered predatory and parasitoid natural enemies and aquatic arthropods. Little, while not much new information has been gathered on soil organisms. The impact on marine coastal ecosystems is still largely uncharted. The chronic lethality of neonicotinoids to insects and crustaceans, and the strengthened evidence that these chemicals also impair the immune system and reproduction, highlights the dangers of this particular insecticidal classneonicotinoids and fipronil. , withContinued large scale – mostly prophylactic – use of these persistent organochlorine pesticides has the potential to greatly decreasecompletely eliminate populations of arthropods in both terrestrial and aquatic environments. Sublethal effects on fish, reptiles, frogs, birds and mammals are also reported, showing a better understanding of the mechanisms of toxicity of these insecticides in vertebrates, and their deleterious impacts on growth, reproduction and neurobehaviour of most of the species tested. This review concludes with a summary of impacts on the ecosystem services and functioning, particularly on pollination, soil biota and aquatic invertebrate communities, thus reinforcing the previous WIA conclusions (van der Sluijs et al. 2015)

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac
    corecore