849 research outputs found
A Common Genetic Variant Risk Score is Associated with Drug-Induced QT Prolongation and Torsade de Pointes Risk: A Pilot Study.
Background -Drug-induced QT interval prolongation, a risk factor for life-threatening ventricular arrhythmias, is a potential side effect of many marketed and withdrawn medications. The contribution of common genetic variants previously associated with baseline QT interval to drug-induced QT prolongation and arrhythmias is not known. Methods -We tested the hypothesis that a weighted combination of common genetic variants contributing to QT interval at baseline, identified through genome-wide association studies, can predict individual response to multiple QT-prolonging drugs. Genetic analysis of 22 subjects was performed in a secondary analysis of a randomized, double-blind, placebo-controlled, cross-over trial of 3 QT-prolonging drugs with 15 time-matched QT and plasma drug concentration measurements. Subjects received single doses of dofetilide, quinidine, ranolazine and placebo. The outcome was the correlation between a genetic QT score comprising 61 common genetic variants and the slope of an individual subject's drug-induced increase in heart rate corrected QT (QTc) vs. drug concentration. Results -The genetic QT score was correlated with drug-induced QTc prolongation. Among white subjects, genetic QT score explained 30% of the variability in response to dofetilide (r = 0.55 [95% CI, 0.09-0.81], P = 0.02), 23% in response to quinidine (r = 0.48 [95% CI, -0.03 to 0.79], P = 0.06) and 27% in response to ranolazine (r = 0.52 [95% CI, 0.05 to 0.80], P = 0.03). Furthermore, the genetic QT score was a significant predictor of drug-induced torsade de pointes in an independent sample of 216 cases compared to 771 controls (r(2) = 12%, P = 1x10(-7)). Conclusions -We demonstrate that a genetic QT score comprising 61 common genetic variants explains a significant proportion of the variability in drug-induced QT prolongation and is a significant predictor of drug-induced torsade de pointes. These findings highlight an opportunity for recent genetic discoveries to improve individualized risk-benefit assessment for pharmacologic therapies. Replication of these findings in larger samples is needed to more precisely estimate variance explained and to establish the individual variants that drive these effects. Clinical Trial Registration - http://clinicaltrials.gov Unique identifier: NCT01873950
Diclofenac Prolongs Repolarization in Ventricular Muscle with Impaired Repolarization Reserve
Background: The aim of the present work was to characterize the electrophysiological effects of the non-steroidal anti-
inflammatory drug diclofenac and to study the possible proarrhythmic potency of the drug in ventricular muscle.
Methods: Ion currents were recorded using voltage clamp technique in canine single ventricular cells and action potentials
were obtained from canine ventricular preparations using microelectrodes. The proarrhythmic potency of the drug was
investigated in an anaesthetized rabbit proarrhythmia model.
Results: Action potentials were slightly lengthened in ventricular muscle but were shortened in Purkinje fibers by diclofenac
(20 mM). The maximum upstroke velocity was decreased in both preparations. Larger repolarization prolongation was
observed when repolarization reserve was impaired by previous BaCl 2 application. Diclofenac (3 mg/kg) did not prolong
while dofetilide (25 mg/kg) significantly lengthened the QT c interval in anaesthetized rabbits. The addition of diclofenac
following reduction of repolarization reserve by dofetilide further prolonged QT c . Diclofenac alone did not induce Torsades
de Pointes ventricular tachycardia (TdP) while TdP incidence following dofetilide was 20%. However, the combination of
diclofenac and dofetilide significantly increased TdP incidence (62%). In single ventricular cells diclofenac (30 mM) decreased
the amplitude of rapid (I Kr ) and slow (I Ks ) delayed rectifier currents thereby attenuating repolarization reserve. L-type calcium
current (I Ca ) was slightly diminished, but the transient outward (I to ) and inward rectifier (I K1 ) potassium currents were not
influenced.
Conclusions: Diclofenac at therapeutic concentrations and even at high dose does not prolong repolarization markedly and
does not increase the risk of arrhythmia in normal heart. However, high dose diclofenac treatment may lengthen
repolarization and enhance proarrhythmic risk in hearts with reduced repolarization reserve
Common Variants at 10 Genomic Loci Influence Hemoglobin A(1C) Levels via Glycemic and Nonglycemic Pathways
OBJECTIVE Glycated hemoglobin (HbA1c), used to monitor and diagnose diabetes, is influenced by average glycemia over a 2- to 3-month period. Genetic factors affecting expression, turnover, and abnormal glycation of hemoglobin could also be associated with increased levels of HbA1c. We aimed to identify such genetic factors and investigate the extent to which they influence diabetes classification based on HbA1c levels.
