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Abstract A central model in theoretical ecology considers the competition of a range

of species for a broad spectrum of resources. Recent studies have shown that essen-

tially two different outcomes are possible. Either the species surviving competition are

more or less uniformly distributed over the resource spectrum, or their distribution is

’lumped’ (or ’clumped’), consisting of clusters of species with similar resource use that

are separated by gaps in resource space. Which of these outcomes will occur crucially

depends on the competition kernel, which reflects the shape of the resource utilization

pattern of the competing species. Most models considered in the literature assume a

Gaussian competition kernel. This is unfortunate, since predictions based on such a

Gaussian assumption are not robust. In fact, Gaussian kernels are a border case sce-

nario, and slight deviations from this function can lead to either uniform or lumped

species distributions. Here we illustrate the non-robustness of the Gaussian assumption

by simulating different implementations of the standard competition model with con-

stant carrying capacity. In this scenario, lumped species distributions can come about

by secondary ecological or evolutionary mechanisms or by details of the numerical im-

plementation of the model. We analyze the origin of this sensitivity and discuss it in

the context of recent applications of the model.
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Introduction

A central model behind the theoretical description of competition among dissimilar

species was introduced by MacArthur and Levins (1967). In the model, species are

characterized by their niche position xi, which measures a trait being relevant for the

exploitation of a distributed resource. As examples, the niche value xi may represent

body size of predators, where the distributed resource are preys with their size distri-

bution, or xi could be beak sizes of birds, in which case the resource could be seeds of

different sizes. Mathematically this leads to a Lotka-Volterra type of competition equa-

tion, where the competition coefficients are function of the distance between species

on the niche axis x. This competition kernel is usually taken to be a Gaussian function

of the niche difference (also called normal curve). The implication of this choice is the

central topic of this paper.

The model was originally proposed as part of the hypothesis of limiting similarity,

namely that competing species can coexist only if they are sufficiently different from

each other (MacArthur and Levins 1967; Abrams 1983). A mathematical analysis of

the model revealed that arbitrarily similar species could in fact coexist in some cases.

However adding further effects to the model, like noise (May and MacArthur (1972),

but see Turelli (1978)) or extinction thresholds (Pigolotti et al. 2007), impose a limit

to the similarity between species. This sensitivity to second order effects has led to the

conclusion that the model, in its original form, is structurally unstable when used to

predict limits of similarity (Meszéna et al. 2006). The competition model has also been

applied to describe coevolving species (MacArthur and Levins 1967; Case 1981) and

used in some formulations of the theory of island biogeography (Roughgarden 1979).

More recently the same type of model has been simulated numerically and used as a ba-

sis for dynamical models of sympatric speciation (Doebeli and Dieckmann 2000), food

web assembly and evolution (Loeuille and Loreau 2005; Johansson and Ripa 2006;

Lewis and Law 2007), elucidating the relation between competition and predator-prey

interactions (Chesson and Kuang 2008), and for explaining lumped size distributions

of species (Scheffer and van Nes 2006). For a more extensive review of the biological

applications and the generalization of the model see (Szabó and Meszéna 2006). The

competition model has been fundamental for the development of basic principles in

theoretical ecology and it is relevant to achieve a full understanding of its technical

aspects.

In almost all applications of the model the chosen competition kernel is Gaus-

sian. This choice facilitates mathematical analysis, and was justified because the exact

shape of the kernel was thought to have no influence on the fundamental results of the

model. However, recent work has shown that the equilibrium solution can be one of

two fundamentally different types, depending on the form of the competition kernel

(Pigolotti et al. 2007). One class of competition kernels preserves all species initially

introduced in the system, with adjustments only in their relative abundance. The final

equilibrium is a state with species closely spaced and with roughly similar abundances

(if the carrying capacity is also uniform). Another class of competition kernels leads to

the species being lumped in dense groups (in some cases groups are formed by single

species), separated by empty regions on the niche axis. Subsequent invasion of new

species in these ‘exclusion zones’ is not possible due to competitive exclusion. The

condition for uniform distribution of species is to have a positive definite competition

kernel (see definition below). This criterion is automatically fulfilled when the kernel is

constructed from the overlap of the species utilization of the resource (Roughgarden
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1979). If the kernel is not positive definite, a lumpy species distribution with exclusion

zones emerges. The concern about this discovery is that, even though the Gaussian

kernel is ecologically sound, it is exactly marginal between the two regimes. This indi-

cates that numerical inaccuracies and/or secondary ecological effects may violate the

positive definiteness of the competition kernel and cause a transition from a uniform

to a lumpy species distribution.

