156 research outputs found

    Nanocomposites in Controlled & Targeted Drug Delivery Systems

    Full text link
    In recent years, development of different types of nanocomposites have increased their utilization in the biomedical and pharmaceutical sciences. The nanometer size range and unique composition make nanocomposites a beneficial alternative to any single conventional material. The present chapter provides a general overview of nanocomposites, discusses different types of nanocomposites such as metal, ceramic and polymer nanocomposites. The discussion is further focused on different nanocomposite based controlled and targeted systems developed for delivery of various drugs including anti-cancer, anti-microbial, anti-inflammatory, anti-diabetic and cardiovascular drugs

    Polo-Like Kinase Controls Vertebrate Spindle Elongation and Cytokinesis

    Get PDF
    During cell division, chromosome segregation must be coordinated with cell cleavage so that cytokinesis occurs after chromosomes have been safely distributed to each spindle pole. Polo-like kinase 1 (Plk1) is an essential kinase that regulates spindle assembly, mitotic entry and chromosome segregation, but because of its many mitotic roles it has been difficult to specifically study its post-anaphase functions. Here we use small molecule inhibitors to block Plk1 activity at anaphase onset, and demonstrate that Plk1 controls both spindle elongation and cytokinesis. Plk1 inhibition did not affect anaphase A chromosome to pole movement, but blocked anaphase B spindle elongation. Plk1-inhibited cells failed to assemble a contractile ring and contract the cleavage furrow due to a defect in Rho and Rho-GEF localization to the division site. Our results demonstrate that Plk1 coordinates chromosome segregation with cytokinesis through its dual control of anaphase B and contractile ring assembly

    Evidence of maternal QTL affecting growth and obesity in adult mice

    Get PDF
    Most quantitative trait loci (QTL) studies fail to account for the effect that the maternal genotype may have on an individual’s phenotypes, even though maternal effect QTL have been shown to account for considerable variation in growth and obesity traits in mouse models. Moreover, the fetal programming theory suggests that maternal effects influence an offspring’s adult fitness, although the genetic nature of fetal programming remains unclear. Within this context, our study focused on mapping genomic regions associated with maternal effect QTL by analyzing the phenotypes of chromosomes 2 and 7 subcongenic mice from genetically distinct dams. We analyzed 12 chromosome 2 subcongenic strains that spanned from 70 to 180 Mb with CAST/EiJ donor regions on the background of C57BL/6 J, and 14 chromosome 7 subcongenic strains that spanned from 81 to 111 Mb with BALB/cByJ donor regions on C57BL/6ByJ background. Maternal QTL analyses were performed on the basis of overlapping donor regions between subcongenic strains. We identified several highly significant (P < 5 × 10−4) maternal QTL influencing total body weight, organ weight, and fat pad weights in both sets of subcongenics. These QTL accounted for 1.9-11.7% of the phenotypic variance for growth and obesity and greatly narrowed the genomic regions associated with the maternal genetic effects. These maternal effect QTL controlled phenotypic traits in adult mice, suggesting that maternal influences at early stages of development may permanently affect offspring performance. Identification of maternal effects in our survey of two sets of subcongenic strains, representing approximately 5% of the mouse genome, supports the hypothesis that maternal effects represent significant sources of genetic variation that are largely ignored in genetic studies

    Aqueous extract of Terminalia arjuna prevents carbon tetrachloride induced hepatic and renal disorders

    Get PDF
    BACKGROUND: Carbon tetrachloride (CCl(4)) is a well-known hepatotoxin and exposure to this chemical is known to induce oxidative stress and causes liver injury by the formation of free radicals. Acute and chronic renal damage are also very common pathophysiologic disturbances caused by CCl(4). The present study has been conducted to evaluate the protective role of the aqueous extract of the bark of Termnalia arjuna (TA), an important Indian medicinal plant widely used in the preparation of ayurvedic formulations, on CCl(4 )induced oxidative stress and resultant dysfunction in the livers and kidneys of mice. METHODS: Animals were pretreated with the aqueous extract of TA (50 mg/kg body weight) for one week and then challenged with CCl(4 )(1 ml/kg body weight) in liquid paraffin (1:1, v/v) for 2 days. Serum marker enzymes, namely, glutamate pyruvate transaminase (GPT) and alkaline phosphatase (ALP) were estimated in the sera of all study groups. Antioxidant status in both the liver and kidney tissues were estimated by determining the activities of the antioxidative enzymes, superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST); as well as by determining the levels of thiobarbutaric acid reactive substances (TBARS) and reduced glutathione (GSH). In addition, free radical scavenging activity of the extract was determined from its DPPH radical quenching ability. RESULTS: Results showed that CCl(4 )caused a marked rise in serum levels of GPT and ALP. TBARS level was also increased significantly whereas GSH, SOD, CAT and GST levels were decreased in the liver and kidney tissue homogenates of CCl(4 )treated mice. Aqueous extract of TA successfully prevented the alterations of these effects in the experimental animals. Data also showed that the extract possessed strong free radical scavenging activity comparable to that of vitamin C. CONCLUSION: Our study demonstrated that the aqueous extract of the bark of TA could protect the liver and kidney tissues against CCl(4)-induced oxidative stress probably by increasing antioxidative defense activities

    Topical Insulin Accelerates Wound Healing in Diabetes by Enhancing the AKT and ERK Pathways: A Double-Blind Placebo-Controlled Clinical Trial

