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1 Introduction

Nuclear physics is one of the oldest branches of high energy physics, yet remains one of

more difficult. Despite the fact that we know the underlying fundamental theory, i.e.

QCD, we are still unable to predict, reliably and analytically, behavior of nuclei or even

a single proton. The problem is of course that one must understand the strong-coupling

regime of QCD, which by and large remains inaccessible except by large-scale lattice simu-

lations. Traditionally, this set nuclear physics apart from the rest of high energy physics in

many aspects. However, recent developments in the so-called gauge/gravity duality began

to solve certain strongly coupled field theories, possibly including QCD or its close rela-

tives, allowing the two communities merging with each other. In this paper, by using the

gauge/gravity duality, we propose a new matrix model for the dynamics of multi-baryons,

whereby we compute basic properties of holographic baryons, interaction with mesons, and

ultimately nuclear forces.

What matrix? In our matrix model, the number of baryons is represented by the rank

of the matrix. Therefore, for k-body baryons, it is a U(k) matrix model. If we path-

integrate out the off-diagonal elements of matrices, we are left with k diagonal elements.
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It is these elements which represents the positions of the k baryons. In addition, there are

a pair of complex k×Nf rectangular matrices whose classical values are related to the size

of baryon. Together, they form the well-known Atiyah-Drinfeld-Hitchin-Manin (ADHM)

matrix of instantons.

Why matrix? In the large Nc QCD, mesons are open strings and light degrees of

freedom, with mass ∼ O(1) [1], while baryons are solitons with large mass ∼ O(Nc) [2].

If we embed the large Nc gauge theory into string theory, baryons are described by string

theory solitons, i.e., D-branes [3, 4]. Therefore, the dynamics of multi-baryons are described

by a multi-D-brane system, which is nothing but the U(k) matrix model. Our matrix model

is along the line of the ADHM construction [5], which is the matrix description for multi-

instantons in gauge theory, or equivalently along the line of D0-D4 quantum mechanics.1

In the context of QCD, one must of course deform the description appropriately. Before

we explain these changes in detail, let us first briefly review the holographic QCD.

The application of gauge/gravity duality [8–10] to large Nc QCD [1], i.e., holographic

QCD was developed very much in recent years, especially thanks to the D4-D8 model by

Sakai and Sugimoto [11]. This model starts with large Nc number of D4-branes compactified

on a thermal circle [12], representing pure QCD at the low energy, and incorporates Nf

species of massless quarks by intersecting Nf pairs of D8- and anti-D8-branes [11]. In

the large Nc limit, the D4-branes are replaced by their dual geometry, and flavor D8 and

anti-D8-branes are connected at the IR of the dual geometry, which is the geometrical

realization of chiral symmetry breaking. The theory on the connected D8-anti-D8 brane

in this dual geometry reproduces the low energy effective theory of light meson sector with

remarkable accuracy.

This theory has only two independent input parameters, and are free of ambiguities

which low energy chiral Lagrangians such as Skyrme model [13–15] possess. Furthermore,

it contains not only the light vector meson but also infinite towers of massive vector meson,

resulting in a model with infinite number of predictions. Most of these are irrelevant since

at high energy the theory deviates from real QCD, but nevertheless there are many low

energy processes which can be computed from this model. This aspect of the D4-D8

model [11, 16] is one of the most important points that sets the D4-D8 model aside from

the other more generic AdS-inspired models.

Baryons in this D4-D8 setup turned out to be very interesting also. Baryons, in the

large Nc limit, are inherently nonperturbative objects with their mass scaling as Nc [2]

which is inverse of the genus expansion coupling constant. The holographic baryon in

D4-D8 model is no exception, and can be introduced as instantonic soliton on the flavor

D8-brane. Note that no new parameters are introduced in this step and all observables

associated with baryons are computable by the D4-D8 model.2

Following the original idea [3, 4], we recall that baryons can be also thought of as

1The relevance of such a matrix model for baryons was previously emphasized by one of the authors [6, 7].
2Employing this picture, static properties [17, 18], interactions with mesons [17, 19], electromagnetic

form factors [20, 21], and more recently nucleon-nucleon potential [22, 23] have been derived again with

remarkable accuracy. Although most literatures considered nucleons, higher isospin baryons can also be

treated on equal footing [24, 25].
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D4-branes wrapped on the compact S4 that surrounds the QCD Nc D4-branes. Let us call

them D4’-branes to distinguish them from those responsible for QCD. As such, its effective

dynamics in the large Nc limit involve open strings with both ends on the D4’-branes and

also those connecting the D4’-branes and the D8-branes. The dynamics of k baryons would

be U(k) gauge theory, and if we consider only the zero mode3 along the S4 on which the

D4’ and the D8 are wrapped on, the theory on the D4’-branes reduces to a 0+1 dimensional

matrix model. Motivated by this viewpoint, in this paper, we propose a new U(k) matrix

model for holographic baryons.

To illustrate our matrix model, let us remember a simple D-brane bound state of the

Dp-D(p+4) system and that we have two descriptions for this system. One is the solitonic

description for the Dp-branes as instanton solitons in the D(p + 4)-brane gauge theory.

This description is natural when gauge fields are weakly varying, namely at long distance

scale with ρ ≫ ls where ρ is the size of the instanton soliton and ls is the string length.

The other is the open string matrix theory viewpoint, whereby the ADHM construction of

the instanton soliton is naturally derived [27, 28]. This approach is more natural at a short

distance scale, ρ ≪ ls. For fully supersymmetric case, the two descriptions are equivalent

for many purposes.

Our matrix model for the k D4’-branes follows the latter viewpoint and is a D4’-

D8 matrix theory compactified on a common S4. There are several differences between

our matrix model for baryons and the usual Dp-D(p + 4)-brane system. First, in our

matrix model, there is a Chern-Simons (CS) term (supersymmetric versions were studied

in [29, 30]). This term originates from the fact that there is a Ramond-Ramond (RR) flux

on the S4 on which the D4’-branes are wrapped, and is in fact the same type of term that

allowed Witten to identify wrapped D5-branes as baryon vertices in AdS/CFT description

of maximally supersymmetric Yang-Mills theory [3]. For us, this term turns out to play

a crucial role in dynamics of baryons in general and in the baryon-baryon interactions in

particular. Second, since the D4’-branes are living on the D8-brane at the IR bottom of

the warped geometry, we need to take into account the warped geometry to derive the

U(k) matrix model. The point is that if we put the k baryons at short distances, the warp

factor approaches almost constant values, therefore the effects of the warped geometry is

simply just rescaling of a coupling constant plus mass terms. This in turns implies that the

supersymmetry is broken explicitly by the dual geometry [12, 31] of the QCD D4-branes. In

practice, the supersymmetry breaking would manifest as various mass terms and potential

energy in the would-be vacuum moduli space.

One motivation for us is that such a matrix formulation can easily accommodate a large

number of baryons. One of more grey area of nuclear physics, from the purely theoretical

viewpoint, is how one handles many-nucleon systems such as nuclei. The fundamental

theory of QCD is even less effective there. The matrix model of ours can be written

down immediately for all k, and should contain in principle, not only 2-body interactions

3The subtlety of taking of a decoupling limit of the non-zero modes along S4 is a long-standing problem

in holographic QCD. As a result, it is obscure why in low energy effective theories such heavy objects like

baryons are well-described. For one possible explanation concerning supersymmetries offered by one of the

authors, see [26].
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but arbitrary k-body interactions built-in from the beginning. This may open up a novel

window for dealing with finite k nuclei and large k physics such as necessary for neutron

star, in term of strongly-coupled QCD.