The objective of this paper is to raise awareness in the theoretical ecology com-

munity of the potential pitfalls and subtleties associated with the use of Gaussian

competition kernels or other marginal choices. To illustrate this, the consequences of

the marginal nature of the Gaussian kernel in the competition model are explored, in

the idealized case of a uniform carrying capacity. First, the sensitivity to ecologically

relevant effects that may lead to lumpy distributions are examined. Then we exam-

ine the sensitivity to the details of numerical implementation. In the last section, we

discuss the relevance of our results for the applications of the model.

Model

The competition model considers n interacting populations, each utilizing a common

distributed resource x according to a utilization function ui(x), i = 1, ..., n. The dynam-

ics of the abundance of species i, Ni, is described by a Lotka-Volterra set of competition

equations:

Ṅi = Ni



1 − 1

K

n
∑

j=1

GijNj



 , i = 1, ..., n, (1)

where the growth rate (considered to be the same for all species) is set to one for

simplicity, and the carrying capacity K is uniform. Competition in (1) is described

by competition coefficients Gij which are constructed from the overlap of utilization

functions of competing species (MacArthur and Levins 1967; Roughgarden 1979):

Gij =

∫

ui(x)uj(x) dx
∫

u2
i (x) dx

. (2)

A justification of (2) rests upon considering the probability that consumer i meets

consumer j (Levins 1968; Roughgarden 1979).

Often, utilization functions are ignored, and the competition coefficients are pos-

tulated directly. It is usually assumed that species i has an optimal exploitation of the

resource at a value x = xi, and the competition coefficients are taken to depend on the

difference between the optimal resource values of two competing species, y = |xi −xj |,
such that we can introduce the so-called competition kernel, Gij = G(y). Here we use

a family of competition functions described by a parameter p:

Gij = G(y) = e−|(xi−xj)/σ|p , (3)

which contains the Gaussian kernel when p = 2, or the exponential one when p = 1.

The width of the kernel σ gives the range of competition on the niche axis. Incidentally

the Gaussian kernel is obtained from Eq. (2) when the utilization functions are also

Gaussian and of the form ui = exp(−((x − xi)/s)2) with s2 = σ2/2. When p < 2 the

kernels are more peaked around y ≈ 0 and for p > 2 they become more box-like (see

Fig. 1).



4

Note that when competition coefficients are constructed by the formula (2), i.e. from

the overlap of two utilization functions, they are always positive definite, meaning that
∑

ij aiGijaj ≥ 0 for any set of numbers ai (Roughgarden 1979) or, equivalently, that

the Fourier transform of G(y), defined as G̃(k) =
∫ +∞

−∞
dx G(x) exp(ikx), does not

take negative values. This property holds for the family of kernels (3) for p ≤ 2, but

not for p > 2 (Fig. 1). The Gaussian kernel is therefore marginal in the sense that,

corresponding to the limit case p = 2, even a very small perturbation may violate its

positive definite character, generally believed to be an ecological requirement arising

from expression (2).

An intuitive explanation for the appearance of the exclusion zones for p > 2 is

the following. Interaction kernels with large p have a box-like shape. In these cases

species compete very strongly with other species, roughly within a distance ±σ from

their own niche value. Species with a niche x in that range will therefore not be able

to invade the resident species, leading to the exclusion zones between them. When p is

decreased, the resident species compete less and less with neighbouring species, until

the exclusion zones disappear, leading to the possibility of continuous coexistence.