RESEARCH DESIGN AND METHODS We studied associations with HbA1c in up to 46,368 nondiabetic adults of European descent from 23 genome-wide association studies (GWAS) and 8 cohorts with de novo genotyped single nucleotide polymorphisms (SNPs). We combined studies using inverse-variance meta-analysis and tested mediation by glycemia using conditional analyses. We estimated the global effect of HbA1c loci using a multilocus risk score, and used net reclassification to estimate genetic effects on diabetes screening.
RESULTS Ten loci reached genome-wide significant association with HbA1c, including six new loci near FN3K (lead SNP/P value, rs1046896/P = 1.6 × 10−26), HFE (rs1800562/P = 2.6 × 10−20), TMPRSS6 (rs855791/P = 2.7 × 10−14), ANK1 (rs4737009/P = 6.1 × 10−12), SPTA1 (rs2779116/P = 2.8 × 10−9) and ATP11A/TUBGCP3 (rs7998202/P = 5.2 × 10−9), and four known HbA1c loci: HK1 (rs16926246/P = 3.1 × 10−54), MTNR1B (rs1387153/P = 4.0 × 10−11), GCK (rs1799884/P = 1.5 × 10−20) and G6PC2/ABCB11 (rs552976/P = 8.2 × 10−18). We show that associations with HbA1c are partly a function of hyperglycemia associated with 3 of the 10 loci (GCK, G6PC2 and MTNR1B). The seven nonglycemic loci accounted for a 0.19 (% HbA1c) difference between the extreme 10% tails of the risk score, and would reclassify ∼2% of a general white population screened for diabetes with HbA1c.
CONCLUSIONS GWAS identified 10 genetic loci reproducibly associated with HbA1c. Six are novel and seven map to loci where rarer variants cause hereditary anemias and iron storage disorders. Common variants at these loci likely influence HbA1c levels via erythrocyte biology, and confer a small but detectable reclassification of diabetes diagnosis by HbA1c
Antipsychotics and Torsadogenic Risk: Signals Emerging from the US FDA Adverse Event Reporting System Database
Background: Drug-induced torsades de pointes (TdP) and related clinical entities represent a current regulatory and clinical burden. Objective: As part of the FP7 ARITMO (Arrhythmogenic Potential of Drugs) project, we explored the publicly available US FDA Adverse Event Reporting System (FAERS) database to detect signals of torsadogenicity for antipsychotics (APs). Methods: Four groups of events in decreasing order of drug-attributable risk were identified: (1) TdP, (2) QT-interval abnormalities, (3) ventricular fibrillation/tachycardia, and (4) sudden cardiac death. The reporting odds ratio (ROR) with 95 % confidence interval (CI) was calculated through a cumulative analysis from group 1 to 4. For groups 1+2, ROR was adjusted for age, gender, and concomitant drugs (e.g., antiarrhythmics) and stratified for AZCERT drugs, lists I and II (http://www.azcert.org, as of June 2011). A potential signal of torsadogenicity was defined if a drug met all the following criteria: (a) four or more cases in group 1+2; (b) significant ROR in group 1+2 that persists through the cumulative approach; (c) significant adjusted ROR for group 1+2 in the stratum without AZCERT drugs; (d) not included in AZCERT lists (as of June 2011). Results: Over the 7-year period, 37 APs were reported in 4,794 cases of arrhythmia: 140 (group 1), 883 (group 2), 1,651 (group 3), and 2,120 (group 4). Based on our criteria, the following potential signals of torsadogenicity were found: amisulpride (25 cases; adjusted ROR in the stratum without AZCERT drugs = 43.94, 95 % CI 22.82-84.60), cyamemazine (11; 15.48, 6.87-34.91), and olanzapine (189; 7.74, 6.45-9.30). Conclusions: This pharmacovigilance analysis on the FAERS found 3 potential signals of torsadogenicity for drugs previously unknown for this risk
Substrate cycling between de novo lipogenesis and lipid oxidation: a thermogenic mechanism against skeletal muscle lipotoxicity and glucolipotoxicity
Life is a combustion, but how the major fuel substrates that sustain human life compete and interact with each other for combustion has been at the epicenter of research into the pathogenesis of insulin resistance ever since Randle proposed a 'glucose-fatty acid cycle' in 1963. Since then, several features of a mutual interaction that is characterized by both reciprocality and dependency between glucose and lipid metabolism have been unravelled, namely: 1. the inhibitory effects of elevated concentrations of fatty acids on glucose oxidation (via inactivation of mitochondrial pyruvate dehydrogenase or via desensitization of insulin-mediated glucose transport), 2. the inhibitory effects of elevated concentrations of glucose on fatty acid oxidation (via malonyl-CoA regulation of fatty acid entry into the mitochondria), and more recently 3. the stimulatory effects of elevated concentrations of glucose on de novo lipogenesis, that is, synthesis of lipids from glucose (via SREBP1c regulation of glycolytic and lipogenic enzymes). This paper first revisits the physiological significance of these mutual interactions between glucose and lipids in skeletal muscle pertaining to both blood glucose and intramyocellular lipid homeostasis. It then concentrates upon emerging evidence, from calorimetric studies investigating the direct effect of leptin on thermogenesis in intact skeletal muscle, of yet another feature of the mutual interaction between glucose and lipid oxidation: that of substrate cycling between de novo lipogenesis and lipid oxidation. It is proposed that this energy-dissipating substrate cycling that links glucose and lipid metabolism to thermogenesis could function as a 'fine-tuning' mechanism that regulates intramyocellular lipid homeostasis, and hence contributes to the protection of skeletal muscle against lipotoxicity
