219 research outputs found

    Tensile strength assay comparing the resistance between two different autologous platelet concentrates (leucocyte-platelet rich fibrin versus advanced-platelet rich fibrin): a pilot study

    Get PDF
    Background: Since the leucocyte-platelet rich fibrin (L-PRF) was published in 2001, many studies have been developed, analyzing its properties, and also verifying new possibilities to improve it. Thereby, it emerges the advanced-platelet rich fibrin (A-PRF) with a protocol that optimizes the properties obtained by the L-PRF. Nonetheless, there is a gap in the literature to landmark the evolutive process concerning the mechanical properties in specific the resistance to tensile strength which consequently may influence the time for membrane degradation. Thus, this study had the goal to compare the resistance to the traction of membranes produced with the original L-PRF and A-PRF protocols, being the first to this direct comparison. Findings: The harvest of blood from a healthy single person, with no history of anticoagulant usage. We performed the protocols described in the literature, within a total of 13 membranes produced for each protocol (n = 26). Afterward, the membranes were prepared and submitted to a traction test assessing the maximal and the average traction achieved for each membrane. The data were analyzed statistically using the unpaired t test. Regarding average traction, A-PRF obtained a value of 0.0288 N mm−2 and L-PRF 0.0192 N mm−2 (p < 0.05 using unpaired t test). For maximal traction, A-PRF obtained 0.0752 N mm−2 and L-PRF 0.0425 N mm−2 (p < 0.05 using unpaired t test). Conclusion: With this study, it was possible to conclude that indeed A-PRF has a significative higher maximal traction score and higher average traction compared to L-PRF, indicating that it had a higher resistance when two opposing forces are applied.info:eu-repo/semantics/publishedVersio

    Platelet-Rich Plasma Promotes the Proliferation of Human Muscle Derived Progenitor Cells and Maintains Their Stemness

    Get PDF
    Human muscle-derived progenitor cells (hMDPCs) offer great promise for muscle cell-based regenerative medicine; however, prolonged ex-vivo expansion using animal sera is necessary to acquire sufficient cells for transplantation. Due to the risks associated with the use of animal sera, the development of a strategy for the ex vivo expansion of hMDPCs is required. The purpose of this study was to investigate the efficacy of using platelet-rich plasma (PRP) for the ex-vivo expansion of hMDPCs. Pre-plated MDPCs, myoendothelial cells, and pericytes are three populations of hMDPCs that we isolated by the modified pre-plate technique and Fluorescence Activated Cell Sorting (FACS), respectively. Pooled allogeneic human PRP was obtained from a local blood bank, and the effect that thrombin-activated PRP-releasate supplemented media had on the ex-vivo expansion of the hMDPCs was tested against FBS supplemented media, both in vitro and in vivo. PRP significantly enhanced short and long-term cell proliferation, with or without FBS supplementation. Antibody-neutralization of PDGF significantly blocked the mitogenic/proliferative effects that PRP had on the hMDPCs. A more stable and sustained expression of markers associated with stemness, and a decreased expression of lineage specific markers was observed in the PRP-expanded cells when compared with the FBS-expanded cells. The in vitro osteogenic, chondrogenic, and myogenic differentiation capacities of the hMDPCs were not altered when expanded in media supplemented with PRP. All populations of hMDPCs that were expanded in PRP supplemented media retained their ability to regenerate myofibers in vivo. Our data demonstrated that PRP promoted the proliferation and maintained the multi-differentiation capacities of the hMDPCs during ex-vivo expansion by maintaining the cells in an undifferentiated state. Moreover, PDGF appears to be a key contributing factor to the beneficial effect that PRP has on the proliferation of hMDPCs. © 2013 Li et al