Understanding the fact that the transition occurs at p = 2, and also the coexistence

of more than one species in each cluster, requires a mathematical stability analysis of

the model. Consider the uniform solution, in which many species having the same

abundance are densely packed in niche space. Now perturb each population by a small

quantity ∆Ni, which can be either positive or negative. If the competition kernel

is not positive defined, there are sets of perturbations such that
∑

∆NjGij∆Ni is

less than zero. One can show that such perturbations are amplified by the dynamics

(Pigolotti et al. 2007), making the uniform solution unstable. The system will then

evolve to a clustered state, where the distance between clusters is proportional to the

interaction range σ.

We mention here that a possible generalization is to consider multi-dimensional

niche spaces. This possibility would complicate the mathematical notation but does

not introduce qualitative changes. Stability in a multi-dimensional niche space still

depends on the positive definiteness of the competition kernel. In particular, a multi-

dimensional Gaussian competition kernel is still marginal in the sense described above.

We simulated the model (1) with competition kernel (3) for 1000 generations and

200 species initially at random niche positions. The width of the kernel is σ = 0.3 and

the carrying capacity is K = 10. The niche range is taken to be x ∈ [0, 1]. The standard

mathematical way to avoid effects due to the borders of the niche space is to adopt

periodic boundary conditions (e.g. Scheffer and van Nes (2006)). These are introduced

for mathematical convenience and aim at modeling species far from endpoints in a large

niche space. Adopting periodic boundary conditions means that niche space is circular,

so that when the interaction kernels extends beyond the left edge at x = 0, it enters

back into the right side at x = 1 and vice versa. Periodic boundaries therefore mimic

an infinite system by considering the niche segment [0, 1] as embedded in an array of

repeated copies of itself. Mathematically, this is properly implemented by making a

’kernel wrap’, i.e. substitute G(y) in (3) with Gp(y) ≡
∑

n G(y − n), where the sum

runs from n = 0,±1,±2, ...±∞. We call this implementation “fully periodic boundary

conditions”, to distinguish it from another possibility considered below. Under fully

periodic boundary conditions, the stability properties of the uniform solution are the

same as in the infinite system.
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Fig. 1 Three interaction kernels (top), their Fourier transform (middle row), and species
distributions arising from simulation of the model after 1000 generations (bottom). Column
are (Left) Exponential competition (p = 1); (Center) Gaussian competition (p = 2), and
(Right) quartic competition (p = 4). Simulations are initiated with 200 species randomly
distributed, K = 10, and σ = 0.3.

Results

Simulations using the competition kernel (3) with p = 1 (exponential), 2 (Gaussian)

and 4 (box-like) illustrate the uniform species distributions for p = 1 and p = 2,

and the lumped species clusters for p = 4 (Fig. 1). The configurations in Fig. 1 are

still transient states and, at longer times, configurations with p ≤ 2 become more

uniform, whereas the periodically spaced clusters of species for p > 2 become thinner

until they contain only a single species. In any case, from the initial stages until the

final equilibrium, the main difference between the dynamics for the two classes of

competition kernel is unchanged: for p ≤ 2 all initial species are preserved, leading

to dense and evenly distributed configurations, whereas ‘exclusion zones’ develop for

p > 2 leading to lumped species distributions.

Effects of secondary ecological processes

A natural question is whether the marginal nature of Gaussian competition can be

brought on by secondary ecological effects. We have checked that adding a small im-

migration rate does not produce lumpy distributions. Adding noise or an extinction

threshold (i.e. species are removed when their populations fall below a threshold) result
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Fig. 2 Final populations after 500 000 generations with speciation and extinction. Species
whose population goes below 0.1 are removed from the system. Every 100 generations new
species are introduced close to an existing one. The parent species is chosen with a probability
proportional to its population; the distance of the new species to its parent is drawn from a
Gaussian distribution of zero mean and spread σp = 0.02. The new species j is introduced
with a population uniformly drawn from the interval N ∈ [2, 3]. (Left panel) Gaussian kernel
(p = 2) and (Right panel) exponential kernel (p = 1). Simulations are performed with fully
periodic boundary conditions. K = 10 and σ = 0.3.

in a limit to similarity between species, but does not lead to clustering (Pigolotti et al.

