15 research outputs found

    Identification of carbon dioxide in an exoplanet atmosphere

    Get PDF
    Carbon dioxide (CO2) is a key chemical species that is found in a wide range of planetary atmospheres. In the context of exoplanets, CO2 is an indicator of the metal enrichment (that is, elements heavier than helium, also called ‘metallicity’)1–3, and thus the formation processes of the primary atmospheres of hot gas giants4–6. It is also one of the most promising species to detect in the secondary atmospheres of terrestrial exoplanets7–9. Previous photometric measurements of transiting planets with the Spitzer Space Telescope have given hints of the presence of CO2, but have not yielded definitive detections owing to the lack of unambiguous spectroscopic identification10–12. Here we present the detection of CO2 in the atmosphere of the gas giant exoplanet WASP-39b from transmission spectroscopy observations obtained with JWST as part of the Early Release Science programme13,14. The data used in this study span 3.0–5.5 micrometres in wavelength and show a prominent CO2 absorption feature at 4.3 micrometres (26-sigma significance). The overall spectrum is well matched by one-dimensional, ten-times solar metallicity models that assume radiative–convective–thermochemical equilibrium and have moderate cloud opacity. These models predict that the atmosphere should have water, carbon monoxide and hydrogen sulfide in addition to CO2, but little methane. Furthermore, we also tentatively detect a small absorption feature near 4.0 micrometres that is not reproduced by these models

    Expert consensus document: Clinical and molecular diagnosis, screening and management of Beckwith-Wiedemann syndrome: an international consensus statement.

    Get PDF
    Beckwith-Wiedemann syndrome (BWS), a human genomic imprinting disorder, is characterized by phenotypic variability that might include overgrowth, macroglossia, abdominal wall defects, neonatal hypoglycaemia, lateralized overgrowth and predisposition to embryonal tumours. Delineation of the molecular defects within the imprinted 11p15.5 region can predict familial recurrence risks and the risk (and type) of embryonal tumour. Despite recent advances in knowledge, there is marked heterogeneity in clinical diagnostic criteria and care. As detailed in this Consensus Statement, an international consensus group agreed upon 72 recommendations for the clinical and molecular diagnosis and management of BWS, including comprehensive protocols for the molecular investigation, care and treatment of patients from the prenatal period to adulthood. The consensus recommendations apply to patients with Beckwith-Wiedemann spectrum (BWSp), covering classical BWS without a molecular diagnosis and BWS-related phenotypes with an 11p15.5 molecular anomaly. Although the consensus group recommends a tumour surveillance programme targeted by molecular subgroups, surveillance might differ according to the local health-care system (for example, in the United States), and the results of targeted and universal surveillance should be evaluated prospectively. International collaboration, including a prospective audit of the results of implementing these consensus recommendations, is required to expand the evidence base for the design of optimum care pathways

