468 research outputs found

    Epiparasitic plants specialized on arbuscular mycorrhizal fungi

    Get PDF
    Over 400 non-photosynthetic species from 10 families of vascular plants obtain their carbon from fungi and are thus defined as myco-heterotrophs. Many of these plants are epiparasitic on green plants from which they obtain carbon by 'cheating' shared mycorrhizal fungi. Epiparasitic plants examined to date depend on ectomycorrhizal fungi for carbon transfer and exhibit exceptional specificity for these fungi, but for most myco-heterotrophs neither the identity of the fungi nor the sources of their carbon are known. Because many myco-heterotrophs grow in forests dominated by plants associated with arbuscular mycorrhizal fungi (AMF; phylum Glomeromycota), we proposed that epiparasitism would occur also between plants linked by AMF. On a global scale AMF form the most widespread mycorrhizae, thus the ability of plants to cheat this symbiosis would be highly significant. We analysed mycorrhizae from three populations of Arachnitis uniflora (Corsiaceae, Monocotyledonae), five Voyria species and one Voyriella species (Gentianaceae, Dicotyledonae), and neighbouring green plants. Here we show that non-photosynthetic plants associate with AMF and can display the characteristic specificity of epiparasites. This suggests that AMF mediate significant inter-plant carbon transfer in nature

    Chromatic Illumination Discrimination Ability Reveals that Human Colour Constancy Is Optimised for Blue Daylight Illuminations

    Get PDF
    The phenomenon of colour constancy in human visual perception keeps surface colours constant, despite changes in their reflected light due to changing illumination. Although colour constancy has evolved under a constrained subset of illuminations, it is unknown whether its underlying mechanisms, thought to involve multiple components from retina to cortex, are optimised for particular environmental variations. Here we demonstrate a new method for investigating colour constancy using illumination matching in real scenes which, unlike previous methods using surface matching and simulated scenes, allows testing of multiple, real illuminations. We use real scenes consisting of solid familiar or unfamiliar objects against uniform or variegated backgrounds and compare discrimination performance for typical illuminations from the daylight chromaticity locus (approximately blue-yellow) and atypical spectra from an orthogonal locus (approximately red-green, at correlated colour temperature 6700 K), all produced in real time by a 10-channel LED illuminator. We find that discrimination of illumination changes is poorer along the daylight locus than the atypical locus, and is poorest particularly for bluer illumination changes, demonstrating conversely that surface colour constancy is best for blue daylight illuminations. Illumination discrimination is also enhanced, and therefore colour constancy diminished, for uniform backgrounds, irrespective of the object type. These results are not explained by statistical properties of the scene signal changes at the retinal level. We conclude that high-level mechanisms of colour constancy are biased for the blue daylight illuminations and variegated backgrounds to which the human visual system has typically been exposed

    Deletion of parasite immune modulatory sequences combined with immune activating signals enhances vaccine mediated protection against filarial nematodes

    Get PDF
    <p>Background: Filarial nematodes are tissue-dwelling parasites that can be killed by Th2-driven immune effectors, but that have evolved to withstand immune attack and establish chronic infections by suppressing host immunity. As a consequence, the efficacy of a vaccine against filariasis may depend on its capacity to counter parasite-driven immunomodulation.</p> <p>Methodology and Principal Findings: We immunised mice with DNA plasmids expressing functionally-inactivated forms of two immunomodulatory molecules expressed by the filarial parasite Litomosoides sigmodontis: the abundant larval transcript-1 (LsALT) and cysteine protease inhibitor-2 (LsCPI). The mutant proteins enhanced antibody and cytokine responses to live parasite challenge, and led to more leukocyte recruitment to the site of infection than their native forms. The immune response was further enhanced when the antigens were targeted to dendritic cells using a single chain Fv-αDEC205 antibody and co-administered with plasmids that enhance T helper 2 immunity (IL-4) and antigen-presenting cell recruitment (Flt3L, MIP-1α). Mice immunised simultaneously against the mutated forms of LsALT and LsCPI eliminated adult parasites faster and consistently reduced peripheral microfilaraemia. A multifactorial analysis of the immune response revealed that protection was strongly correlated with the production of parasite-specific IgG1 and with the numbers of leukocytes present at the site of infection.</p> <p>Conclusions: We have developed a successful strategy for DNA vaccination against a nematode infection that specifically targets parasite-driven immunosuppression while simultaneously enhancing Th2 immune responses and parasite antigen presentation by dendritic cells.</p&gt

    Comparison of multivariate calibration techniques applied to experimental NIR data sets

    Get PDF
    The present study compares the performance of different multivariate calibration techniques applied to four near-infrared data sets when test samples are well within the calibration domain. Three types of problems are discussed: the nonlinear calibration, the calibration using heterogeneous data sets, and the calibration in the presence of irrelevant information in the set of predictors. Recommendations are derived from the comparison, which should help to guide a nonchemometrician through the selection of an appropriate calibration method for a particular type of calibration data. A flexible methodology is proposed to allow selection of an appropriate calibration technique for a given calibration problem.54460862

    The Roles of Transmembrane Domain Helix-III during Rhodopsin Photoactivation

    Get PDF
    Background: Rhodopsin, the prototypic member of G protein-coupled receptors (GPCRs), undergoes isomerization of 11- cis-retinal to all-trans-retinal upon photoactivation. Although the basic mechanism by which rhodopsin is activated is well understood, the roles of whole transmembrane (TM) helix-III during rhodopsin photoactivation in detail are not completely clear. Principal Findings: We herein use single-cysteine mutagenesis technique to investigate conformational changes in TM helices of rhodopsin upon photoactivation. Specifically, we study changes in accessibility and reactivity of cysteine residues introduced into the TM helix-III of rhodopsin. Twenty-eight single-cysteine mutants of rhodopsin (P107C-R135C) were prepared after substitution of all natural cysteine residues (C140/C167/C185/C222/C264/C316) by alanine. The cysteine mutants were expressed in COS-1 cells and rhodopsin was purified after regeneration with 11-cis-retinal. Cysteine accessibility in these mutants was monitored by reaction with 4, 49-dithiodipyridine (4-PDS) in the dark and after illumination. Most of the mutants except for T108C, G109C, E113C, I133C, and R135C showed no reaction in the dark. Wide variation in reactivity was observed among cysteines at different positions in the sequence 108–135 after photoactivation. In particular, cysteines at position 115, 119, 121, 129, 131, 132, and 135, facing 11-cis-retinal, reacted with 4-PDS faster than neighboring amino acids. The different reaction rates of mutants with 4-PDS after photoactivation suggest that the amino acids in different positions in helix-III are exposed to aqueous environment to varying degrees. Significance: Accessibility data indicate that an aqueous/hydrophobic boundary in helix-III is near G109 and I133. The lack of reactivity in the dark and the accessibility of cysteine after photoactivation indicate an increase of water/4-PDS accessibility for certain cysteine-mutants at Helix-III during formation of Meta II. We conclude that photoactivation resulted in water-accessible at the chromophore-facing residues of Helix-III.National Institutes of Health (U.S.) (grant GM28289)National Eye Institute (Grant Grant EY11716)National Science Foundation (U.S.) (grant EIA-0225609

    A single-electron transistor made from a cadmium selenide nanocrystal

    Full text link
    The techniques of colloidal chemistry permit the routine creation of semiconductor nanocrystals, whose dimensions are much smaller than those that can be realized using lithographic techniques. The sizes of such nanocrystals can be varied systematically to study quantum size effects or to make novel electronic or optical materials with tailored properties. Preliminary studies of both the electrical and optical properties of individual nanocrystals have been performed recently. These studies show clearly that a single excess charge on a nanocrystal can markedly influence its properties. Here we present measurements of electrical transport in a single-electron transistor made from a colloidal nanocrystal of cadmium selenide. This device structure enables the number of charge carriers on the nanocrystal to be tuned directly, and so permits the measurement of the energy required for adding successive charge carriers. Such measurements are invaluable in understanding the energy-level spectra of small electronic systems, as has been shown by similar studies of lithographically patterned quantum dots and small metallic grains.Comment: 3 pages, PDF forma

    The effects of acute serotonin challenge on executive planning in patients with obsessive-compulsive disorder (OCD), their first-degree relatives, and healthy controls

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s00213-020-05597-7.Rationale: OCD is characterized by executive function impairment and by clinical responsivity to selective serotonin reuptake inhibitors (SSRIs). Executive planning deficits constitute a candidate endophenotype for OCD. It is not known whether this endophenotype is responsive to acute serotonin manipulation. Objective: To investigate the effects of acute SSRI administration on executive function in patients with OCD, first-degree relatives of patients with OCD and healthy controls. Methods: A randomized double-blind crossover study assessed the effects of single dose escitalopram (20mg) and placebo on executive planning in 24 patients with OCD, 13 clinically unaffected first-degree relatives of patients with OCD and 28 healthy controls. Performance on a Tower of London task measuring executive planning was assessed 4 hours after oral administration of the pharmacological challenge / placebo, and compared across and within groups using a mixed model ANOVA. Results: On the outcome measure of interest, i.e. the mean number of choices to obtain the correct solution, there was a marginally significant effect of group (F(2, 59)=3.1; p=0.052), with patients (Least square [LS] mean: 1.43; Standard Error [SE]: 0.06; 95% confidence interval [CI], 1.31-1.55) and their relatives (LS mean: 1.46; SE: 0.08; 95% CI, 1.30-1.62) performing worse than matched healthy controls (LS mean: 1.26; SE: 0.05; 95% CI, 1.15-1.37) on placebo. There was a trend towards a significant group x treatment interaction (F(2, 58)=2.8, p=0.069), with post hoc tests showing (i) patients (p=0.009; LS mean difference: 0.23; SE: 0.08) and relatives (p=0.03; LS mean difference: 0.22; SE: 0.10) were more impaired compared to controls and (ii) escitalopram was associated with improved executive planning in patients with OCD (p=0.013; LS mean difference: 0.1; SE: 0.04), but not other groups (both p>0.1; controls: LS mean difference: -0.03; SE: 0.04; relatives: LS mean difference: 0.02; SE: 0.05). Conclusion: Our findings are consistent with a view that there is impaired executive planning in OCD, and that this constitutes a behavioral endophenotype. In patients with OCD, but not in relatives, acute SSRI administration ameliorated this deficit. Further investigation is needed to understand common and differential involvement of neurochemical systems in patients with OCD and their relatives.Peer reviewe

    Height and timing of growth spurt during puberty in young people living with vertically acquired HIV in Europe and Thailand.

    Get PDF
    OBJECTIVE: The aim of this study was to describe growth during puberty in young people with vertically acquired HIV. DESIGN: Pooled data from 12 paediatric HIV cohorts in Europe and Thailand. METHODS: One thousand and ninety-four children initiating a nonnucleoside reverse transcriptase inhibitor or boosted protease inhibitor based regimen aged 1-10 years were included. Super Imposition by Translation And Rotation (SITAR) models described growth from age 8 years using three parameters (average height, timing and shape of the growth spurt), dependent on age and height-for-age z-score (HAZ) (WHO references) at antiretroviral therapy (ART) initiation. Multivariate regression explored characteristics associated with these three parameters. RESULTS: At ART initiation, median age and HAZ was 6.4 [interquartile range (IQR): 2.8, 9.0] years and -1.2 (IQR: -2.3 to -0.2), respectively. Median follow-up was 9.1 (IQR: 6.9, 11.4) years. In girls, older age and lower HAZ at ART initiation were independently associated with a growth spurt which occurred 0.41 (95% confidence interval 0.20-0.62) years later in children starting ART age 6 to 10 years compared with 1 to 2 years and 1.50 (1.21-1.78) years later in those starting with HAZ less than -3 compared with HAZ at least -1. Later growth spurts in girls resulted in continued height growth into later adolescence. In boys starting ART with HAZ less than -1, growth spurts were later in children starting ART in the oldest age group, but for HAZ at least -1, there was no association with age. Girls and boys who initiated ART with HAZ at least -1 maintained a similar height to the WHO reference mean. CONCLUSION: Stunting at ART initiation was associated with later growth spurts in girls. Children with HAZ at least -1 at ART initiation grew in height at the level expected in HIV negative children of a comparable age

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
    • …
    corecore