2007). This also happens in non marginal cases with p < 2, where the minimum dis-

tance between species is unrelated to the competition range σ.

Effect of species extinction, invasion, and speciation was simulated by eliminating

species below a given population threshold, and introducing invading species at a fixed

rate. If they are introduced at random locations in niche space no patterns are observed.

If invading species are introduced close to existing ones, modeling evolutionary change

and speciation (Lawson and Jensen 2007), the system ends with a lumped species

distribution, even for p = 2 (Fig. 2). However, the same mechanism has no effect

if an exponential competition kernel (p = 1) is chosen. The interpretation is that

evolutionary effects favor the formation of lumpy species distributions, but only when

the competition kernel is close to the Gaussian limiting case.

Effects due to truncation

The most obvious numerical simplification is to only partially implement the periodic

boundary conditions, by omitting the kernel wrap around the niche interval, that is,

using G(y), with y being the minimum of the two possible distances among species i

and j (|xi − xj | and 1− |xi − xj |), instead of the periodic kernel Gp(y). The resulting

effective kernel is Gaussian but truncated at |y| = 1/2, making it no longer positive

definite. Although the shapes of G(y) and Gp(y) are still very similar for the parame-

ters used here (σ = 0.3), the change immediately leads to lumped species distributions

(Fig. 3). In contrast, for p = 1 (or any other values of p < 2 which we have checked),

changing Gp(y) by G(y) has no noticeable effect. Qualitatively, the dynamics for trun-

cated Gaussian kernels resembles the outcome when the exponent of the competition

kernel is perturbed just slightly. E.g. using p = 2.1 instead of p = 2 also leads to lumped
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Fig. 3 Populations of 200 species after 1000 generations with (left panel) Gaussian competi-
tion kernel with fully periodic boundary conditions, and (right panel) with truncated Gaussian
competition kernel (see text). K = 10 and σ = 0.3.

species distributions, even when fully periodic boundary conditions are implemented

(not shown).

While the mathematical analysis of “evolutionary diffusion” is rather complicated

and results can be obtained only in the framework of simple models (Lawson and Jensen

2007), the effect of truncation on the different kernels may be analyzed in more depth

and is discussed in the next subsection.

Wavelength of Gaussian and exponential instabilities

We have numerically shown in the previous section that truncation leads to radically

different results for the Gaussian and exponential kernel. This may be surprising when

realizing that neither the truncated Gaussian nor the truncated exponential kernel are

positive defined. The explanation of the different result comes from the wavelength of

the modes k for which the Fourier transform of the kernel G̃(k) takes negative values,

as it determines the distance between lumps (Pigolotti et al. 2007; Fort et al. 2009).

To find these wavelengths, we start from the Gaussian case and show what is the

effect of truncating the kernel at a distance a (which we take now to be the niche-space

size, previously scaled to be 1) :

G̃p=2(k) =

∫ a

−a

exp(−x2/σ2 − ikx) dx =

√
πσ

2
e−

k2σ2

4

[

erf
(

a

σ
+

ikσ

2

)

+ c.c.
]

, (4)

where erf(x) = (2/
√

π)
∫ x

0
exp−t2dt is the error function, and c.c. stands for complex

conjugate. We impose a/σ ≫ 1, so we can get a simpler expression by expanding the

error function, yielding

G̃p=2(k) ≈
√

πσ

2

[

e−
k2σ2

4 − 2e−
a2

σ2

(

σ cos(ka)

πa
− 2 sin(ka)

πkσ

)]

(5)

From the previous expression we see that the wavenumbers that give negative modes

are order k ≈ 2a/σ2.
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We now check the same effect in the exponential case:

G̃p=1(k) =

∫ a

−a

exp(−|x|/σ − ikx) dx =
2σ

(

1 − e−
a
σ cos(ak) + e−

a
σ kσ sin(ak)

)

1 + k2σ2
(6)

In this case the instability occurs for large wavenumbers, proportional to exp(a/σ).

We checked numerically that kernels with p < 2 behave like the p = 1 case, with the

wavenumber of the first negative mode growing exponentially with the size of the niche

space.