    Get PDF
    Background: Wound healing is impaired in diabetes mellitus, but the mechanisms involved in this process are virtually unknown. Proteins belonging to the insulin signaling pathway respond to insulin in the skin of rats. Objective: The purpose of this study was to investigate the regulation of the insulin signaling pathway in wound healing and skin repair of normal and diabetic rats, and, in parallel, the effect of a topical insulin cream on wound healing and on the activation of this pathway. Research Design and Methods: We investigated insulin signaling by immunoblotting during wound healing of control and diabetic animals with or without topical insulin. Diabetic patients with ulcers were randomized to receive topical insulin or placebo in a prospective, double-blind and placebo-controlled, randomized clinical trial (NCT 01295177) of wound healing. Results and Conclusions: Expression of IR, IRS-1, IRS-2, SHC, ERK, and AKT are increased in the tissue of healing wounds compared to intact skin, suggesting that the insulin signaling pathway may have an important role in this process. These pathways were attenuated in the wounded skin of diabetic rats, in parallel with an increase in the time of complete wound healing. Upon topical application of insulin cream, the wound healing time of diabetic animals was normalized, followed by a reversal of defective insulin signal transduction. In addition, the treatment also increased expression of other proteins, such as eNOS (also in bone marrow), VEGF, and SDF-1 alpha in wounded skin. In diabetic patients, topical insulin cream markedly improved wound healing, representing an attractive and cost-free method for treating this devastating complication of diabetes.Sao Paulo Research Foundation (FAPESP)Sao Paulo Research Foundation (FAPESP)National Institute of Science and Technology (INCT)National Institute of Science and Technology (INCT)National Council for Scientific and Technological Development (CNPq)National Council for Scientific and Technological Development (CNPq

    Potent Antioxidant and Genoprotective Effects of Boeravinone G, a Rotenoid Isolated from Boerhaavia diffusa

    Get PDF
    Background and Aims: Free radicals are implicated in the aetiology of some gastrointestinal disorders such as gastric ulcer, colorectal cancer and inflammatory bowel disease. In the present study we investigated the antioxidant and genoprotective activity of some rotenoids (i.e. boeravinones) isolated from the roots of Boerhaavia diffusa, a plant used in the Ayurvedic medicine for the treatment of diseases affecting the gastrointestinal tract. Methods/Principal Findings: Antioxidant activity has been evaluated using both chemical (Electron Spin Resonance spectroscopy, ESR) and Caco-2 cells-based (TBARS and ROS) assays. DNA damage was evaluated by Comet assay, while pERK 1/2 and phospho-NF-kB p65 levels were estimated by western blot. Boeravinones G, D and H significantly reduced the signal intensity of ESR induced by hydroxyl radicals, suggesting a scavenging activity. Among rotenoids tested, boeravinone G exerted the most potent effect. Boeravinone G inhibited both TBARS and ROS formation induced by Fenton's reagent, increased SOD activity and reduced H 2O 2-induced DNA damage. Finally, boeravinone G reduced the levels of pERK 1 and phospho-NF-kB p65 (but not of pERK 2) increased by Fenton's reagent. Conclusions: It is concluded that boeravinone G exhibits an extraordinary potent antioxidant activity (significant effect in the nanomolar range). The MAP kinase and NF-kB pathways seem to be involved in the antioxidant effect of boeravinone G. Boeravinone G might be considered as lead compound for the development of drugs potentially useful against those pathologies whose aetiology is related to ROS-mediated injuries

    YAP/TAZ upstream signals and downstream responses

    Get PDF

    Estimating global injuries morbidity and mortality: methods and data used in the Global Burden of Disease 2017 study

    Get PDF
    BACKGROUND: While there is a long history of measuring death and disability from injuries, modern research methods must account for the wide spectrum of disability that can occur in an injury, and must provide estimates with sufficient demographic, geographical and temporal detail to be useful for policy makers. The Global Burden of Disease (GBD) 2017 study used methods to provide highly detailed estimates of global injury burden that meet these criteria. METHODS: In this study, we report and discuss the methods used in GBD 2017 for injury morbidity and mortality burden estimation. In summary, these methods included estimating cause-specific mortality for every cause of injury, and then estimating incidence for every cause of injury. Non-fatal disability for each cause is then calculated based on the probabilities of suffering from different types of bodily injury experienced. RESULTS: GBD 2017 produced morbidity and mortality estimates for 38 causes of injury. Estimates were produced in terms of incidence, prevalence, years lived with disability, cause-specific mortality, years of life lost and disability-adjusted life-years for a 28-year period for 22 age groups, 195 countries and both sexes. CONCLUSIONS: GBD 2017 demonstrated a complex and sophisticated series of analytical steps using the largest known database of morbidity and mortality data on injuries. GBD 2017 results should be used to help inform injury prevention policy making and resource allocation. We also identify important avenues for improving injury burden estimation in the future

    Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications

    Get PDF
    Superparamagnetic iron oxide nanoparticles can providemultiple benefits for biomedical applications in aqueous environments such asmagnetic separation or magnetic resonance imaging. To increase the colloidal stability and allow subsequent reactions, the introduction of hydrophilic functional groups onto the particles’ surface is essential. During this process, the original coating is exchanged by preferably covalently bonded ligands such as trialkoxysilanes. The duration of the silane exchange reaction, which commonly takes more than 24 h, is an important drawback for this approach. In this paper, we present a novel method, which introduces ultrasonication as an energy source to dramatically accelerate this process, resulting in high-quality waterdispersible nanoparticles around 10 nmin size. To prove the generic character, different functional groups were introduced on the surface including polyethylene glycol chains, carboxylic acid, amine, and thiol groups. Their colloidal stability in various aqueous buffer solutions as well as human plasma and serum was investigated to allow implementation in biomedical and sensing applications.status: publishe
    corecore