45 research outputs found

    Heterogeneous Light Supply Affects Growth and Biomass Allocation of the Understory Fern Diplopterygium glaucum at High Patch Contrast

    Get PDF
    Spatial heterogeneity in resource supply is common and responses to heterogeneous resource supply have been extensively documented in clonal angiosperms but not in pteridophytes. To test the hypotheses that clonal integration can modify responses of pteridophytes to heterogeneous resource supply and the integration effect is larger at higher patch contrast, we conducted a field experiment with three homogeneous and two heterogeneous light treatments on the rhizomatous, understory fern Diplopterygium glaucum in an evergreen broad-leaved forest in East China. In homogeneous treatments, all D. glaucum ramets in 1.5 m×1.5 m units were subjected to 10, 40 and 100% natural light, respectively. In the heterogeneous treatment of low patch contrast, ramets in the central 0.5 m×0.5 m plots of the units were subjected to 40% natural light and their interconnected ramets in the surrounding area of the units to 100%; in the heterogeneous treatment of high patch contrast, ramets in the central plots were subjected to 10% natural light and those in the surrounding area to 100%. In the homogeneous treatments, biomass and number of living ramets in the central plots decreased and number of dead ramets increased with decreasing light supply. At low contrast heterogeneous light supply did not affect performance or biomass allocation of D. glaucum in the central plots, but at high contrast it increased lamina biomass and number of living ramets older than annual and modified biomass allocation to lamina and rhizome. Thus, clonal integration can affect responses of understory ferns to heterogeneous light supply and ramets in low light patches can be supported by those in high light. The results also suggest that effects of clonal integration depend on the degree of patch contrast and a significant integration effect may be found only under a relatively high patch contrast

    Hypertension Is Associated with Marked Alterations in Sphingolipid Biology: A Potential Role for Ceramide

    Get PDF
    Background Hypertension is, amongst others, characterized by endothelial dysfunction and vascular remodeling. As sphingolipids have been implicated in both the regulation of vascular contractility and growth, we investigated whether sphingolipid biology is altered in hypertension and whether this is reflected in altered vascular function. Methods and Findings In isolated carotid arteries from spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) rats, shifting the ceramide/S1P ratio towards ceramide dominance by administration of a sphingosine kinase inhibitor (dimethylsphingosine) or exogenous application of sphingomyelinase, induced marked endothelium-dependent contractions in SHR vessels (DMS: 1.4±0.4 and SMase: 2.1±0.1 mN/mm; n = 10), that were virtually absent in WKY vessels (DMS: 0.0±0.0 and SMase: 0.6±0.1 mN/mm; n = 9, p Conclusions Hypertension is associated with marked alterations in vascular sphingolipid biology such as elevated ceramide levels and signaling, that contribute to increased vascular tone

    Effects of Water and Nitrogen Addition on Species Turnover in Temperate Grasslands in Northern China

    Get PDF
    Global nitrogen (N) deposition and climate change have been identified as two of the most important causes of current plant diversity loss. However, temporal patterns of species turnover underlying diversity changes in response to changing precipitation regimes and atmospheric N deposition have received inadequate attention. We carried out a manipulation experiment in a steppe and an old-field in North China from 2005 to 2009, to test the hypothesis that water addition enhances plant species richness through increase in the rate of species gain and decrease in the rate of species loss, while N addition has opposite effects on species changes. Our results showed that water addition increased the rate of species gain in both the steppe and the old field but decreased the rates of species loss and turnover in the old field. In contrast, N addition increased the rates of species loss and turnover in the steppe but decreased the rate of species gain in the old field. The rate of species change was greater in the old field than in the steppe. Water interacted with N to affect species richness and species turnover, indicating that the impacts of N on semi-arid grasslands were largely mediated by water availability. The temporal stability of communities was negatively correlated with rates of species loss and turnover, suggesting that water addition might enhance, but N addition would reduce the compositional stability of grasslands. Experimental results support our initial hypothesis and demonstrate that water and N availabilities differed in the effects on rate of species change in the temperate grasslands, and these effects also depend on grassland types and/or land-use history. Species gain and loss together contribute to the dynamic change of species richness in semi-arid grasslands under future climate change

    How Past and Present Influence the Foraging of Clonal Plants?