Summarizing, the kernels we considered develop an instability due to the trunca-

tion, but at very different frequencies: very high for the exponential kernel (exponential

in the ratio between the system size and the kernel range) compared with the Gaussian

(proportional to the same ratio). The consequence is that, already when the size of the

niche space is large but not extremely large compared with the competition distance

(like the cases considered here, σ/a = 0.3), the unstable mode in the exponential case

has a wavelength being much smaller than the interspecies distance, and is thus unable

to generate patterns.

Discussion

The model (1)-(3) provides a very abstract representation of competition. Both em-

pirical observations and theoretical approaches, based on explicit consideration of the

coupled consumer-resource dynamics, lead to competition coefficients which are quite

different from Gaussian (Schoener 1974; Wilson 1975; Ackermann and Doebeli 2004),

except in a few particular cases. Even so, the qualitative outcome of the model does

not depend on the exact shape of the competition kernel, but only on its positive or

non-positive definite character. We have restricted our considerations primarily to the

basic model (1) with Gaussian interaction kernel and constant carrying capacity since it

is the simplest implementation, allowing to illustrate in a clear setting the importance

of G and the issues caused by the choice of a marginal competition kernel.

The basic model with competition coefficients obtained from the overlap of utiliza-

tion functions, which yields always positive definite kernels, allows for dense species

distributions with no limits to similarity. This fundamental solution may be changed by

three different effects: 1) effects stemming from the competition kernel being no longer

positive definite lead to lumpy species distributions. Clusters of species will appear, sep-

arated by exclusion zones in niche space with a spacing proportional to the width of the

competition kernel σ; 2) second order ecological effects like noise, species heterogeneity,

evolutionary effects, or the introduction of an extinction threshold lead to a limit to

the similarity with the spacing between species being independent of σ; 3) under a non

constant carrying capacity, patterns of unevenly spaced species, lumpy or not, may

appear. This lead Szabó and Meszéna (2006) to conclude that “the not-very-smooth

nature of the carrying capacity seems to be essential for limiting similarity”. Notice

that also some types of smooth, but non-uniform, carrying capacities may originate

lumped distributions (Hernández-Garćıa et al. 2000)

The first case arises when the competition kernel is not positive definite. The main

point of this paper is that, when the competition kernel is the marginal Gaussian,

the model becomes very sensitive to additional effects that may lead to lumpy species

distribution. As an example, we demonstrated that a simple representation of evo-

lutionary diffusion (Lawson and Jensen 2007) may lead to patterns in the Gaussian
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case. This effect is similar to that of evolutionary dynamics under assortative mating

which shown to lead to lumpy species distributions (Doebeli et al. 2007). It is worth

mentioning that, in the context of evolutionary dynamics, the fact that the presence

of clusters depends of the choice of the competition kernel has been recently demon-

strated (Leimar et al. 2008). Patterns can also result from numerical approximations,

such as truncating the tails of a Gaussian competition kernel. This effect is proba-

bly the underlying mechanism behind species clustering observed in recent numerical

work (Scheffer and van Nes 2006), which was used to explain observed lumpy distri-

butions (May et al. 2007). Additional ecological effects have been identified however

(Scheffer and van Nes 2006) which make the species groups a robust phenomenon (See

Hernández-Garćıa et al. (2000) for analytical solutions of this type). In any case, these

spurious effects can be avoided by paying attention to numerical details or by using a

competition kernel which is not marginal, e.g. one with p = 1.5, which in practice is

almost indistinguishable from the Gaussian one. It is worth mentioning that analytical

(i.e. not numerical) results are not affected by the marginal nature of the Gaussian

kernel, both in relation to limiting similarity (May and MacArthur 1972), coevolution

(Case 1981) or criteria for sympatric speciation (Doebeli and Dieckmann 2000). The

marginal nature of Gaussian competition kernel may however affect numerical work on

food web evolution and assembly (Doebeli and Dieckmann 2000; Loeuille and Loreau

2005; Lewis and Law 2007).