Another motivation, which is perhaps more practical for now, is already apparent in the

holographic soliton picture of baryon [17, 18]. Remember that the holographic size of the

solitonic baryon is ≃ 9.6/(MKK

√
λ), where λ is the ’t Hooft coupling and MKK ∼ 1GeV is

the mass scale of the vector mesons [17, 18]. Although this size is larger than the Compton

size of the baryon ∼ 1/(MKKNcλ), obeying the usual criterion for validity of field theory

soliton picture, it is unfortunately as small as the local string scale leffs ∼ 1/(MKK

√
λ). One

should be dubious whether the field theory soliton is really accurate enough for such a small

object. The supersymmetry breaking scale is ∼ 1/MKK, so the supersymmetry is approx-

imately valid at the very short distance such as the string scale, so one hope for relative

stability of the baryon physics in interpolating between the string scale and the QCD meson

scale [26]. Nevertheless, we cannot expect quantitative agreement for all observables.

Open string description of D-brane interactions is deemed to be relevant for distance

scale below string scale, so we have a motivation and an opportunity here to reexamine

holographic baryons from a D4’-D8 (compactified on S4) matrix description. With super-

symmetry broken at MKK and below, one should in general expect the solitonic viewpoint

and the matrix viewpoint would disagree quantitatively; it would be interesting to compare

our matrix description with the previous soliton description.

In section 2, we drive the matrix model by starting with D4’-D8 gauge theory com-

pactified on S4, and extracting leading order supersymmetry-breaking effects at very short

distance. The action we find is valid at distance leffs and below. To show the effectiveness

of our matrix model, we display only two simple examples in this paper: energy functions

of static configurations for k = 1 and k = 2, for one and two flavor(s).

In section 3, we discuss k = 1 and determine the holographic “size” of the baryon,

value of which affects numerous observable quantities. This parallels the energy function

estimates for the solitonic baryon in spirit but differs in detail. For two or more flavors, we

find the energy function with a different numerical coefficient, leading to a new estimate

for the holographic size which is larger by a factor of (5/4)1/4 than the soliton result. We

discuss its implications. With a singe flavor, for which the soliton model has no computation

due to lack of finite and smooth self-dual U(1) instanton solutions, we find a smaller but

still non-vanishing size.

In section 4, where k = 2 is studied, we compute a baryon-baryon potential at short

distance for two flavors. Interestingly, integrating out the auxiliary gauge potential in

0+1 dimension turns out to give a universal repulsive core of the nuclear force. The core

consists of three terms; the isospin-independent central term, isospin-dependent central

term, and isospin-dependent tensor term. The computation here is far simpler than the

soliton computation, yet gives the same type of results, except that numerical coefficient

of the latter two turn out to be larger by a factor of 5/4. We explain this in simple terms

based on the above k = 1 results. We also show that the repulsive core is universal for any

baryon state for the two-flavor case.

In section 5, we close with discussions on possible ramifications of this new model of

baryons and baryon dynamics.
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2 The matrix model

We derive the action of the matrix quantum mechanics in this section, which will be used

for getting the baryon spectrum (section 3), the nucleon-nucleon potential and the universal

repulsive core (section 4).

The matrix model is nothing but the low energy effective action on the k D4’-branes

embedded in flavor Nf D8-branes in Witten’s geometry. Those who are not interested in

the string-theoretical derivation are advised to see only the action (in section 2.1), skip the

rest and go directly to section 3.

2.1 Action

The matrix model action we derive is a U(k) quantum mechanics,

S =
λNcMKK

54π

∫

dt trk

[

(D0X
M )2 − 2

3
M2

KK(X4)2 + D0w̄
α̇
i D0wα̇i −

1

6
M2

KKw̄α̇
i wα̇i

+
36π2

4λ2M4
KK

( ~D)2 + ~D · ~τ α̇
β̇
X̄ β̇αXαα̇ + ~D · ~τ α̇

β̇
w̄β̇

i wα̇i

]

+Nc

∫

dt trkA0 . (2.1)

Here λ = Ncg
2
QCD is the ’tHooft coupling constant, and MKK is the unique dimension-ful

constant. The dynamical fields are XM and w, while ~D and A0 are auxiliary fields. All

the fields are bosonic. We claim that this matrix model describes the k-baryon system,

according to the holographic principle in string theory.

Our 1-dimensional matrix model is a deformed ADHM matrix model. The ADHM

matrix model has been extensively studied in the context of D-branes in string theory and

instanton calculus (for a concise review, see [32]). Our theory is deformed in the following

two points:

• Addition of the CS coupling. The last term of the action (2.1) is a CS term in 1

dimension.

• Mass deformation. A part of the dynamical fields, X4 and w, are massive, in contrast

to the standard ADHM matrix model.

We will describe how the ADHM matrix model and these deformations appear in the holo-

graphic QCD, together with the detailed derivation of the coefficients in the action. Note

that in the absence of the field w, the CS term and the mass term, our matrix model looks

close to the BFSS Matrix theory for M-theory [33] or the IKKT matrix model [34], as the

integration of the auxiliary field D results in a potential of a commutator type, tr([X,X]2).

The symmetry of this matrix quantum mechanics is

U(k) × SU(Nf ) × SO(3) (2.2)

where the first U(k) is a local symmetry with which the gauge field A0 is associated, and

the remaining SU(Nf )× SO(3) is a global symmetry. k refers to the number of baryons of
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field index U(k) SU(Nf ) SU(2) × SU(2)

XM (t) M = 1, 2, 3, 4 adj. 1 (2,2)

wα̇i(t) α̇ = 1, 2; i = 1, · · · , Nf k Nf (1,2)

A0(t) adj. 1 (1,1)

Ds(t) s = 1, 2, 3 adj. 1 (1,3)

Table 1. Fields in the matrix model.

the system, Nf is the number of flavors in QCD, and SO(3) is the rotational symmetry of

our space in which the baryons live. The notation of the action is better-understood if we

embed the rotational symmetry as

SO(3) ⊂ SO(4) ∼ SU(2) × SU(2) (2.3)

where the additional dimension in fact corresponds to the holographic dimension. This

SO(4) is broken down to the SO(3) by the mass deformation.

We summarize the representation of the fields in the table 1. The indices with respect

to the U(k) gauge group are implicit. In the action, the trace is over these U(k) indices.

One can think of the flavor symmetry as U(Nf ), while the overall U(1) part of it is identical

to the overall U(1) part of the gauge symmetry U(k), as seen in how they act on the bi-

fundamental field w.

In the action, the definition of the covariant derivatives is D0X
M ≡ ∂0X

M −i[A0,X
M ],

D0w ≡ ∂0w−iwA0, D0w̄ ≡ ∂0w̄+iA0w̄, and τ s (s = 1, 2, 3) is the Pauli matrix. The spinor

indices of X are defined as Xαα̇ ≡ XM (σM )αα̇ and X̄α̇α ≡ XM (σ̄M )α̇α where σM = (i~τ , 1)

and σ̄M = (−i~τ , 1). We follow the notation of [32].

2.2 Derivation in gauge/gravity duality

Our matrix model (2.1) is nothing but a low energy effective field theory on D-branes.

The D-branes of our concern are D4’-branes wrapping S4 of a background geometry given

by Witten [12] (the metric originally given in [31]). This D4’-brane is called “baryon

vertex” [3, 4] in the gravity side of the AdS/CFT duality, which corresponds, as the name

shows, to a baryon in the field theory side. As we are dealing with a k-baryon system, we

place these k D4’-branes close to each other. We are going to derive the effective action of

this collection of the D4’-branes wrapping the S4, via a standard technique in string theory.

The D-brane action is affected not only by the geometry and the background flux, but

also by the presence of the probe Nf D8-branes which are responsible for quarks a la Sakai

and Sugimoto [11]. We have additional strings connecting the baryon D4’-brane and the

flavor D8-brane. From the viewpoint of the baryon D4’-brane effective field theory, this

string provides the field w in the bi-fundamental representation. Together with the field

XM in the adjoint representation whose diagonal eigenvalues specify the location of the

D4’-branes in the transverse directions (but longitudinal to the D8-brane worldvolume)

and thus the location of the baryons in our real space, the matrix model action is written.
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Since the D4’-branes are completely inside the worldvolume of the flavor D8-branes,

the matrix model is very close to the so-called supersymmetric ADHM matrix model which

is nothing but the effective action of k D-instantons on Nf D3-branes in flat spacetime.

The deformation is due to the curved geometry and the flux, which break the supersym-

metry explicitly. Here we keep only the bosonic fields, which is enough for computing

classical quantities.

Although the D4’-branes (and the D8-branes) wrap the S4, we trivially reduce the S4

dependence (a dimensional reduction with the assumption of no dependence along S4), so

that the resulting action is in one dimension, i.e. only time direction.

The background geometry and the flux given by Witten [12] (and Gibbons and

Maeda [31]) are written as

ds2 = (U/R)3/2(ηµνdxµdxν + f(U)dτ2) + (R/U)3/2(f(U)−1dU2 + U2dΩ2
4) , (2.4)

eφ = gs(U/R)3/4, F4 = dC3 =
2πNc

V4
ǫ4 , (2.5)

where f(U) ≡ 1−U3
KK/U3, and R3 ≡ πgsNcl

3
s . V4 ≡ 8π2/3 is the volume of the S4, and ǫ4

is the volume form on it.4 The τ direction is compactified with the period τ ∼ τ +2π/MKK

where MKK ≡ (3/2)U
1/2
KKR−3/2, so that the geometry is everywhere smooth. The relations

to the QCD variables are

R3 =
1

2

g2
YMNc

MKK
l2s , UKK =

2

9
g2
YMNcMKKl2s , gs =

1

2π

g2
YM

MKK

1

ls
. (2.6)

Convenient coordinates used in [11, 16] are

U3 = U3
KK + UKKr2 , θ ≡ 3

2

U
1/2
KK

R3/2
τ , y + iz ≡ reiθ . (2.7)

The flavor D8-branes are located at y = 0.

Below we derive the action, by looking at, first, the background RR flux, and second,

the effect of the background geometry.

Chern-Simons term. The important term is the last term of the matrix model (2.1),

which is a CS term in 0+1 dimension. Using the background RR flux (2.5)5 we can compute

the CS term on the D4’-brane as

S =
1

2π

1

2 · 3!

∫

d5ξ tr ǫµ1µ2µ3αβCµ1µ2µ3Fαβ =
1

2π

∫

dt trA0

∫

F4

= Nc

∫

dt trA0 . (2.8)

4We use the standard normalization for the forms, C3 = (1/3!) Cijkdxi ∧ dxj ∧ dxk and F4 =

(1/3!) ∂αCijkdxα ∧ dxi ∧ dxj ∧ dxk.
5We are using the normalization of the RR field in which the RR charge is measured in units of 2π, see

appendix A of [11].
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Note that the overall factor Nc shows that the D4’-brane should be supplied with Nc

fundamental strings (the end point of the D4’-D8 string serves as an electric charge on the

D4’-brane), which means that the D4’-brane is indeed a baryon [3, 4].6

Interestingly, this 0+1-dimensional CS term was used in [29] and [30] for the ADHM

matrix model for supersymmetric dyonic instantons with a CS term in 5 dimensions.

There, the CS term was argued for heuristically ([29] studied fermions and anomalies to

reach the 0+1-dimensional CS term). Here we have derived the 0+1-dimensional CS term

from string theory.

Mass terms and overall normalization. The Dirac-Born-Infeld part of the action for

a single D4’-brane is

S = −TD4

∫

d5ξ e−φ
√

− det(GMN + 2πα′FMN ) . (2.9)

We consider a D4’-brane situated at y = 0 which wraps the S4. Then

S = −TD4

gs

∫

dt V4

(

(R/U)3/2U2
)2

(U/R)−3/4
√

−G00 (2.10)

with V4 ≡ 8π2/3 the volume of a unit four-sphere, where the induced metric is

G00 = −
(

U

R

)3/2
(

1 − (∂0X
i)2
)

+
4

9

(

R

U

)3/2 UKK

U
(∂0Z)2 . (2.11)

The index of Xi runs for our 3-dimensional space, i = 1, 2, 3. So, we obtain

S = −TD4

gs

∫

dt
8π2

3
R3U

√

1 − (∂0Xi)2 − 4

9

R3UKK

U4
(∂0Z)2 . (2.12)

with TDp = 2π/(2π
√

α′)p+1.

We expand this for small Z and small X. Using the expansion U = UKK(1 +

(1/3)U−2
KKZ2 + O(Z4)), and a redefinition

X4 ≡ 2

3

(

R

UKK

)3/2

Z , (2.13)

we obtain a quadratic Lagrangian

S =
λNcMKK

27π

∫

dt

[

−1 +
1

2
(∂0X

i)2 +
1

2
(∂0X

4)2 − 1

3
M2

KK(X4)2
]

. (2.14)

6This Chern-Simons term is also important in producing the correct statistics of baryons, which should

be either fermionic or bosonic depending on whether Nc is odd or even. For detail of nucleon statistics in

our matrix model, see ref. [35].
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In this way, the overall normalization of the matrix model action,7 as well as the mass

term for the field X4, are provided in the matrix model (2.1). This mass term originates

entirely from the expansion of U sitting in front of the square-root in (2.12).

This leaves the mass term for w. We assume that it is

− λNcMKK

54π

∫

dt
1

6
M2

KKw̄α̇
i wα̇i (2.16)

to be added to (2.14), which completes the quadratic part of the matrix action in (2.1).

This (2.16) is an educated guess via a comparison with the soliton picture (though in

principle one can derive this by computing string scattering amplitudes). In fact, as we

will see in the next section, the X4 mass term in (2.14) coincides with the soliton picture,

and the following argument suggests that w mass also coincides.

Recall that (Xi,X4, w) form the ADHM data for instantons. When the instanton

size is very small compared to the supersymmetry-breaking scale 1/MKK , the background

geometry is effectively flat with approximate supersymmetry. The D4’-D8 system will

inherit supersymmetry, and thus the data (Xi,X4, w) is equivalent to the supersymmetric

instanton on the D8-branes; At this zero-th order, the instanton picture of the D4’-brane

on the D8-branes is still valid. Note that this is not yet the baryon but merely a purely

magnetic instanton solution. Then, we turn to the effect of supersymmetry breaking at

MKK scale, and evaluate the potential energy of the instanton at the first order. This is

in fact one way of obtaining the mass term for X4 in (2.1). Similarly, using the fact that

|w|2/2 is the size squared for a single instanton, we find (2.16) for the matrix model.8

Commutator term. Finally, let us compute the coefficient in front of ~D2 which is related

to the coefficient in front of the famous commutator term [X,X]2 in D-brane quantum

mechanics.

Let us expand the generic Dp-brane action (2.9) to the quadratic order,

S = −TDp

∫

dp+1ξ e−φ
√

− det GMN
1

4
(2πα′)2FMNFPQGMP GNQ . (2.17)

We now make a dimensional reduction to get the commutator term from the YM kinetic

action. The relevant formula for the dimensional reduction is 2πα′AM = XNGMN for

7Note that higher order terms in X4 are not suppressed by 1/λ. In fact, the leading correction to the

mass term is

+
1

3
M2

KK(X4)2 −
1

9
M4

KK(X4)4 + · · · (2.15)

In the following, we assume that the magnitude of X4 is small so that we can ignore the higher corrections.