    Get PDF
    Clonal plants spreading horizontally and forming a network structure of ramets exhibit complex growth patterns to maximize resource uptake from the environment. They respond to spatial heterogeneity by changing their internode length or branching frequency. Ramets definitively root in the soil but stay interconnected for a varying period of time thus allowing an exchange of spatial and temporal information. We quantified the foraging response of clonal plants depending on the local soil quality sampled by the rooting ramet (i.e. the present information) and the resource variability sampled by the older ramets (i.e. the past information). We demonstrated that two related species, Potentilla reptans and P. anserina, responded similarly to the local quality of their environment by decreasing their internode length in response to nutrient-rich soil. Only P. reptans responded to resource variability by decreasing its internode length. In both species, the experience acquired by older ramets influenced the plastic response of new rooted ramets: the internode length between ramets depended not only on the soil quality locally sampled but also on the soil quality previously sampled by older ramets. We quantified the effect of the information perceived at different time and space on the foraging behavior of clonal plants by showing a non-linear response of the ramet rooting in the soil of a given quality. These data suggest that the decision to grow a stolon or to root a ramet at a given distance from the older ramet results from the integration of the past and present information about the richness and the variability of the environment

    Advances in modelling of biomimetic fluid flow at different scales

    Get PDF
    The biomimetic flow at different scales has been discussed at length. The need of looking into the biological surfaces and morphologies and both geometrical and physical similarities to imitate the technological products and processes has been emphasized. The complex fluid flow and heat transfer problems, the fluid-interface and the physics involved at multiscale and macro-, meso-, micro- and nano-scales have been discussed. The flow and heat transfer simulation is done by various CFD solvers including Navier-Stokes and energy equations, lattice Boltzmann method and molecular dynamics method. Combined continuum-molecular dynamics method is also reviewed

    The impact of viral mutations on recognition by SARS-CoV-2 specific T cells.

    Get PDF
    We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.This work is supported by the UK Medical Research Council (MRC); Chinese Academy of Medical Sciences(CAMS) Innovation Fund for Medical Sciences (CIFMS), China; National Institute for Health Research (NIHR)Oxford Biomedical Research Centre, and UK Researchand Innovation (UKRI)/NIHR through the UK Coro-navirus Immunology Consortium (UK-CIC). Sequencing of SARS-CoV-2 samples and collation of data wasundertaken by the COG-UK CONSORTIUM. COG-UK is supported by funding from the Medical ResearchCouncil (MRC) part of UK Research & Innovation (UKRI),the National Institute of Health Research (NIHR),and Genome Research Limited, operating as the Wellcome Sanger Institute. T.I.d.S. is supported by a Well-come Trust Intermediate Clinical Fellowship (110058/Z/15/Z). L.T. is supported by the Wellcome Trust(grant number 205228/Z/16/Z) and by theUniversity of Liverpool Centre for Excellence in Infectious DiseaseResearch (CEIDR). S.D. is funded by an NIHR GlobalResearch Professorship (NIHR300791). L.T. and S.C.M.are also supported by the U.S. Food and Drug Administration Medical Countermeasures Initiative contract75F40120C00085 and the National Institute for Health Research Health Protection Research Unit (HPRU) inEmerging and Zoonotic Infections (NIHR200907) at University of Liverpool inpartnership with Public HealthEngland (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford.L.T. is based at the University of Liverpool. M.D.P. is funded by the NIHR Sheffield Biomedical ResearchCentre (BRC – IS-BRC-1215-20017). ISARIC4C is supported by the MRC (grant no MC_PC_19059). J.C.K.is a Wellcome Investigator (WT204969/Z/16/Z) and supported by NIHR Oxford Biomedical Research Centreand CIFMS. The views expressed are those of the authors and not necessarily those of the NIHR or MRC

    Root allocation in metal-rich patch by Thlaspi caerulescens from normal and metalliferous soil: new insights into the rhizobox approach

    No full text
    We compared root responses to spatial heterogeneity of Zn and Ni in Thlaspi caerulescens J. and C. Presl from normal (NM plants) and metalliferous soil (M plants). We investigated whether the strong metal accumulation capacity of NM plants (compared to M plants) was related to a greater capacity of roots to grow towards metal-enriched soil compartments. Two similar experiments were conducted in summer (slow growth) and spring (high growth), respectively. Our study is the first to show that NM plants of T. caerulescens have the ability to allocate more roots in the Zn-enriched compartment of soil. However, the positive response to Zn by roots of NM plants does not explain their higher Zn accumulation capacity as M plants express a similar level of root allocation in Zn-enriched compartment of soil. In M plants, root response to the Zn-rich compartment appears to be more susceptible to variations in growth conditions. Preferential root allocation in Ni-enriched compartment was consistently found in M plants only, suggesting that Ni supply is critical in their native metalliferous soil. Our study also illustrates bias in the interpretation of root allocation studies using two dimensional boxes, as interferences between root response to metal and root chirality have been highlighted. © 2008 Springer Science+Business Media B.V.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore