472 research outputs found

    Holographic Penta and Hepta Quark State in Confining Gauge Theories

    Full text link
    We study a new embedding solutions of D5 brane in an asymptotic AdS5×S5{}_5\times S^5 space-time, which is dual to a confining SU(Nc)SU(N_c) gauge theory. The D5 brane is wrapped on S5S^5 as in the case of the vertex of holographic baryon. However, the solution given here is different from the usual baryon vertex in the point that it couples to kk-anti-quarks and Nc+kN_c+k quarks on the opposite two points of S5S^5, the north and south poles, respectively. The total quark number of this state is preserved as NcN_c when minus one is assigned to anti-quark, then it forms a color singlet like the baryon. However, this includes anti-quarks and quarks, whose number is larger than that of the baryon. When we set as Nc=3N_c=3, we find the so called penta and hepta-quark states. We study the dynamical properties of these states by solving the vertex and string configurations for such states. The mass spectra of these states and the tension of the stretched vertex are estimated, and they are compared with that of the baryon.Comment: 24 pages, 6 figure

    A Matrix Model for Baryons and Nuclear Forces

    Get PDF
    We propose a new matrix model describing multi-baryon systems. We derive the action from open string theory on the wrapped baryon vertex D-branes embedded in the D4-D8 model of large N holographic QCD. The positions of k baryons are unified into k x k matrices, with spin/isospin of the baryons encoded in a set of k-vectors. Holographic baryons are known to be very small in the large 't Hooft coupling limit, and our model offers a better systematic approach to dynamics of such baryons at short distances. We compute energetics and spectra (k=1), and also short-distance nuclear force (k=2). In particular, we obtain a new size of the holographic baryon and find a precise form of the repulsive core of nucleons. This matrix model complements the instanton soliton picture of holographic baryons, whose small size turned out to be well below the natural length scale of the approximation involved there. Our results show that, nevertheless, the basic properties of holographic baryons obtained there are robust under stringy corrections within a few percents.Comment: 30 pages. v3: more comments added, published versio

    Characterization of Novel Paternal ncRNAs at the Plagl1 Locus, Including Hymai, Predicted to Interact with Regulators of Active Chromatin

    Get PDF
    Genomic imprinting is a complex epigenetic mechanism of transcriptional control that utilizes DNA methylation and histone modifications to bring about parent-of-origin specific monoallelic expression in mammals. Genes subject to imprinting are often organised in clusters associated with large non-coding RNAs (ncRNAs), some of which have cis-regulatory functions. Here we have undertaken a detailed allelic expression analysis of an imprinted domain on mouse proximal chromosome 10 comprising the paternally expressed Plagl1 gene. We identified three novel Plagl1 transcripts, only one of which contains protein-coding exons. In addition, we characterised two unspliced ncRNAs, Hymai, the mouse orthologue of HYMAI, and Plagl1it (Plagl1 intronic transcript), a transcript located in intron 5 of Plagl1. Imprinted expression of these novel ncRNAs requires DNMT3L-mediated maternal DNA methylation, which is also indispensable for establishing the correct chromatin profile at the Plagl1 DMR. Significantly, the two ncRNAs are retained in the nucleus, consistent with a potential regulatory function at the imprinted domain. Analysis with catRAPID, a protein-ncRNA association prediction algorithm, suggests that Hymai and Plagl1it RNAs both have potentially high affinity for Trithorax chromatin regulators. The two ncRNAs could therefore help to protect the paternal allele from DNA methylation by attracting Trithorax proteins that mediate H3 lysine-4 methylation

    Expression of eicosanoid receptors subtypes and eosinophilic inflammation: implication on chronic rhinosinusitis

    Get PDF
    BACKGROUND: Eicosanoid receptors are G-protein-coupled receptors playing an important immunomodulatory role in airway diseases. However, there is little information on the expression of these receptors and their link with eosinophilic inflammation in paranasal sinus diseases. We aimed with this study to investigate the tissue expression of leukotrienes and prostaglandin E2 receptors in chronic rhinosinusitis patients and the link of this regulation with eosinophilic inflammation. METHODS: Samples were prepared from nasal tissue of patients with chronic rhinosinusitis without nasal polyps (CRS, n = 11), with nasal polyps (CRS-NP, n = 13) and healthy subjects (Controls, n = 6). mRNA expression of CysLT(1), CysLT(2), BLT(1), BLT(2), E-prostanoid receptors (EP(1), EP(2), EP(3), EP(4)) and sol-IL-5Rα was determined by real-time PCR. Concentrations of PGE2, LTC4/D4/E4, LTB4 and sol-IL-5Rα were determined by ELISA and of ECP by ImmunoCap. Protein expression and tissue localization of eicosanoid receptors and activated eosinophils were evaluated by immunohistochemistry. RESULTS: CysLT(1 )mRNA expression was significantly increased in CRS-NP compared to CRS and controls, and CRS compared to controls, whereas CysLT(2 )mRNA was enhanced in both CRS groups without differences between them. Levels of both receptors correlated to the number of activated eosinophils, sol-IL-5Rα, ECP and LTC(4)/D(4)/E(4 )concentrations in the disease groups. PGE(2 )protein concentrations and prostanoid receptors EP(1 )and EP(3 )were down-regulated in the CRS-NP tissue vs. CRS and controls, whereas EP(2 )and EP(4 )expression was enhanced in CRS and CRS-NP patients vs. controls. No differences in BLT receptors were observed between patients and controls. CONCLUSION: CyLTs receptors are up-regulated in nasal polyp tissue and their expression correlate with eosinophilic inflammation supporting previous results. Eicosanoid receptors mRNA pattern observed suggests that down-regulation of EP(1 )and EP(3 )in CRS-NP and up-regulation EP(2 )and EP(4 )in CRS and CRS-NP groups may have some role in the development of the diseases and their regulation may not be directly linked to eosinophil activation but involve post-transcriptional events mainly related to other inflammatory cell sources

    STM and RHEED study of the Si(001)-c(8x8) surface

    Get PDF
    The Si(001) surface deoxidized by short annealing at T~925C in the ultrahigh vacuum molecular beam epitaxy chamber has been in situ investigated by high resolution scanning tunnelling microscopy (STM) and reflected high energy electron diffraction (RHEED). RHEED patterns corresponding to (2x1) and (4x4) structures were observed during sample treatment. The (4x4) reconstruction arose at T<600C after annealing. The reconstruction was observed to be reversible: the (4x4) structure turned into the (2x1) one at T>600C, the (4x4) structure appeared again at recurring cooling. The c(8x8) reconstruction was revealed by STM at room temperature on the same samples. A fraction of the surface area covered by the c(8x8) structure decreased as the sample cooling rate was reduced. The (2x1) structure was observed on the surface free of the c(8x8) one. The c(8x8) structure has been evidenced to manifest itself as the (4x4) one in the RHEED patterns. A model of the c(8x8) structure formation has been built on the basis of the STM data. Origin of the high-order structure on the Si(001) surface and its connection with the epinucleation phenomenon are discussed.Comment: 26 pages, 12 figure

    Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses.

    Get PDF
    Mesenchymal tumor subpopulations secrete pro-tumorigenic cytokines and promote treatment resistance1-4. This phenomenon has been implicated in chemorefractory small cell lung cancer and resistance to targeted therapies5-8, but remains incompletely defined. Here, we identify a subclass of endogenous retroviruses (ERVs) that engages innate immune signaling in these cells. Stimulated 3 prime antisense retroviral coding sequences (SPARCS) are oriented inversely in 3' untranslated regions of specific genes enriched for regulation by STAT1 and EZH2. Derepression of these loci results in double-stranded RNA generation following IFN-γ exposure due to bi-directional transcription from the STAT1-activated gene promoter and the 5' long terminal repeat of the antisense ERV. Engagement of MAVS and STING activates downstream TBK1, IRF3, and STAT1 signaling, sustaining a positive feedback loop. SPARCS induction in human tumors is tightly associated with major histocompatibility complex class 1 expression, mesenchymal markers, and downregulation of chromatin modifying enzymes, including EZH2. Analysis of cell lines with high inducible SPARCS expression reveals strong association with an AXL/MET-positive mesenchymal cell state. While SPARCS-high tumors are immune infiltrated, they also exhibit multiple features of an immune-suppressed microenviroment. Together, these data unveil a subclass of ERVs whose derepression triggers pathologic innate immune signaling in cancer, with important implications for cancer immunotherapy