Since a non-positive definite competition kernel leads to lumpy species distributions

a natural question is whether a non-positive definite kernel can result from hypothesis

on ecological interactions. This case is often neglected in the literature, since assuming

Eq. (2) automatically leads to a positive definite competition kernel (Roughgarden

1979). However, as emphasized in Meszéna et al. (2006) and references therein, under

quite general assumptions one should introduce two different utilization-like functions:

a sensitivity function Si(x), describing the effect of the resource at x on the growth of

species i, and an impact function Di(x), describing the depletion of resources produced

by i. Then, the competition coefficients depend on the overlap of these two quantities
∫

Si(x)Dj(x)dx, and reduce to (2) only if the sensitivity and impact functions are

proportional, with the constant of proportionality being the ecological efficiency. When

the ecological efficiency is a function of x, and the sensitivity and impact functions

are no longer proportional, the competition kernel may cease to be positive definite

(Hernández-Garćıa et al. 2000).

The third mechanism is that of a non-constant carrying capacity K(x), which has

been explored by Szabó and Meszéna (2006). They found that some choices of carrying

capacity leads to an irregular species lumping. The effect of non-constant carrying

capacity in conjunction with both positive and non-positive definite competition kernels

was explored by Hernández-Garćıa et al. (2000). The emerging picture is that the

two mechanisms are independent. The cases in which a non-constant carrying capacity

leads to uniform species distributions can also be destabilized by a non-positive definite

kernel. This means that the mechanism explored here is not a particularity of constant

carrying capacity but is present also in more general settings. It has been suggested

that the effect of cutting the kernel is similar to that of having a finite niche space, i.e.

of a box-like carrying capacity (Fort et al. 2009). However, this analogy does not hold

to a rigorous mathematical analysis, which has demonstrated that lumps may appear

when the carrying capacity is non-constant, but that this effect is not mathematically

equivalent to a cut kernel (Hernández-Garćıa et al. 2000). Moreover, recent results

(Baptestini et al. 2009) show how the effect of closed boundaries depend on the details
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of the boundary shape, so that the box-like case is not representative of a general finite

niche space.

Having outlined the reasons that may cause the three different outcomes, the ques-

tion arises if it is possible to infer whether one effect or the other is at play from the

result of a numerical integration of the competition model. It can be difficult to distin-

guish between a uniform distribution of discrete species and a lumpy one when lumps

are very narrow and close. Here, the fact that in the lumpy distribution the spacing

of the lumps is proportional to the width of the competition kernel σ can be used.

If changing σ results in a change in the distance between species proportional to σ,

the effect is due to a non-positive definite competition kernel and vice versa. In the

case where the effect is due to the carrying capacity being non-constant the spacing of

species is usually more irregular (Szabó and Meszéna 2006).

To summarize: in line with previous works we have found that the case of continu-

ous coexistence (no limits to similarity) may be limited by a variety of effects, specially

for the Gaussian kernel which has a marginal character. We have underlined that there

are different ways to limit similarity, some leading to lumpy species distributions and

others not. We hope that this article will increase the awareness in the theoretical

ecological community of the potential subtleties associated with the use of the Gaus-

sian competition kernel. Even though this functional form appears to be natural, in

particular for analytical work, it may not be the most prudent choice for numerical

exploration of the niche model.
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petitition and carrying capacity kernels affects the likelihood of disruptive selection. Jour
Theo Biol, doi:10.1016/j.tbi.2009.02.023.

Case TJ (1981) Niche packing and coevolution in competition communities. Proc Nat Acad
Sci USA 78(8): 5021–5025.

Chesson P and Kuang JJ (2008) The interaction between predation and competition, Nature
(456) 235–238.

Doebeli M and Dieckmann U (2000) Evolutionary Branching and Sympatric Speciation Caused
by Different Types of Ecological Interactions. Am Nat 156(4):77–101.

Doebeli M, Blok HJ, Leimar O, and Dieckmann U (2007) Multimodal pattern formation in
phenotype distributions of sexual populations - Proc R Soc London B 274(1608): 347–357.

Fort H, Scheffer M, Van Nes EH (2009) The paradox of clumps mathematically explained.
Theor Ecol, doi:10.1007/s12080-009-0040-x.
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