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Tensile strength assay comparing the

resistance between two different
autologous platelet concentrates
(leucocyte-platelet rich fibrin versus
advanced-platelet rich fibrin): a pilot study
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Abstract

Background: Since the leucocyte-platelet rich fibrin (L-PRF) was published in 2001, many studies have been
developed, analyzing its properties, and also verifying new possibilities to improve it. Thereby, it emerges the
advanced-platelet rich fibrin (A-PRF) with a protocol that optimizes the properties obtained by the L-PRF.
Nonetheless, there is a gap in the literature to landmark the evolutive process concerning the mechanical
properties in specific the resistance to tensile strength which consequently may influence the time for membrane
degradation. Thus, this study had the goal to compare the resistance to the traction of membranes produced with
the original L-PRF and A-PRF protocols, being the first to this direct comparison.

Findings: The harvest of blood from a healthy single person, with no history of anticoagulant usage. We performed
the protocols described in the literature, within a total of 13 membranes produced for each protocol (n =
26). Afterward, the membranes were prepared and submitted to a traction test assessing the maximal and
the average traction achieved for each membrane. The data were analyzed statistically using the unpaired t
test. Regarding average traction, A-PRF obtained a value of 0.0288 N mm−2 and L-PRF 0.0192 N mm−2 (p <
0.05 using unpaired t test). For maximal traction, A-PRF obtained 0.0752 N mm−2 and L-PRF 0.0425 N mm−2 (p
< 0.05 using unpaired t test).

Conclusion: With this study, it was possible to conclude that indeed A-PRF has a significative higher maximal
traction score and higher average traction compared to L-PRF, indicating that it had a higher resistance when
two opposing forces are applied.
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Introduction
The most frequently used biomaterial are the ones that
come from autologous sources, which is still and consid-
ered to be the “gold standard” due to all its properties,
including induction, conduction, and genesis, besides
preventing the risk of infection [1]. These biomaterials
can be produced from hard or soft tissue (e.g., bone and
connective tissue, respectively), or the blood. In the past
years, autologous blood concentrates have been trad-
itionally used in transfusions aiding in the control of
hemorrhage caused by severe thrombocytopenia, often
associated with multiple blood illnesses or because of
blood loss during long surgeries [2].
Historically, there are three generations of autologous

platelet concentrates (APCs). The first was mainly repre-
sented by platelet-rich plasma (PRP) that was produced
with the introduction of an anticoagulant (sodium cit-
rate, EDTA) and other compounds (calcium chloride,
bovine thrombin) in the collection tubes and it required
two centrifugations. This product has shown to be useful
on certain occasions as the literature has shown [3].
Other APCs are described as fibrin glues (used to seal

wounds and promote healing) [3], the platelet gel [4].
And plasma rich in growth factors (PRGF) [5] which re-
quired not only the addition of an anticoagulant but also
of calcium chloride, to activate platelets resulting in the
release of growth factors [6]. However, the PRGF proto-
col proved to be problematic due to its lack of reprodu-
cibility and leading to a greater possibility of obtaining
undesirable tissue response [5, 7].
The second generation was introduced in 2001 with a

smaller cost of production, easier handling, and better
success rates in clinical cases [1, 8, 9], represented pri-
marily by leucocyte-platelet rich fibrin (L-PRF®), which
were able to create a superior scaffold [10]. This material
was produced in a dry tube with no added compounds
within it. Biochemical analysis of the PRF indicates that
this biomaterial consists of the presence of cytokines,
glycan chains, and structural glycoproteins involved in
the fibrin network that was slowly polymerized. These
components have demonstrated synergistic healing pro-
cesses [1, 8, 11], mainly due to the releasing of cytokines
[1, 8–10, 12] released from the three-dimensional fibrin
matrix which is continuously reabsorbed, inducing a
greater response in the healing process [13].
Afterward, researchers sought to produce an even bet-