    Baryonic Popcorn

    Full text link
    In the large N limit cold dense nuclear matter must be in a lattice phase. This applies also to holographic models of hadron physics. In a class of such models, like the generalized Sakai-Sugimoto model, baryons take the form of instantons of the effective flavor gauge theory that resides on probe flavor branes. In this paper we study the phase structure of baryonic crystals by analyzing discrete periodic configurations of such instantons. We find that instanton configurations exhibit a series of "popcorn" transitions upon increasing the density. Through these transitions normal (3D) lattices expand into the transverse dimension, eventually becoming a higher dimensional (4D) multi-layer lattice at large densities. We consider 3D lattices of zero size instantons as well as 1D periodic chains of finite size instantons, which serve as toy models of the full holographic systems. In particular, for the finite-size case we determine solutions of the corresponding ADHM equations for both a straight chain and for a 2D zigzag configuration where instantons pop up into the holographic dimension. At low density the system takes the form of an "abelian anti-ferromagnetic" straight periodic chain. Above a critical density there is a second order phase transition into a zigzag structure. An even higher density yields a rich phase space characterized by the formation of multi-layer zigzag structures. The finite size of the lattices in the transverse dimension is a signal of an emerging Fermi sea of quarks. We thus propose that the popcorn transitions indicate the onset of the "quarkyonic" phase of the cold dense nuclear matter.Comment: v3, 80 pages, 18 figures, footnotes 5 and 7 added, version to appear in the JHE

    Non-lethal control of the cariogenic potential of an agent-based model for dental plaque

    Get PDF
    Dental caries or tooth decay is a prevalent global disease whose causative agent is the oral biofilm known as plaque. According to the ecological plaque hypothesis, this biofilm becomes pathogenic when external challenges drive it towards a state with a high proportion of acid-producing bacteria. Determining which factors control biofilm composition is therefore desirable when developing novel clinical treatments to combat caries, but is also challenging due to the system complexity and the existence of multiple bacterial species performing similar functions. Here we employ agent-based mathematical modelling to simulate a biofilm consisting of two competing, distinct types of bacterial populations, each parameterised by their nutrient uptake and aciduricity, periodically subjected to an acid challenge resulting from the metabolism of dietary carbohydrates. It was found that one population was progressively eliminated from the system to give either a benign or a pathogenic biofilm, with a tipping point between these two fates depending on a multiplicity of factors relating to microbial physiology and biofilm geometry. Parameter sensitivity was quantified by individually varying the model parameters against putative experimental measures, suggesting non-lethal interventions that can favourably modulate biofilm composition. We discuss how the same parameter sensitivity data can be used to guide the design of validation experiments, and argue for the benefits of in silico modelling in providing an additional predictive capability upstream from in vitro experiments

    Tocolytic effect of a selective FP receptor antagonist in rodent models reveals an innovative approach to the treatment of preterm labor

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Management of preterm labor by tocolysis remains an unmet medical need. Prostaglandins play a major role in regulation of uterine activity and in molecular mechanisms of human labor and parturition. There is some circumstantial evidence that prostaglandin F2α by action through the prostaglandin receptor subtype FP is effective in key events during labor uterine contraction, rupture of membranes and cervical dilation. This role of FP is briefly reviewed. In this study, we tested the hypothesis that an orally active and selective FP antagonist may arrest labor and delay parturition in animal models.</p> <p>Methods</p> <p>We examined the effects of a small molecule selective antagonist of the FP receptor (AS604872) in inhibition of spontaneous uterine contraction in pregnant rat near term. We tested AS604872 for its ability to delay preterm birth in a mouse model in which the anti-progestin agent RU486 triggered parturition.</p> <p>Results</p> <p>By oral or intravenous dosing AS604872 reduced markedly and dose-dependently the spontaneous uterine contractions in late-term pregnant rats at gestational days 19–21. In pregnant mice, AS604872 delayed the preterm birth caused by RU486 administration. The effect was dose-dependent with a significant increase in the mean delivery time of 16 and 33 hours at oral doses of 30 mg/kg and 100 mg/kg, respectively, in the case of labor triggered at gestational day 14. In both models AS604872 appeared more effective than the β-agonist ritodrine.</p> <p>Conclusion</p> <p>The tocolytic activity displayed by a selective FP receptor antagonist supports a key role for the FP receptor in the pathophysiology of premature birth and demonstrates the therapeutic potential of an FP antagonist for the treatment of preterm labor cases in which uterine hyperactivity plays a dominant role.</p

    Sex-Dependent Novelty Response in Neurexin-1α Mutant Mice

    Get PDF
    Neurexin-1 alpha (NRXN1α) belongs to the family of cell adhesion molecules (CAMs), which are involved in the formation of neuronal networks and synapses. NRXN1α gene mutations have been identified in neuropsychiatric diseases including Schizophrenia (SCZ) and Autism Spectrum Disorder (ASD). In order to get a better understanding of the pleiotropic behavioral manifestations caused by NRXN1α gene mutations, we performed a behavioral study of Nrxn1α heterozygous knock-out (+/−) mice and observed increased responsiveness to novelty and accelerated habituation to novel environments compared to wild type (+/+) litter-mates. However, this effect was mainly observed in male mice, strongly suggesting that gender-specific mechanisms play an important role in Nrxn1α-induced phenotypes
    • …
    corecore