    Ariel: Enabling planetary science across light-years

    Get PDF

    Early Release Science of the exoplanet WASP-39b with JWST NIRSpec G395H

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Research via the DOI in this recordData Availability: The data used in this paper are associated with JWST program ERS 1366 (observation #4) and are available from the Mikulski Archive for Space Telescopes (https://mast.stsci.edu). Science data processing version (SDP_VER) 2022_2a generated the uncalibrated data that we downloaded from MAST. We used JWST Calibration Pipeline software version (CAL_VER) 1.5.3 with modifications described in the text. We used calibration reference data from context (CRDS_CTX) 0916, except as noted in the text. All the data and models presented in this publication can be found at 10.5281/zenodo.7185300.Code Availability: The codes used in this publication to extract, reduce and analyze the data are as follows; STScI JWST Calibration pipeline45 (https://github.com/spacetelescope/jwst), Eureka!53 (https://eurekadocs.readthedocs.io/en/latest/), ExoTiC-JEDI47 (https://github.com/ExoTiC/ExoTiC-JEDI), juliet71 (https://juliet.readthedocs.io/en/latest/), Tiberius15,49,50, transitspectroscopy51 (https://github.com/nespinoza/transitspectroscopy). In addition, these made use of batman65 (http://lkreidberg.github.io/batman/docs/html/index.html), celerite86 (https://celerite.readthedocs.io/en/stable/), chromatic (https://zkbt.github.io/chromatic/), Dynesty72 (https://dynesty.readthedocs.io/en/stable/index.html), emcee69 (https://emcee.readthedocs.io/en/stable/), exoplanet83 (https://docs.exoplanet.codes/en/latest/), ExoTEP75–77, ExoTHETyS79 (https://github.com/ucl-exoplanets/ExoTETHyS), ExoTiCISM57 (https://github.com/Exo-TiC/ExoTiC-ISM), ExoTiC-LD58 (https://exoticld.readthedocs.io/en/latest/), george68 (https://george.readthedocs.io/en/latest/) JAX82 (https://jax.readthedocs.io/en/latest/), LMFIT70 (https://lmfit.github.io/lmfit-py/), Pylightcurve78 (https://github.com/ucl-exoplanets/pylightcurve), Pymc3138 (https://docs.pymc.io/en/v3/index.html) and Starry84 (https://starry.readthedocs.io/en/latest/), each of which use the standard python libraries astropy139,140, matplotlib141, numpy142, pandas143, scipy64 and xarray144. The atmospheric models used to fit the data can be found at ATMO[Tremblin2015,Drummond2016,Goyal2018,Goyal2020]88–91, PHOENIX92–94, PICASO98,99 (https://natashabatalha.github.io/picaso/), Virga98,107 (https://natashabatalha.github.io/virga/), and gCMCRT115 (https://github.com/ELeeAstro/gCMCRT).Measuring the abundances of carbon and oxygen in exoplanet atmospheres is considered a crucial avenue for unlocking the formation and evolution of exoplanetary systems. Access to an exoplanet’s chemical inventory requires high precision observations, often inferred from individual molecular detections with low-resolution space-based and high-resolution ground-based facilities. Here we report the medium-resolution (R≈600) transmission spectrum of an exoplanet atmosphere between 3–5 μm covering multiple absorption features for the Saturn-mass exoplanet WASP-39b, obtained with JWST NIRSpec G395H. Our observations achieve 1.46× photon precision, providing an average transit depth uncertainty of 221 ppm per spectroscopic bin, and present minimal impacts from systematic effects. We detect significant absorption from CO2 (28.5σ ) and H2O (21.5σ ), and identify SO2 as the source of absorption at 4.1 μ m (4.8σ ). Best-fit atmospheric models range between 3× and 10× solar metallicity, with sub-solar to solar C/O ratios. These results, including the detection of SO2, underscore the importance of characterising the chemistry in exoplanet atmospheres, and showcase NIRSpec G395H as an excellent mode for time series observations over this critical wavelength range.Science and Technology Facilities Council (STFC)UKR

    Identification of carbon dioxide in an exoplanet atmosphere

    Get PDF
    Carbon dioxide (CO2) is a key chemical species that is found in a wide range of planetary atmospheres. In the context of exoplanets, CO2 is an indicator of the metal enrichment (that is, elements heavier than helium, also called ‘metallicity’), and thus the formation processes of the primary atmospheres of hot gas giants. It is also one of the most promising species to detect in the secondary atmospheres of terrestrial exoplanets. Previous photometric measurements of transiting planets with the Spitzer Space Telescope have given hints of the presence of CO2, but have not yielded definitive detections owing to the lack of unambiguous spectroscopic identification. Here we present the detection of CO2 in the atmosphere of the gas giant exoplanet WASP-39b from transmission spectroscopy observations obtained with JWST as part of the Early Release Science programme. The data used in this study span 3.0–5.5 micrometres in wavelength and show a prominent CO2 absorption feature at 4.3 micrometres (26-sigma significance). The overall spectrum is well matched by one-dimensional, ten-times solar metallicity models that assume radiative–convective–thermochemical equilibrium and have moderate cloud opacity. These models predict that the atmosphere should have water, carbon monoxide and hydrogen sulfide in addition to CO2, but little methane. Furthermore, we also tentatively detect a small absorption feature near 4.0 micrometres that is not reproduced by these models
    corecore