ter membrane with greater biological properties, using
the low-speed centrifugation concept (LSCC). The evi-
dence that protocols with reduction of the centrifugation
force allow a greater and better distribution of cells of
interest for the effectiveness of PRF in tissue regener-
ation, which resulted in the production of Advanced-
Platelet Rich Fibrin (A-PRF®) [12, 14]. This protocol was
conceived to optimize the properties of the clot
produced by the L-PRF technique to achieve a more ap-
propriate scaffold with an even population of cells [7]
and also containing greater numbers of white blood cells
(neutrophils, macrophages, B and T lymphocytes) [13,
15]. Since then, PRF has been heavily applied in the den-
tistry and medical fields [7, 12, 16].
The third generation proposed a modification, intro-

ducing concentrated growth factors (CGF) [17, 18] chan-
ging the centrifugation speed, from 2400 rpm to 3000
rpm, and the centrifugation periods. Characterized by
containing abundant growth factors in its rigid fibrin
[19], yielding results in speeding up the proliferation and
differentiation of cells [20].
However, the preparation protocols of A-PRF and CGF

are similar and share the same principle in clot formation.
They are not distinguishable either macro or microscopic-
ally, and to the present date, there have not been found
any significant differences between them [19].
Three-dimensional scaffolds (2nd and 3rd generations)

allow a continuous release of cytokines and growth factors
enhancing mainly the first period of tissue repairs, such as
TGF (transforming growth factors), PDGF (platelet-de-
rived growth factors), VEGF (vascular endothelial growth
factors), IGF (insulin-like growth factors), and many
others, enhancing the healing process [3, 15], throughout
almost 10 days [7] regulating the inflammation and redu-
cing the risk of infection [20]. In comparison, PRP (1st
generation) is completely dissolved in 3 days releasing its
growth factors in the first hours [1, 21].
In this evolutive perspective, L-PRF and A-PRF have

been considered to have improved mechanical properties
[1] but there is no direct comparison of the L-PRF and
A-PRF properties. Khorshidi et al. [22] tested the mech-
anical properties of early L-PRF versus PRGF/Endoret
membranes. Another study analyzed the addition of sil-
ver nanoparticles into L-PRF in a way to improve its
mechanical characteristics [23]. Isobe et al. [19] devel-
oped a comparison between A-PRF and CGF evaluating
the mechanical parameters and degradability. Both
groups were almost identical. Nonetheless, the highlight
has been given to A-PRF clots who display a higher con-
centration of growth factors, inducing a more significant
effect on angiogenesis, and its characteristics will surely
deliver a different resistance to the membrane [24].
Thus, there is a gap in the literature to landmark the

evolutive process concerning the mechanical properties
in specific the resistance to tensile strength which conse-
quently may influence the time for membrane degrad-
ation. Furthermore, there is no direct comparison in the
literature of these two protocols (L-PRF and A-PRF) and
how these products behave mechanically, this research
may be a tool to further extend the knowledge on how
these materials will interact in a surgical wound and help
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in clarifying what results should the clinician expect to
achieve.
Therefore, this research aimed to evaluate and com-

pare the value of mechanical resistance to the tension of
PRF membranes produced with different protocols (L-
PRF and A-PRF). The hypothesis of this study was to
verify the membrane with better tensile properties and
be able to suggest a product more able to withstand the
stress when applied in surgeries.
Materials and methods
Blood collection and membrane preparation
The design of this study and its consent forms for all
procedures performed followed the Helsinki Declaration
of 1975 as revised in 2013, and the study started after
approval by the Ethics Committee (number 522020).
Then, the blood was collected from a single healthy per-
son (M.A.N.C.P.) in different days avoiding variations,
under restricted food starting 1 day prior to the proced-
ure, with no history of anticoagulant usage or any dis-
ease, into 9-mL sterile glass-coated plastic tubes, red top
blood collection tubes (Intralock©, USA) (Fig. 1a), under
standard ambient conditions at 20 ± 2 °C. The study was
performed in collaboration with the Centre for Mechan-
ical Technology and Automation (TEMA) of the Univer-
sity of Aveiro (Portugal).
L-PRF membranes were prepared according to the ori-

ginal technique with centrifugation at 2700 revolutions
per minute (rpm), 408 g, for 12min with the IntraSpin™
centrifugation device (33° rotor angulation, 50mm radius
at the middle of the tube, 80mm at the maximum, and
40mm maximum, and 40mm at the minimum) (Intra-
Lock, Boca Raton, FL, USA) [23] (Fig. 1b). For the A-PRF
membrane preparation, both the centrifugation time and
Fig. 1 PRF membrane production protocol. a Blood harvesting. b Blood ce
in the Xpression box kit. d Final PRF membrane obtained
speed are different, following the original values for this
technique 1500 rpm (126 g) for 14min [12, 24].
After 12 min of centrifuging for L-PRF and 14 min

for A-PRF, beyond the membranes rested inside the
box for 20 min before performing procedures [25], the
clots are ready (13 membranes for each group, total-
ing n = 26). Thus, the fibrin clots were taken out of
the tubes and separated from the red blood cells. Fol-
lowing membrane preparation, fibrin clots were
placed in the Xpression box (IntraLock©) for gentle
compression by gravity and slightly pressing until to
close completely the metal cover (Fig. 1c), following
the recommendation of the manufacturer. Five mi-
nutes later, the L-PRF and A-PRF membranes are
ready for use (Fig. 1d).
Tensile assay
Before the traction test, the membranes were standard-
ized and measured using a WHO Periodontal probe and
cut in a rectangular shape in which the short ends
measured 5 mm of length and 1mm of height each, only
one per membrane. The tensile test was performed using
a universal testing machine (Shimadzu MMT-101 N
equipment, Shimadzu Corporation, Japan) [22, 26]
(Fig. 2a), where the PRF membranes were conducted
through a surgical tweezer, to put both extremities of
the membranes fixed in the tensile force apparatus. By
applying divergent forces (1 mm spacing between the
claws of the equipment), the maximum traction was
measured in 13 membranes for each protocol (n = 26)
(Fig. 2b), until rupture [27]. The maximum value for
traction using this equipment is set to 12 mm.
The equipment worked with the same movements for

all membranes. Likewise, the position of the equipment
ntrifugation. c Clots collected from the centrifuged tubes and placed



Fig. 2 Mechanical traction assay. a Equipment where all tests were performed. b Execution of the test in the L-PRF group. c In A-PRF group. d
Equipment used to perform all mechanical tests, Shimadzu MMT-101 N (Shimadzu Corporation; Japan)

Table 1 Test for normal distribution

Number of membranes L-PRF A-PRF

Normality tests 13 13

D’Agostino and Pearson test

P value 0.9763 0.4109

Passed normality test (alpha = 0.05)? Yes Yes
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was similar according to the time of analysis, during the
traction of the PRF. Therefore, the variable time was not
considered for the study and it was not included. But,
the variable resistance to tension (start of traction and
end, rupture) were evaluated.

Data and statistical analysis
The force applied to the membrane per area of the sec-
tion in the equipment’s claws (N mm−2), and the trac-
tion of the membrane (percentage of deformation in
comparison to the initial spacing between the claws, 1
mm) were plotted for each membrane. With all the in-
formation needed, a graph was constructed to determine
the maximum force that was applied until the mem-
brane ruptured, giving us the maximum tensile strength.
Data was collected and transferred to Microsoft Excel

(Microsoft©) and GraphPad Prism 7.0 where all statis-
tical analysis was performed. All normality tests evalu-
ated the data obtained. Values are presented as mean ±
SEM in the figure legends. Statistical comparisons in-
cluded a two-sided unpaired t test. A significant level of
significance was obtained if the p value was ≤ 0.05.
Moreover, it was verified the normal distribution of the
means found (Normal Q-Q analysis).

Results
The traction evaluation was based on the quantification
of the average traction obtained for each membrane
tested and the maximum value detected upon the rup-
ture of each membrane. A curve of the values obtained
was registered to observe a possible correlation and
comparison between the groups. This proved important
not only to discover the maximum resistance of the
membranes but also to understand if it would represent
an actual statistically different average resistance. All
data were analyzed and they were according to the nor-
mality (Table 1) what can be verified positive correlation
with the normal distribution obtained (Fig. 3).
From the traction evaluation of 13 L-PRF and 13 A-

PRF membranes, it was found that there was a
significant statistical difference in the maximum traction
with rupture and the average traction between the L-
PRF and A-PRF protocols (Fig. 4a, b). The traction test
results had some variability within and between groups.
All detailed data were demonstrated in Table 2.
In reference to the average traction, A-PRF obtained a

value of 0.0288 N mm−2 and L-PRF 0.0192 N mm−2 (p ≤
0.05 using unpaired t test) and for maximal traction, A-
PRF obtained 0.0752 N mm−2 and L-PRF 0.0425 N
mm−2 (p < 0.001 using unpaired t test) (Fig. 5a, b).

Discussion
This study intended to fill a lack of scientific knowledge
about the APC membranes’ mechanical properties,
evaluating specifically the resistance to tension until rup-
ture between L-PRF and A-PRF. It is an important ques-
tion, especially regarding the degradation time which
may be different from a tougher membrane. If the bio-
material is rapidly reabsorbed, it may lead to insufficient
tissue regeneration [28]. Also, harvesting the blood of
only one participant avoided any interference or bias.
In Medicine, these membranes can be applied in re-

fractory leg ulcers associated or not with osteomyelitis
[29], improving wound healing and closure. In Dentistry,
more specifically in periodontal surgery, questions have
emerged about the use of PRF membranes with favor-
able results. Studies have suggested it as a possible sub-
stitute for a connective tissue graft, which is still
considered the “gold standard” for soft tissue surgery
[16, 30]. In oral surgery, favorable results have been
found for the insertion of membranes inside of fresh



Fig. 3 Normal Q-Q plot. Correlation of the data with the normal distribution (line)
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socket after extraction or using it in the treatment for
bone lesions [31]. Furthermore, the use of a PRF mem-
brane avoids a donor site which greatly decreases the
postoperative discomfort [30].
An article evaluated the performance of APC associ-

ated with albumin [32] which could represent a possible
improvement in its framework, modulating the fibrin
network ultrastructure and permeability. Also, the ma-
terial produced in this study showed to have higher bio-
compatibility, and possibly more durable with a greater
thickness and resistance [32, 33]. However, the levels of
released cytokines and growth factors were similar to
those found for PRF; also, its degradation period is com-
patible with PRF extending to almost 10 days [1, 7]. Be-
ing more difficult and expensive to produce this
technique proves to be inferior to a PRF membrane.
This biodegradable material, APC, suffers degradation

after its insertion in the surgical site, becoming necessary
to know its resistance. Furthermore, freezing the mem-
branes could be an alternative methodology to improve
the characteristics of APC, at temperatures of −20 °C, and
thawing at +4 °C, which may help to decrease the rapid
degradation, becoming a better biomaterial for clinical ap-
plication [28]. Although it may be hard to control the cor-
rect temperature on the day of application, the use of a
freezer with the desired settings may prove beneficial.
Another methodology was developed and deserves to

be highlighted. It is known as the low-speed centrifuga-
tion concept (LSCC) which is used to produce A-PRF
membranes. This concept is suggested to be the factor
that greatly increases the resistance of the membranes
produced with this protocol. This technique diminishes
the cell pull-down by the g forces applied in the cen-
trifugation, increasing the number of cells within the
top layer of the fibrin matrix. This surely modifies
the A-PRF’s properties compared to L-PRF, which
suffers much higher forces during the centrifugation,
concentrating almost all cellular content at the bot-
tom of the clot [24].
Controversially, although other techniques [28, 32]

exist, the simplest way is to follow the protocols strictly
using the correct centrifugation settings to obtain the
correct membrane. Thus, the results obtained for L-PRF
in this study (average of 0.02260MPa) is in perfect
agreement with the resistance of L-PRF published by
Khorshidi et al. [22] (0.20 ± 0.06MPa), but strangely,
Ravi and Santhanakrishnan (2020) [26] found an ex-
tremely higher value for L-PRF (290.076 ± 5.68MPa).
Nonetheless, the same authors also found extremely
high values for A-PRF (362.565 ± 5.15MPa), differently
than obtained in this study (average of 0.04130MPa).
However, this study may state that A-PRF had a higher
resistance to traction than L-PRF similar to published by
Ravi and Santhanakrishnan (2020) [26]; therefore, in this
study, it was observed almost twice more in the average
of resistance, with an extremely significant statistical dif-
ference. Concerning average traction, A-PRF also
achieved a significant statistical difference compared to
L-PRF. This fact is due to a looser structure with more
interfibrous space with a lower crosslink and greater
elasticity, beyond the better distribution of the content
throughout the fibrin after using the LSCC, which



Fig. 4 Average and maximal traction values. a Representative traction profile with maximal traction with rupture of membrane and average
traction identified by arrows. b Individual values of each membrane tested for each protocol with average values of traction, and maximal value
for traction measured
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allowed a greater presence of neutrophil cells and plate-
lets in the PRF [12, 34, 35].
It was noticed that in the A-PRF group some mem-

branes scored similarly, regarding the maximal trac-
tion. However, the average traction was different,
Table 2 Descriptive statistics of the traction data obtained
Average Maximal limit

L-PRF A-PRF

Minimum 0.009000 0.01370

Maximum 0.03160 0.05500

Range 0.02260 0.04130

Geometric mean 0.01802 0.02637

95% CI of median

Actual confidence level 97.75% 97.75%

Lower confidence limit 0.01110 0.01730

Upper confidence limit 0.02420 0.04120

Mean, SD, and SE

Mean 0.01923 0.02885

Std. deviation (SD) 0.006760 0.01297

Std. error of mean (SE) 0.001875 0.003597

95% CI of mean

Lower 0.01515 0.02102

Upper 0.02332 0.03669
indicating that the structure of each membrane was
slightly different, even with the same donator and
time of the blood collection. In the L-PRF protocol,
the same happened but with little difference between
the values. This indicates that there is a large vari-
ation to be expected when producing APC mem-
branes, and one may not achieve the highest traction
possible. Regarding the experimental time, it was ob-
served for L-PRF the mean of 72.33 s (SD ± 41.84 s) with a
maximum time of 180.40 s; and for A-PRF, the mean of
74.48 s (SD ± 43.15 s) with maximum period of 180.50 s.
For period analyzed to achieve rupture, for L-PRF group
was found the average of 74.73 s (minimum 34.60 s and
maximum 130.40 s); while for A = PRF group, the average
was 132.24 s, almost twice the L-PRF group, with mini-
mum 81.50 s and maximum 178.50 s.
It was known that A-PRF had a higher concentration

of growth factors within its fibrin matrix, increasing the
tissue regeneration rate when applied in a surgical
wound [12]. This fact allied to the higher maximal trac-
tion and average traction appears to make it a more suit-
able material for regeneration than L-PRF. Indeed, the
LSCC has produced membranes with a more even distri-
bution of cells throughout the fibrin clot and a more
mechanically resistant membrane. This reveals that,



Fig. 5 Average and maximal traction values. a Average traction difference between L-PRF and A-PRF protocol (*p < 0.05 using unpaired t test n
= 13). b Maximal traction difference between L-PRF and A-PRF protocol (***p < 0.001 using unpaired t test n = 13)
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when applied in multiple situations, A-PRF may be more
effective.
Regarding the only one individual included in this

study, this strategy was applied to avoid any type of bias.
The literature [36–38] has reported platelet alterations
associated with many systemic conditions and the use of
drugs, which was observed and controlled in this study.

Conclusion
Through this pilot study, it was possible to conclude that
there was significantly higher resistance to traction in
membranes produced with the A-PRF compared to the
L-PRF protocol, suggesting more handleability when ap-
plied clinically, such as in surgeries, resisting receiving a
suture. Nevertheless, it is necessary that more studies
with major samples and distinguishing gender and age.
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