    Growth factor-enriched autologous plasma improves wound healing after surgical debridement in odontogenic necrotizing fasciitis: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Odontogenic necrotizing fasciitis of the neck is a fulminant infection of odontogenic origin that quickly spreads along the fascial planes and results in necrosis of the affected tissues. It is usually polymicrobial, occurs frequently in immunocompromised patients, and has a high mortality rate.</p> <p>Case presentation</p> <p>A 69-year old Mexican male had a pain in the maxillar right-canine region and a swelling of the submental and submandibular regions. Our examination revealed local pain, tachycardia, hyperthermia (39°C), and the swelling of bilateral submental and submandibular regions, which also were erythematous, hyperthermic, crepitant, and with a positive Godet sign. Mobility and third-degree caries were seen in the right mandibular canine. Bacteriological cultures isolated <it>streptococcus pyogenes </it>and <it>staphylococcus aureus</it>. The histopathological diagnosis was odontogenic necrotizing fasciitis of the submental and submandibular regions. The initial treatment was surgical debridement and the administration of antibiotics. After cultures were negative, the surgical wound was treated with a growth factor-enriched autologous plasma eight times every third day until complete healing occurred.</p> <p>Conclusions</p> <p>The treatment with a growth factor-enriched autologous plasma caused a rapid healing of an extensive surgical wound in a patient with odontogenic necrotizing fasciitis. The benefits were rapid tissue regeneration, an aesthetic and a functional scar, and the avoidance of further surgery and possible complications.</p

    Analysis of cytokine profile and growth factors in platelet-rich plasma obtained by open systems and commercial columns

    Get PDF
    ABSTRACT Objective: To evaluate growth factors and cytokines in samples of platelet-rich plasma obtained by three different centrifugation methods. Methods: Peripheral blood of six individuals with no hematological diseases, aged 18 to 68 years, was drawn to obtain platelet-rich plasma, using the open method and commercial columns by Medtronic and Biomet. The products obtained with the different types of centrifugation were submitted to laboratory analysis, including pro-inflammatory cytokines and chemokines by flow cytometry assays, the concentration of fibroblast growth factors-2 (FGF-2) and transforming growth factor-beta1 (TGF-&#946;1). Results: The diverse separation methods generated systematically different profiles regarding number of platelets and leukocytes. The Medtronic system yielded a product with the highest concentration of platelets, and the open method, with the lowest concentration of platelets. The results of cytokine analysis showed that the different types of centrifugation yielded products with high concentrations of interleukin 8, interleukin 1&#946;. The open system resulted in a product with high levels of interleukin 6. Other cytokines and chemokines measured were similar between systems. The product obtained with the open method showed higher levels of TGF-&#946;1 in relation to other systems and low FGF-2 levels. Conclusion: The formed elements, growth factors and cytokines in samples of platelet-rich plasma varied according to the centrifugation technique used

    HEX expression and localization in normal mammary gland and breast carcinoma

    Get PDF
    BACKGROUND: The homeobox gene HEX is expressed in several cell types during different phases of animal development. It encodes for a protein localized in both the nucleus and the cytoplasm. During early mouse development, HEX is expressed in the primitive endoderm of blastocyst. Later, HEX is expressed in developing thyroid, liver, lung, as well as in haematopoietic progenitors and endothelial cells. Absence of nuclear expression has been observed during neoplastic transformation of the thyroid follicular cells. Aim of the present study was to evaluate the localization and the function of the protein HEX in normal and tumoral breast tissues and in breast cancer cell lines. METHODS: HEX expression and nuclear localization were investigated by immunohistochemistry in normal and cancerous breast tissue, as well as in breast cancer cell lines. HEX mRNA levels were evaluated by real-time PCR. Effects of HEX expression on Sodium Iodide Symporter (NIS) gene promoter activity was investigated by HeLa cell transfection. RESULTS: In normal breast HEX was detected both in the nucleus and in the cytoplasm. In both ductal and lobular breast carcinomas, a great reduction of nuclear HEX was observed. In several cells from normal breast tissue as well as in MCF-7 and T47D cell line, HEX was observed in the nucleolus. MCF-7 treatment with all-trans retinoic acid enhanced HEX expression and induced a diffuse nuclear localization. Enhanced HEX expression and diffuse nuclear localization were also obtained when MCF-7 cells were treated with inhibitors of histone deacetylases such as sodium butyrate and trichostatin A. With respect to normal non-lactating breast, the amount of nuclear HEX was greatly increased in lactating tissue. Transfection experiments demonstrated that HEX is able to up-regulate the activity of NIS promoter. CONCLUSION: Our data indicate that localization of HEX is regulated in epithelial breast cells. Since modification of localization occurs during lactation and tumorigenesis, we suggest that HEX may play a role in differentiation of the epithelial breast cell
    corecore