4,052 research outputs found

    The Method of Fundamental Solutions for Direct Cavity Problems in EIT

    No full text
    The Method of Fundamental Solutions (MFS) is an effective technique for solving linear elliptic partial differential equations, such as the Laplace and Helmholtz equation. It is a form of indirect boundary integral equation method and a technique that uses boundary collocation or boundary fitting. In this paper the MFS is implemented to solve A numerically an inverse problem which consists of finding an unknown cavity within a region of interest based on given boundary Cauchy data. A range of examples are used to demonstrate that the technique is very effective at locating cavities in two-dimensional geometries for exact input data. The technique is then developed to include a regularisation parameter that enables cavities to be located accurately and stably even for noisy input data

    Eta Carinae -- Physics of the Inner Ejecta

    Full text link
    Eta Carinae's inner ejecta are dominated observationally by the bright Weigelt blobs and their famously rich spectra of nebular emission and absorption lines. They are dense (n_e ~ 10^7 to 10^8 cm^-3), warm (T_e ~ 6000 to 7000 K) and slow moving (~40 km/s) condensations of mostly neutral (H^0) gas. Located within 1000 AU of the central star, they contain heavily CNO-processed material that was ejected from the star about a century ago. Outside the blobs, the inner ejecta include absorption-line clouds with similar conditions, plus emission-line gas that has generally lower densities and a wider range of speeds (reaching a few hundred km/s) compared to the blobs. The blobs appear to contain a negligible amount of dust and have a nearly dust-free view of the central source, but our view across the inner ejecta is severely affected by uncertain amounts of dust having a patchy distribution in the foreground. Emission lines from the inner ejecta are powered by photoionization and fluorescent processes. The variable nature of this emission, occurring in a 5.54 yr event cycle, requires specific changes to the incident flux that hold important clues to the nature of the central object.Comment: This is Chapter 5 in a book entitled: Eta Carinae and the Supernova Impostors, Kris Davidson and Roberta M. Humphreys, editors Springe

    Bayesian predictions for A=6 nuclei using eigenvector continuation emulators

    Get PDF
    We make ab initio predictions for the A=6 nuclear level scheme based on two- and three-nucleon interactions up to next-to-next-to-leading order in chiral effective field theory (χEFT). We utilize eigenvector continuation and Bayesian methods to quantify uncertainties stemming from the many-body method, the χEFT truncation, and the low-energy constants of the nuclear interaction. The construction and validation of emulators is made possible via the development of jupiterncsm - a new M-scheme no-core shell model code that uses on-the-fly Hamiltonian matrix construction for efficient, single-node computations up to Nmax=10 for Li6. We find a slight underbinding of He6 and Li6, although consistent with experimental data given our theoretical error bars. As a result of incorporating correlated χEFT-truncation errors we find more precise predictions (smaller error bars) for separation energies: Sd(Li6)=0.89\ub10.44MeV, S2n(He6)=0.20\ub10.60MeV, and for the beta decay Q value: Qβ-(He6)=3.71\ub10.65MeV. We conclude that our error bars can potentially be reduced further by extending the model space used by jupiterncsm

    Relationship between temporomandibular joint dynamics and mouthguards: feasibility of a test method

    Full text link
    A test system was developed establishing the feasibility of collecting biomechanical data as they relate to the use of mouthguards. Previous experimental studies have examined the physical and mechanical properties of mouthguard materials. This information has been used as a guide for establishing material standards and specifications for the fabrication of mouthguards, but it lacks the key biomechanical parameters required for a thorough mouthguard evaluation. The current study was designed to assess whether the impact force, condylar deflection, and strain superior to the temporomandibular joint region could be measured. A drop test was conducted on a cadaveric specimen to simulate loading at the chin point. To measure the force of impact, an accelerometer was attached to an impactor of known mass. High-speed biplanar (1000 frames per second) radiographs were used to determine condylar displacement. Radio-opaque markers were inserted into the bone at predetermined locations. Total displacement of these markers was determined in reference to anatomical landmarks. Strain gauges were attached to the mandible and skull to monitor the effects of the condyle impacting the base of the skull. Based on the data collected, forces were calculated by determining the product of the time-based acceleration and known mass. A measurable change in force between the mouthguards and the control (no mouthguard) was demonstrated. The average condylar displacement was successfully measured and indicated as an increase in total deflection for impacts conducted with mouthguards. Quantifiable strain was measured in the region above the mandibular fossa with and without the insertion of a mouthguard at all impact conditions. However, it was determined that additional gauges would provide critical data. Key biomechanical parameters for chin-point impacts were determined in the current study. The technique demonstrated that both displacement within the mandibular fossa and loading of the condyles occur during the impact event. Although the current study established a technique that can be used to examine the relationship between mouthguards and jaw-joint injuries, the role, if any, mouthguards play in the reduction of injuries cannot be established until a thorough analysis is completed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74031/1/j.1600-9657.2004.00213.x.pd