Large-scale analyses of common and rare variants identify 12 new loci associated with atrial fibrillation
Atrial fibrillation affects more than 33 million people worldwide and increases the risk of stroke, heart failure, and death. Fourteen genetic loci have been associated with atrial fibrillation in European and Asian ancestry groups. To further define the genetic basis of atrial fibrillation, we performed large-scale, trans-ancestry meta-analyses of common and rare variant association studies. The genome-wide association studies (GWAS) included 17,931 individuals with atrial fibrillation and 115,142 referents; the exome-wide association studies (ExWAS) and rare variant association studies (RVAS) involved 22,346 cases and 132,086 referents. We identified 12 new genetic loci that exceeded genome-wide significance, implicating genes involved in cardiac electrical and structural remodeling. Our results nearly double the number of known genetic loci for atrial fibrillation, provide insights into the molecular basis of atrial fibrillation, and may facilitate the identification of new potential targets for drug discovery
Trafficking-Deficient G572R-hERG and E637K-hERG Activate Stress and Clearance Pathways in Endoplasmic Reticulum
Background: Long QT syndrome type 2 (LQT2) is the second most common type of all long QT syndromes. It is well-known that trafficking deficient mutant human ether-a-go-go-related gene (hERG) proteins are often involved in LQT2. Cells respond to misfolded and trafficking-deficient proteins by eliciting the unfolded protein response (UPR) and Activating Transcription Factor (ATF6) has been identified as a key regulator of the mammalian UPR. In this study, we investigated the role of ER chaperone proteins (Calnexin and Calreticulin) in the processing of G572R-hERG and E637K-hERG mutant proteins. Methods: pcDNA3-WT-hERG, pcDNA3-G572R-hERG and pcDNA3-E637K-hERG plasmids were transfected into U2OS and HEK293 cells. Confocal microscopy and western blotting were used to analyze subcellular localization and protein expression. Interaction between WT or mutant hERGs and Calnexin/Calreticulin was tested by coimmunoprecipitation. To assess the role of the ubiquitin proteasome pathway in the degradation of mutant hERG proteins, transfected HEK293 cells were treated with proteasome inhibitors and their effects on the steady state protein levels of WT and mutant hERGs were examined. Conclusion: Our results showed that levels of core-glycosylated immature forms of G572R-hERG and E637K-hERG in association with Calnexin and Calreticulin were higher than that in WT-hERG. Both mutant hERG proteins could activate the UPR by upregulating levels of active ATF6. Furthermore, proteasome inhibition increased the levels of core-glycosylated immature forms of WT and mutant hERGs. In addition, interaction between mutant hERGs and Calnexin/Calreticulin wa
Torsades de pointes during laparoscopic adrenalectomy of a pheochromocytoma: a case report
<p>Abstract</p> <p>Introduction</p> <p>Torsades de pointes is a rare but potentially lethal arrhythmia. The amount of literature available on Torsades de pointes occurring in patients with pheochromocytoma is limited, and we found no literature describing this dysrhythmia in a patient with pheochromocytoma under anesthesia.</p> <p>Case presentation</p> <p>We describe the case of a 42-year-old Caucasian woman without QT prolongation preoperatively with recurrent Torsades de pointes during laparoscopic removal of a pheochromocytoma. Torsades de pointes mainly occurs in the setting of a prolonged QT interval. This patient neither had a prolonged QT preoperatively nor was her family history suspect for a congenital long QT syndrome. Most likely, our patient had an acquired long QT syndrome, elicited by the combination of flecainide, hypomagnesemia and adrenergic stimulation during manipulation of the tumor.</p> <p>Conclusion</p> <p>We show that in the case of a surgical pheochromocytoma removal, perioperative conditions can elicit an acquired or previously unknown congenital long QT syndrome. Therefore, preoperative α- and β-blockade is advised, QT-prolonging drugs should be avoided and potassium and magnesium plasma levels should be kept at normal to high levels.</p
Rapid, sensitive, type specific PCR detection of the E7 region of human papillomavirus type 16 and 18 from paraffin embedded sections of cervical carcinoma
Human papillomavirus (HPV) infection, and in particularly infection with HPVs 16 and 18, is a central carcinogenic factor in the uterine cervix. We established and optimized a PCR assay for the detection and discrimination of HPV types 16 and 18 in archival formaldehyde fixed and paraffin embedded (FFPE) sections of cervical cancer
- …