In fact, as we consider the wave function of this X4 after the quantization around the vacuum of the matrix

model, we obtain a Gaussian wave function with the width suppressed by 1/Nc which is quite small, and

this approximation is valid.
8One may recall that the soliton representation of the holographic baryon has a Coulombic potential

as well [17, 18]. This is not apparent yet in the matrix model but will arise by integrating out the gauge

potential A0 of D4’. The crucial difference from the mass terms is that the Coulombic energy arises from

a quadrature of an electric field (in the soliton picture) which is itself a first order deviation. We will see

later that, perhaps because of this, the Coulombic energy differs quantitatively in the two pictures.
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diagonal metrics. Then, the action is

L ∝ 2G00GijD0X
iD0X

j + 2G00GzzD0ZD0Z

−[Xi,Xj ][Xk,X l]GikGjl
1

(2πα′)2
− 2[Xi, Z][Xj , Z]GijGzz

1

(2πα′)2

∝ (D0X
i)2 + (D0X

4)2 +
1

2

1

(2πα′)2
(

[Xi,Xj ]2 + 2[Xi,X4]2
)

(

UKK

R

)3

= (D0X
M )2 +

2

36π2
λ2M4

KK[XM ,XN ]2 . (2.18)

On the other hand, the commutator term can be written by using the auxiliary field
~D. If we start from the action of [32]9

S = c

∫

dt tr
[

2(2πα′)2(~D)2 + ~D · ~τ α̇
β̇
ā′

β̇α
a′αα̇

]

(2.19)

then by integrating out the field ~D we obtain

S = c

∫

dt tr

[

1

16π2α′2
[a′m, a′n]2

]

. (2.20)

Comparing this with the normalization we obtained in (2.18), we obtain the expression for

the commutator term of our matrix model as

λNcMKK

54π

∫

dt trk

[

36π2

4λ2M4
KK

(

~D
)2

+ ~D · ~τ α̇
β̇
X̄ β̇αXαα̇

]

. (2.21)

The w term coupled to ~D is written down in [32] and we can just use it with the same

normalization as the ~DXX term.

3 Single baryon

In this section, we study the k = 1 case, i.e. a single baryon. Our quantum mechanics

directly gives a spectrum of the baryon.

First, we evaluate the Hamiltonian of the quantum mechanics with k = 1. Then we

analyze the vacuum of the system for Nf = 1 and Nf = 2 respectively. For Nf = 2

system, we calculate the baryon spectrum. The computation of the spectrum, as well as

the quantization procedure, closely follow the soliton approach of [17, 18], although the

derivation of the Hamiltonian is different. Finally we discuss meson couplings.

3.1 Hamiltonian

Let us compute the Hamiltonian for a single baryon k = 1, with generic Nf .

First we explicitly integrate out auxiliary fields ~D and A0. As for the terms including

the field ~D, since for k = 1 the field X is now not a matrix but a number, all the X

9In [32] the field ~D is anti-Hermitian, while our ~D is defined to be Hermitian.
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couplings drop off, and we obtain

S ~D =
λNcMKK

54π

∫

dt
−λ2M4

KK

36π2

[

∑

(

~τ α̇
β̇
w̄β̇

i wα̇i

)2
]

=
λNcMKK

54π

∫

dt
−λ2M4

KK

36π2

[

4wi
1(w

i
2)

∗wj
2(w

j
1)

∗ (3.1)

+(wi
1(w

i
1)

∗)2 + (wi
2(w

i
2)

∗)2 − 2wi
1(w

i
1)

∗wj
2(w

j
2)

∗
]

,

where, the first sum is over three Pauli matrices and we omit the dots in the dotted spinor,

α̇ = 1, 2. S ~D gives a so-called ADHM potential. Minimization of the ADHM potential is

equivalent to the ADHM constraint, which should be solved for construction of instantons

in the ADHM formalism. Note that since Lagrangian is Hermitian, ~τ α̇
β̇
X̄ β̇αXαα̇ and

~τ α̇
β̇
w̄β̇

i wα̇i are real.

Since our theory is 0+1-dimensional, the gauge field A0 is an auxiliary field, and we

integrate it out explicitly. The terms including A0 in the matrix model action is

SA0 =
λNcMKK

54π

∫

dt

[

∂0w̄
α̇(−i)wα̇A0 + iA0w̄

α̇∂0wα̇ + (A0)
2w̄α̇wα̇ +

54π

λMKK
A0

]

(3.2)

So, the equation of motion for this A0, in other words, the Gauss law constraint, is

54π

λMKK
+ i
(

w̄α̇
i ∂0w

i
α̇ − ∂0w̄

α̇
i wi

α̇

)

+ 2w̄α̇
i wi

α̇A0 = 0 , (3.3)

Then after path-integration over A0, we obtain

SA0 =
λNc

54π
MKK

∫

dξ0

[

− 1

4w̄α̇
i wi

α̇

(

54π

λMKK
+ i
(

w̄α̇
i ∂0w

i
α̇ − ∂0w̄

α̇
i wi

α̇

)

)2
]

. (3.4)

Using the definition of the momentum conjugate to the field w

P α̇
i ≡ ∂S

∂ẇα̇

i

=
λNcMKK

54π

[

∂0w̄
α̇
i −

2

4w̄γ̇
j wj

γ̇

(

54π

λMKK
+i(w̄β̇

k ∂0w
k
β̇
−∂0w̄

β̇
k wk

β̇
)

)

iw̄α̇
i

]

, (3.5)

we obtain the Hamiltonian

H ≡ P α̇
i ẇα̇

i + P̄ i
α̇

˙̄wi
α̇ − L

=
λNcMKK

54π

[

∂0w̄
α̇
i ∂0w

i
α̇ +

1

6
M2

KKw̄α̇
i wi

α̇

+
λ2M4

KK

36π2

[

4wi
1(w

i
2)

∗wj
2(w

j
1)

∗ + (wi
1(w

i
1)

∗)2 + (wi
2(w

i
2)

∗)2 − 2wi
1(w

i
1)

∗wj
2(w

j
2)

∗
]

+
1

4w̄α̇
i wi

α̇

(

(

54π

λMKK

)2

+
(

w̄α̇
i ∂0w

i
α̇ − ∂0w̄

α̇
i wi

α̇

)2

)]

. (3.6)
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3.2 Single flavor

Let us minimize the Hamiltonian to find a vacuum of the k = 1 system. We consider first

the case of the single flavor, Nf = 1. We put the following ansatz,10

wα̇=1 = ρ1 , wα̇=2 = ρ2 , (3.8)

where ρ’s are real constants. Then, the Hamiltonian is

H =
λNcMKK

54π

[

1

2

(

27π

λMKK

)2

ρ−2 +
1

3
M2

KKρ2 +
4λ2M4

KK

36π
ρ4

]

(3.9)

where we have defined 2ρ2 ≡ ρ2
1 + ρ2

2.

Each term in the Hamiltonian (3.9) has a physical meaning.

• The first term ∝ ρ−2 is induced by the CS term and the A0 path-integration, and it

can be interpreted as a self-repulsion of the dyonic instanton in the soliton picture.

As described in [17, 18], the instanton has an electric charge, so the self-energy should

be lowered by expanding the size of the instanton, thus resulting in a negative power

in ρ.

• The second term is from the mass term of our matrix model, thus comes from the

curved spacetime of the background. In terms of the instanton, the location of the

instanton along the direction z affects the total mass of the instanton, due to the

curved geometry.

• The third term ∝ ρ4 is from a path-integration over auxiliary ~D fields which for

example, yielded the commutator square term in the matrix model action. So this

corresponds to the ADHM potential term. For the single flavor, there is no U(1)

instanton except for the small instanton singularity in flat space, and this term ensures

it, in the absence of the dyonic coupling and the curved geometry.

The Hamiltonian is minimized at a nonzero ρ, but the minimization problem is a non-

linear equation. With a help of the fact that we are working in the large λ limit, we reduce

the problem to a linear one. We put

ρ = xλαM−1
KK (3.10)

10A more general ansatz is,

wα̇=1 = ρ1e
i(v1t+s1) , wα̇=2 = ρ2e

i(v2t+s2) , (3.7)

where ρ’s, v’s and s’s are real constants. However, this results in the vacuum which is the same as what

we will find below in this section. In fact, if we minimize the Hamiltonian H with respect to v1 and v2,

we find v1 = v2, and the Hamiltonian H is independent of v. This is interpreted as a manifestation of the

gauge invariance. As a result, we can always choose a gauge v1 = v2 = 0. Note that if one choose another

gauge, for example, A0 = 0, then the Gauss law constraint (3.3) forces w to have a time-dependence, i.e.

v1 = v2 6= 0 to satisfy the Gauss law constraint (3.3). Simplified ansatz (3.8) is not consistent with a generic

gauge choice for A0. This is in good contrast to the situation of the ADHM vacuum for supersymmetric

Yang-Mills-Chern-Simons instanton studied in [29, 30].
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where x is a constant coefficient, and α is a constant power. Then, each term in the

Hamiltonian (3.9) scales for large λ as

1

2

(

27π

λMKK

)2

ρ−2 ∼ λ−2−2α ,
1

3
M2

KKρ2 ∼ λ2α ,
4λ2M4

KK

36π
ρ4 ∼ λ4α+2 . (3.11)

In minimizing the Hamiltonian, the first term, which has a negative power of ρ, should be

balanced with either the second or the third term which has a positive power of ρ. If it

is with the second term, then from the above λ-scaling we need to have −2 − 2α = 2α,

thus α = −1/2. However this value means that the third term has a power larger than

the first and the second terms, so leading to an inconsistency. Therefore, we conclude that

the minimized Hamiltonian is dominated by a cancellation of the first and the third term.

This leads to −2 − 2α = 4α + 2 which is solved as α = −2/3 at which indeed the second

term gives a smaller contribution, which is consistent. For this reason, we can safely ignore

the second term at the large λ, so

H ≃ λNcMKK

54π

[

1

2

(

27π

λMKK

)2

ρ−2 +
4λ2M4

KK

36π
ρ4

]

. (3.12)

Ignoring the second term means that the ADHM-like potential (the third term) is much

larger than the curvature scale of the background spacetime. This is natural, since the

ADHM-like potential has the scale of the string length, in D-brane effective actions. We

will see in the next that for the two flavor case the ADHM-like potential can vanish so that

finally the Hamiltonian is minimized by the cancellation of the first and the second terms.

The value of x minimizing this Hamiltonian is computed, as

ρ = 2−2/39
√

πλ−2/3M−1
KK . (3.13)

The minimized value of the Hamiltonian is

Hmin = 2−5/3λ1/3NcMKK . (3.14)

3.3 Two flavors

Let us consider the more realistic two-flavor case. First, to eliminate the contribution from

the ADHM potential term (the third term), we need to satisfy the ADHM constraints,

~τ α̇
β̇
w̄β̇

i wα̇i = 0 for all Pauli matrix directions, or equivalently,

Nf
∑

i=1

wi
α̇=1(w

i
α̇=2)

∗ =

Nf
∑

i=1

wi
α̇=2(w

i
α̇=1)

∗ = 0 ,

Nf
∑

i=1

|wi
α̇=1|2 =

Nf
∑

i=1

|wi
α̇=2|2 . (3.15)

Once this condition is met, the ADHM potential disappears, and the total energy is lowered

drastically as the power in λ changes. This can be achieved by the following generic choice

wi=1
α̇ =

(

ρ

0

)

α̇

, wi=2
α̇ =

(

0

ρ

)

α̇

. (3.16)
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Note that this is a generic solution minimizing the ADHM potential, since the condition is

invariant under the U(2) global transformation on the spinor index α̇ and the U(2) flavor

symmetry,

wi
α̇ → U β̇

α̇ wj

β̇
[U †

f ] i
j . (3.17)

Then the Hamiltonian, after we include X4-dependence as well, is

H =
λNcMKK

54π

[

(

27π

λMKK

)2 1

2ρ2
+

1

3
M2

KKρ2 +
2

3
M2

KK(X4)2

]

. (3.18)

This is minimized at

ρ = 2−1/437/4√πλ−1/2M−1
KK . (3.19)

The minimized value of the Hamiltonian is

Hmin = 6−1/2NcMKK . (3.20)

This is independent of λ, thus in the large λ limit, we see that Hmin for the two flavor

case is far smaller than that of the single-flavor case. Recall that the classical mass of the

holographic baryon is λNcMKK/27π + Hmin where the first term comes from the constant

part of (2.14).

Here, the variable ρ is nothing but the instanton size in the soliton approach, since we

have chosen a correct normalization for this ρ, a la ADHM formalism in the flat spacetime.

Let us compare our Hamiltonian with the one obtained in the soliton approach, [17, 18],

where a potential for moduli of the single instanton solution was computed. The Hamil-

tonian [17, 18] for the instanton size modulus ρ and the instanton location Z along the x4

direction is

Hsoliton =
λNcMKK

54π

[

2 · 36π2

5 (λMKK)2
1

ρ2
+

1

3
M2

KKρ2 +
2

3
M2

KK(X4)2
]

, (3.21)

again without the rest mass term λNcMKK/27π. We first note that the quadratic terms

in X4 and in ρ coincide with ours. The coincidence of the X4 mass term is nontrivial,

while the one for ρ is not accidental, since we have computed the ρ mass term in (2.1) by

resorting to the soliton picture in the supersymmetric limit. In some sense, they are first

order terms whose evaluation used the zero-th order solution. The real comparison is with

the first terms which are proportional to 1/λ2 (times the naive baryon mass computed from

D4′ tension); the two are structurally identical but the matrix model result is larger than

the soliton result by a factor of 5/4.

In the soliton picture, this term arises as the five-dimensional Coulomb energy associ-

ated with U(1) baryon charge; the latter is, due to the holographic map, a gauge charge

of real gauge field on D8. In the matrix model, it comes from integrating out the (non-

dynamical) A0 gauge field on D4′. Either way, it comes from a quadrature of an excitation

field of order 1/λ, which suggests that, in the supersymmetric limit of very small instanton,
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the Coulombic energy captures the deviation from the zero-th order “instanton = ADHM”

configuration more effectively. We suspect that this explains the numerical difference. At

any rate, 5/4 is fairly close to 1, implying that the difference between the two approaches

is relatively minor. Since the two such models in general live in two vastly different validity

regions, respectively, one could have expected a larger difference. It is the presence of ap-

proximate supersymmetry in distance scale from 1/MKK down to leffs and below that give

us this relative stability. The baryon physics of one does not deviate a lot from the other.

3.4 Quantization

With this result on the matrix model vacuum in mind, we can now quantize the small

fluctuations of the k = 1 Nf = 2 matrix model. This spectrum should correspond to the

baryon spectrum.

As we have seen, what is different from [18] is just the coefficient in front of the 1/ρ2

term in the Hamiltonian. So, we can just track the difference in the computations of [18]

and find the spectrum of our matrix model. This difference reflects in the constant Q

in [18], which is now multiplied by 5/4 in our case. Then the mass formula for the baryon

excitation is

M = M0 +

√

(l + 1)2

6
+

N2
c

6
+

2(nρ + nZ) + 2√
6

. (3.22)

Here nρ, nZ = 0, 1, 2, · · · and l = I/2 = J/2 with spin J and isospin I. The difference

from [18] is just the coefficient of N2
c in this expression. M0 is the mass of the D4’-brane

which is equal to the first term in (2.14), λNcMKK/27π.

This formula in particular means that we can obtain

Ml=3 − Ml=1 = 0.5693MKK . (3.23)

If we use MKK = 945[MeV] which is fit by the ρ meson mass, we obtain

M∆ − MN/P = 540[MeV] . (3.24)

This is larger than the experimental value 292 [MeV]. The situation is similar to the soliton

approach [18] which gave the value 569 [MeV].

3.5 Meson couplings

As we noted toward the end of subsection (3.3), the energetics of ρ here differ quantitatively

from the previous estimate based on the instanton soliton picture in D8-brane gauge theory.

One consequence is that the classical value of ρ, which is the holographic size of the nucleon,

is slightly larger that its previous estimates in refs. [17, 18]. Denoting the latter by ρsoliton,

we found

ρ2 =

√

5

4
ρ2
soliton . (3.25)

This new estimate modified the baryon spectra as we just saw above, but it should also

affect couplings to mesons.
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This can be seen most clearly from the effective action approach [17, 19], where a tree-

level effective action in the five-dimensional bulk captures nucleon N coupled to mesons

∫
[

−iN̄γm(∂m − iAU(2)
m )N − imN N̄N +

2π2ρ2
soliton

3e2
N̄γmnF SU(2)

mn N
]

. (3.26)

mN and e2 are known functions of the holographic Z-coordinate, determined by the dual

geometry. Actual four-dimensional nucleon is the lowest lying mode of five-dimensional

Dirac field N (here, denoted by the same symbol in abuse of notation), while the infinite

tower of mesons are embedded into the five-dimensional flavor gauge field AU(2) = AU(1) +

ASU(2) as in ref. [11]. Note that the size parameter ρ2
soliton appears explicitly only once, in

the last term, so the holographic size of the nucleon will affect couplings to SU(2) iso-triplet

meson coupling with specific chiral or tensor structures only.

Previous estimates of the meson-nucleon-nucleon couplings were based on the instanton

soliton viewpoint and may not be completely compatible with our new matrix model.

Nevertheless, we note that these couplings were read-off entirely from the long distance

gauge field configuration associated with the baryon [17, 19], which has to be the case since

the Compton wavelength of mesons at ∼ 1/MKK are much larger than the size of the soliton

core ρsoliton ∼ 1/MKK

√
λ. This suggests that the derivations of meson-baryon coupling are

generally safe from short-distance physics. The one place where this reasoning can go wrong

is the size of the soliton itself, whose estimate relies heavily on short distance physics and

which in turn affect the long distance magnetic field of the soliton. Thus, we expect that

the effect of the latter manifests in the meson-baryon couplings via the single quantity, ρ2.

We can classify the cubic meson-nucleon-nucleon couplings from (3.26) into two classes.

The first class consist of those whose leading large Nc behaviors originate from the min-

imal coupling to AU(2). This includes dimensions-four couplings to vector mesons, and

dimension-four couplings to all iso-singlet mesons: vector, axial vector, or pseudo-scalar.

With the exception of those to iso-singlet vectors, this class of couplings are subleading in

1/Nc. Let us collectively denote them as g(I).

The second class, g(II), have the leading Nc contributions arising from the last term

of (3.26) and thus proportional to ρ2. This class consists of coupling to iso-triplet Goldstone

boson (namely pions) [17], minimal couplings to all iso-triplet axial vector mesons [19], and

dimension-five tensor couplings to all iso-triplet vector mesons [23]. When we replace ρ2
soliton

by ρ2, we therefore find

g(I) = g
(I)
soliton , g(II) =

√

5

4
g
(II)
soliton . (3.27)

Numerically, the latter represents about 12% increase for g(II)’s.

Translating to quantities more directly related to data, we have for example the charge

form factor and the isospin-independent part of nucleon-nucleon repulsive core unaffected,

whereas the magnetic form factor (thus the anomalous magnetic moments also) and the

isospin-dependent part of nucleon-nucleon potential would be increased by factor of 5/4

in the large Nc limit. See the next section for a direct matrix model computation of the

nucleon-nucleon potential at short distance, which confirms this expectation.
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Whether or not such a shift is beneficial in reproducing QCD with Nc = 3 is unclear

and needs to be studied more. We would know the answer only after we have classified and

computed subleading corrections in this D4-D8 model. Regardless, we note that, purely

within the context of studying baryons in the D4-D8 model, this represents a significant

change to the leading 1/Nc computation (and not a subleading correction) which could

have not been obtained by any other method we know of.

4 Two-body baryon interaction

The baryon interaction at short distance can be obtained by classically integrating out A0,

as in the case of the single baryon. Now, with two baryons, we have the matrices charged

under the U(2), so, in particular, A0 has four components,

A0 = A0
012×2 + A1

0τ
1 + A2

0τ
2 + A3

0τ
3 . (4.1)

Recall that, in the previous section, solving for the equation of motion of the overall

U(1) gauge field gave the 1/ρ2 potential for individual baryon. Now we are interested in

integrating non-Abelian part of A0 as well, which should generate interaction energy for a

pair of baryons.

Note that Aa
0 (a = 1, 2, 3) does not show up in our CS term in (2.1), because the latter

contains trA0 only. Terms including Aa
0 appear in the kinetic term of X and that of w.

4.1 Two-baryon configuration

In order to evaluate the action, first we fix the vacuum of the ADHM potential in (2.1).

4.1.1 Single flavor

The classical single baryon configuration is specified by the vacuum configuration of w. In

section 3.2, we obtained the classical vacuum of the matrix model as

wα̇ = U

(

1

0

)

α̇

ρ , (4.2)

where U is a 2 × 2 unitary matrix. This representation is equivalent to having ρ1, ρ2 in

the notation of section 3.2. This unitary matrix comes from the global symmetry (3.17).

Now we have two baryons, so the baryons are specified by two unitary matrices,

wi=1
α̇ = U (1)

(

1

0

)

α̇

ρ , wi=2
α̇ = U (2)

(

1

0

)

α̇

ρ . (4.3)

One can work out the baryon interaction potential with this, but we will perform the

computation only in the 2-flavor case in the following, since it is realistic.
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4.1.2 Two flavors

For the two-flavor case, the vacuum configuration of the potential is given by the integration

of the U(k)-adjoint field ~DAB in the matrix model (2.1), which is the ADHM constraints,

~τ α̇
β̇

(

X̄ β̇αXαα̇ + w̄β̇
i wα̇i

)

BA
= 0 . (4.4)

Here we explicitly write the baryon index A,B = 1, . . . , k. In this section we treat two

instantons so k = 2. The generic ADHM configuration satisfying this equation is nothing

but the ADHM data of two YM instantons. It is given by

XM = τ3 rM

2
+ τ1YM , (4.5)

wA=1
α̇i = U

(A=1)
α̇i ρ1 , wA=2

α̇i = U
(A=2)
α̇i ρ2 , (4.6)

where the locations of the two baryons are given by the diagonal entries in XM so that rM

is the inter-baryon distance, and

YM ≡ − ρ1ρ2

4(rP )2
tr
[

σ̄MrNσN

(

(U (1))†U (2) − (U (2))†U (1)
)]

. (4.7)

Here U (1) and U (2) are SU(2) matrices which denote the moduli parameters of each baryon,

and σM ≡ (i~τ , 1), σ̄M ≡ (−i~τ , 1).

This ADHM data was explicitly used in the soliton approach [22]. In terms of the YM

instanton, these degrees of freedom are gauge rotations of the “flavor” gauge group, and

after the quantization, they become the spin and the isospin of each baryon. They can be

written by real unit vectors a
(1)
M and a

(2)
M as

U (1) = ia
(1)
i τ i + a

(1)
4 12×2 , U (2) = ia

(2)
i τ i + a

(2)
4 12×2 , (4.8)

with (a
(1)
4 )2 + (a

(1)
i )2 = 1, (a

(2)
4 )2 + (a

(2)
i )2 = 1. This is the correspondence to the notation

of [18]. Using this, we obtain expressions which will be useful later,11

rMYM = 0 , (4.10)

YMYM =− ρ2
1ρ

2
2

8(rM )2
tr

[

(

U (1)†U (2)− U (2)†U (1)
)2
]

=
ρ2
1ρ

2
2

4(rM )2

(

1− (a
(1)
M a

(2)
M )2

)

, (4.11)

tr
[

U (1)†U (2)
]

= tr
[

U (2)†U (1)
]

= 2a
(1)
M a

(2)
M . (4.12)

4.2 Baryon interaction potential

We shall integrate out the matrix A0 and compute the two-baryon interaction potential.

For integrating out the SU(2) components of A0, we first write down all the terms including

those components in the matrix model action (2.1). First,

tr(D0X
M )2 = 2

(

(A1
0)

2r2
M + (A2

0)
2(r2

M + 4Y 2
M ) + 4(A3

0)
2Y 2

M

)

− 8A1
0A

3
0rMYM . (4.13)

11To obtain the first equality of (4.11), we have used the following formula for unifying the double trace:

“

tr
h

σ̄M (b0 + ibiτ
i)

i”2

= 2 tr
h“

b0 + ibiτ i
” “

b0
− ibjτ j

”i

. (4.9)

Then, using (a
(1)
4 )2 + (a

(1)
i )2 = 1 and (a

(2)
4 )2 + (a

(2)
i )2 = 1, the second equality of (4.11) follows.
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Here we used only (4.5). But if we further use the explicit expression (4.7) and the vacuum

for w (4.6), we obtain (4.10), so the last term in (4.13) vanishes. Next, the w kinetic term

is

trD0w̄
α̇
i D0wα̇i = 2(ρ2

1 + ρ2
2)
(

(A0
0)

2 + (A1
0)

2 + (A2
0)

2 + (A3
0)

2
)

+4ρ1ρ2A
0
0A

1
0 tr

[

U (1)†U (2)
]

+ 4(ρ2
1 − ρ2

2)A
0
0A

3
0 . (4.14)

In these kinetic terms, the component A2
0 appears only as a form (A2

0)
2. Thus we can

minimize it independently with A2
0 = 0, meaning that we can just ignore the component

A2
0. So, the total kinetic action plus the Chern-Simons term is

λNcMKK

54π

∫

dt tr
[

(D0X
M )2 + D0w̄

α̇
i D0wα̇i

]

+ Nc

∫

dt trA0

=
λNcMKK

54π

∫

dt

[

2(A1
0)

2r2
M + 8(A3

0)
2Y 2

M + 2(ρ2
1 + ρ2

2)
(

(A0
0)

2 + (A1
0)

2 + (A3
0)

2
)

+4ρ1ρ2A
0
0A

1
0 tr

[

U (1)†U (2)
]

+ 4(ρ2
1 − ρ2

2)A
0
0A

3
0 +

108π

λMKK
A0

0

]

. (4.15)

As the action is quadratic in the remaining components of A0, it is straightforward to

integrate them out by diagonalizing the interaction terms. The resultant baryon interaction

potential V is determined from
∫

dt V = −Son−shell as

V =
27πNc

λMKK

1

ρ2
1ρ

2
2

((rM )2 + ρ2
1 + ρ2

2)
(

4(rM )2(ρ2
1 + ρ2

2) − uρ2
1ρ

2
2

)

16((rM )2)2 − 5u(rM )2(ρ2
1+ρ2

2) − u
(

ρ4
1+ρ4

2 − (u+2)ρ2
1ρ

2
2

) , (4.16)

where u ≡
(

tr
[

U (1)†U (2)
])2 − 4.

In addition to this potential V , we have another baryon interaction potential which

comes from the mass term of X4 in the matrix model action (2.1). It is easily evaluated as

λNcMKK

54π
· 2

3
M2

KKtr(X4)2 =
λNc

81π
M3

KK

(

(r4)
2/2 + 2(Y4)

2
)

. (4.17)

Here (r4)
2 term is the mass term in the single-baryon Hamiltonian, so it does not con-

tribute to the two-baryon interaction. On the other hand, the off-diagonal element Y 4 is

intrinsically the interaction between the baryons. The definition (4.7) is computed as

Y4 = −ρ1ρ2

2r2
M

ri tr[iτ i(U (1))†U (2)] (4.18)

where i = 1, 2, 3, so we can write the potential energy explicitly as

λNcM
3
KK

162π

[

(r4)
2 +

ρ2
1ρ

2
2

(r2
M )2

(

ri tr

[

iτ i
(

U (1)
)†

U (2)

])2
]

. (4.19)

Therefore, in total, the two-baryon interaction Hamiltonian is given by

V =
27πNc

λMKK

1

ρ2
1ρ

2
2

((rM )2 + ρ2
1 + ρ2

2)
(

4(rM )2(ρ2
1 + ρ2

2) − uρ2
1ρ

2
2

)

16((rM )2)2 − 5u(rM )2(ρ2
1 + ρ2

2) − u
(

ρ4
1 + ρ4

2 − (u + 2)ρ2
1ρ

2
2

)

+
λNcM

3
KK

162π

ρ2
1ρ

2
2

(r2
M )2

(

rj tr

[

iτ j
(

U (1)
)†

U (2)

])2

− 27πNc

4λMKK

(

1

ρ2
1

+
1

ρ2
2

)

, (4.20)
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where u ≡
(

tr
[

U (1)†U (2)
])2 − 4. The last term is the subtraction of the single-baryon

Hamiltonians (the first term in (3.18), while the second term (mass term) in (3.18)

cancelled already).

Next, we shall evaluate this potential for a given quantum state of the two baryons,

and show that there is a universal repulsive core for any baryon state.

4.3 Universal repulsive core

First notice that in the classical limit, i.e. Nc → ∞, the expectation value of any function

〈f(ρ1, ρ2)〉 with any given quantum state of the baryons approaches the classical value

f(ρ1 = ρ, ρ2 = ρ) where the classical ρ is given by (3.19). The equivalence between

Nc → ∞ limit and ~ → 0 limit is due to the fact that our matrix action (2.1) has an overall

factor Nc. Since any deviation from the classical value is O(1/N2
c ), while we are keeping

only leading terms in the large Nc expansion, we in effect just need to put ρ1 = ρ2(≡ ρ) in

our potential (4.20).12 We find

V =
27πNc

4λMKK

(

tr
[

U (1)†U (2)
])2

(rM )2 + 2ρ2 − 1
2

(

tr
[

U (1)†U (2)
])2

ρ2

+
λNcM

3
KK

162π

ρ4

(r2
M )2

(

rj tr
[

iτ jU (1)†U (2)
])2

. (4.21)

This is positive semi-definite. In fact, we can show that our potential (4.21) never vanish. In

order to see (4.21) never vanish, note that it could vanish if and only if tr
[

U (1)†U (2)
]

= 0

and tr
[

iτ iU (1)†U (2)
]

= 0 for any i. However the latter condition implies U (1)†U (2) ∝
12×2, which contradicts with the former, therefore this is impossible. In this way, we see

that (4.21) is positive definite and as a result, there is a universal repulsive potential (core)

for any choice of two-baryon quantum states.