    Solar wind interaction with comet 67P: impacts of corotating interaction regions

    Get PDF
    International audienceWe present observations from the Rosetta Plasma Consortium of the effects of stormy solar wind on comet 67P/Churyumov-Gerasimenko. Four corotating interaction regions (CIRs), where the first event has possibly merged with a coronal mass ejection, are traced from Earth via Mars (using Mars Express and Mars Atmosphere and Volatile EvolutioN mission) to comet 67P from October to December 2014. When the comet is 3.1–2.7 AU from the Sun and the neutral outgassing rate ∼1025–1026 s−1, the CIRs significantly influence the cometary plasma environment at altitudes down to 10–30 km. The ionospheric low-energy (∼5 eV) plasma density increases significantly in all events, by a factor of >2 in events 1 and 2 but less in events 3 and 4. The spacecraft potential drops below −20 V upon impact when the flux of electrons increases. The increased density is likely caused by compression of the plasma environment, increased particle impact ionization, and possibly charge exchange processes and acceleration of mass-loaded plasma back to the comet ionosphere. During all events, the fluxes of suprathermal (∼10–100 eV) electrons increase significantly, suggesting that the heating mechanism of these electrons is coupled to the solar wind energy input. At impact the magnetic field strength in the coma increases by a factor of 2–5 as more interplanetary magnetic field piles up around the comet. During two CIR impact events, we observe possible plasma boundaries forming, or moving past Rosetta, as the strong solar wind compresses the cometary plasma environment. We also discuss the possibility of seeing some signatures of the ionospheric response to tail disconnection events

    The Role of the Mucus Barrier in Digestion

    Get PDF
    Mucus forms a protective layer across a variety of epithelial surfaces. In the gastrointestinal (GI) tract, the barrier has to permit the uptake of nutrients, while excluding potential hazards, such as pathogenic bacteria. In this short review article, we look at recent literature on the structure, location, and properties of the mammalian intestinal secreted mucins and the mucus layer they form over a wide range of length scales. In particular, we look at the structure of the gel-forming glycoprotein MUC2, the primary intestinal secreted mucin, and the influence this has on the properties of the mucus layer. We show that, even at the level of the protein backbone, MUC2 is highly heterogeneous and that this is reflected in the networks it forms. It is evident that a combination of charge and pore size determines what can diffuse through the layer to the underlying gut epithelium. This information is important for the targeted delivery of bioactive molecules, including nutrients and pharmaceuticals, and for understanding how GI health is maintained

    Wave: A New Family of Trapdoor One-Way Preimage Sampleable Functions Based on Codes

    Get PDF
    We present here a new family of trapdoor one-way Preimage Sampleable Functions (PSF) based on codes, the Wave-PSF family. The trapdoor function is one-way under two computational assumptions: the hardness of generic decoding for high weights and the indistinguishability of generalized (U,U+V)(U,U+V)-codes. Our proof follows the GPV strategy [GPV08]. By including rejection sampling, we ensure the proper distribution for the trapdoor inverse output. The domain sampling property of our family is ensured by using and proving a variant of the left-over hash lemma. We instantiate the new Wave-PSF family with ternary generalized (U,U+V)(U,U+V)-codes to design a "hash-and-sign" signature scheme which achieves existential unforgeability under adaptive chosen message attacks (EUF-CMA) in the random oracle model. For 128 bits of classical security, signature sizes are in the order of 15 thousand bits, the public key size in the order of 4 megabytes, and the rejection rate is limited to one rejection every 10 to 12 signatures.Comment: arXiv admin note: text overlap with arXiv:1706.0806

    How Gaussian competition leads to lumpy or uniform species distributions

    Get PDF
    A central model in theoretical ecology considers the competition of a range of species for a broad spectrum of resources. Recent studies have shown that essentially two different outcomes are possible. Either the species surviving competition are more or less uniformly distributed over the resource spectrum, or their distribution is 'lumped' (or 'clumped'), consisting of clusters of species with similar resource use that are separated by gaps in resource space. Which of these outcomes will occur crucially depends on the competition kernel, which reflects the shape of the resource utilization pattern of the competing species. Most models considered in the literature assume a Gaussian competition kernel. This is unfortunate, since predictions based on such a Gaussian assumption are not robust. In fact, Gaussian kernels are a border case scenario, and slight deviations from this function can lead to either uniform or lumped species distributions. Here we illustrate the non-robustness of the Gaussian assumption by simulating different implementations of the standard competition model with constant carrying capacity. In this scenario, lumped species distributions can come about by secondary ecological or evolutionary mechanisms or by details of the numerical implementation of the model. We analyze the origin of this sensitivity and discuss it in the context of recent applications of the model.Comment: 11 pages, 3 figures, revised versio
    • …
    corecore