If we expand (4.20) for (rM )2 ≫ ρ2, we obtain a leading term

V =
27πNc

64λMKK

1

(rM )2

(

8+6
(

tr
[

U (1)†U (2)
])2

+

(

−4+5
(

tr
[

U (1)†U (2)
])2
)(

ρ2
2

ρ2
1

+
ρ2
1

ρ2
2

))

+
λNcM

3
KK

162π

ρ2
1ρ

2
2

(r2
M )2

(

rj tr

[

iτ j
(

U (1)
)†

U (2)

])2

. (4.22)

For the large Nc, again we can put ρ1 = ρ2 = ρ and obtain

V =
27πNc

4λMKK

(

tr
[

U (1)†U (2)
])2 1

(rM )2
+

λNcM
3
KK

162π

ρ4

(r2
M )2

(

rj tr
[

iτ jU (1)†U (2)
])2

. (4.23)

Again, we see the repulsive core. The universal repulsive potential scales as 1/r2 at r ≫ ρ

where r is the baryon separation.13

12This argument is valid as long as the classical value does not vanish and the wave function localizes for

Nc → ∞, which is in fact the present case for ρ and X4. As for the spin/isospin encoded in U (1) and U (2)

we cannot take the classical value as the wave function is not localized in the group space.
13Although the vector rM is in 4 spatial dimensions, once we take the VEV with the wave function of

X4, it reduces to a 3-dimensional vector ri (i = 1, 2, 3). This is again because the leading term in the 1/Nc

expansion is a classical value of X4 which is zero.
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Let us consider the vacuum expectation value of the Hamiltonian (4.23). The quantum

state of the two baryons is specified by (~Ii, ~Ji, n
(1)
ρ , n

(i)
Z ) with i = 1, 2 which labels the two

baryons. ~I ( ~J) is the isospin (spin) of the baryon, while nρ and nZ are labels for excited

baryon states [18]. Explicit wave functions are given in [18]. For nucleons (|~I | = | ~J | = 1/2),

the spin/isospin wave functions are

1

π
(τ2U)IJ =

(

|p ↑〉 |p ↓〉
|n ↑〉 |n ↓〉

)

IJ

(4.24)

for each nucleon, so for our two-nucleon case the wave function is

1

π2
(τ2U (1))I1J1(τ

2U (2))I2J2 (4.25)

where (I1, J1, I2, J2) are the third components of the isospins and the spins for the nucleons,

thus take values ±1/2.

Now we obtain an explicit repulsive core for nucleons. At the leading order in 1/Nc,

we can simply take the classical values for ρ and X4. As for the spin/isospin part, we can

use the formulas given by (4.9), (4.11), and (4.18) of [22],

〈

(

tr
[

U (1)†U (2)
])2
〉

I1,J1,I2,J2

= 1 +
16

9
Ii
1I

i
2J

j
1Jj

2 , (4.26)

〈

tr
[

iτ iU (1)†U (2)
]

tr
[

iτ jU (1)†U (2)
]〉

I1,J1,I2,J2

= δij +
16

9
Ik
1 Ik

2

(

J i
1J

j
2 +Jj

2J i
1−δijJk

1 Jk
2

)

.

These formulas are for a given isospin Ii
A and spin J i

A for the nucleon labeled as A = 1, 2.

Finally, the vacuum expectation value of the potential (4.23) gives the central and the

tensor forces,

〈V 〉I1,J1,I2,J2 = VC(~r) + S12VT(~r) (4.27)

with the standard definition S12 ≡ 12J i
1r̂iJ

j
2 r̂j − 4J i

1J
i
2 (with r̂i ≡ ri/|r|), where

VC(~r) = π

(

33

2
+ 8Ii

1I
i
2J

j
1Jj

2

)

Nc

λMKK

1

r2
, (4.28)

VT(~r) = 2πIi
1I

i
2

Nc

λMKK

1

r2
. (4.29)

This is the short-distance nuclear force obtained from our matrix model. We find there is

a repulsive core of nucleons. The repulsive potential scales as 1/r2 for the inter-nucleon

distance r, which is a property peculiar to the holographic model, as noted in [22].14

14The nucleon-nucleon potential normally consists of two different regimes. One is the long distance

regime of order 1/MKK and beyond [23], where the four-dimensional exchanges of relatively light mesons,

including pions of course, dominate nucleon interaction and induces attractive forces. The other is the

repulsive core at short distances. One might naively think that the latter is not too relevant for formation

of nuclei for example. However, nuclei are finely balanced systems with very small binding energy, and at

least numerically seem sensitive to the details of the short distance repulsive core.
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Finally let us compare this result with the soliton approach [22] in which the two-

baryon interaction potential V soliton(~r) = V soliton
C (~r) + S12V

soliton
T (~r) was computed as,

V soliton
C (~r) = π

(

33

2
+

32

5
Ii
1I

i
2J

j
1Jj

2

)

Nc

λMKK

1

r2
, (4.30)

V soliton
T (~r) =

8π

5
Ii
1I

i
2

Nc

λMKK

1

r2
. (4.31)

Compared to our (4.28) and (4.29), we can see that the structure of the core is the same.15

Furthermore, the numerical coefficients are only different by factor 5/4 for the term pro-

portional to Ii
1I

i
2J

j
1Jj

2 in V soliton
C (~r) and for the term V soliton

T (~r). One can see easily that the

difference in the last coefficient by factor 5/4 is due to the relation (3.25). More generally,

recall that in the large Nc one-boson exchange picture of nucleon-nucleon potential [23],

the latter two isospin-dependent structures are known to arise only from the second class

of couplings, g(II), of section 3.5. It is the coupling squared that enter the potential, which

explains the factor 5/4 increase relative to the soliton model. The isospin-independent

central term arises, again in the large Nc, from iso-singlet vector exchanges, couplings for

which belong to the first class, g(I), which explains the agreement.

It is encouraging that the soliton approach and our matrix approach give qualitatively

the same, and also quantitatively similar result here as well. The large Nc computation is

relatively stable in interpolating short distance and long distance regime. At the same time,

numerically the increase is hardly negligible and may yet prove to be a big difference in the

end, when we have a good control over subleading 1/Nc and 1/λ corrections in the model.

Whether or not this will favor the current D4-D8 model in simulating QCD is unclear

for now, however, since some of known subleading 1/Nc corrections appear at comparable

magnitude if Nc = 3 is used and it is not known how to catalog all such corrections.

Before closing, we would like to make comments on some of existing computations of

nucleon-nucleon potential. First of all, we again emphasize that we only computed the

repulsive core at very short distance. As we mentioned above, this short-distance repulsive

core was computed by the solitonic methods in ref. [22] and also in ref. [36], which differ

from our result only by a numerical factor. The fact that there is a universal 1/r2 behavior

is a clear and unambiguous prediction of holography and needs to be compared against

other less speculative approaches, possibly via lattice QCD simulations or by experiments.

Of more practical interest to most of nuclear community would be the long-distance

behavior, which should include an attractive iso-singlet channel. From the holographic

viewpoint of D4-D8 model, this long-distance behavior was found in ref. [23] where the au-

thors computed one-boson exchange potential, with coupling constants computed precisely

using the solitonic picture of the baryon, and indeed found the long-distance attractive

potential with right qualitative behaviors, such as allowing deuteron wavefunction nu-

15It is also interesting to note that, at the stage of the Hamiltonian, the second term of (4.20) completely

coincides with what is called H
(SU(2))
1 in [22] in its structure. This part basically gives the tensor force. The

difference in coefficients in the tensor forces are due to the relation (3.25). Nevertheless, since H
(SU(2))
1 came

in [22] from a generalized Osborn’s formula, it is quite interesting that our matrix model can reproduce

quite easily the formula.
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merically [37]. Our matrix model, in its current form, cannot address this long distance

behavior, unfortunately.

There exist extensive literatures on the matter of nucleon-nucleon potential, which are

too numerous and too diverse to list. See for instance ref. [38] for computations based on

the chiral perturbation theory. In the face of such extensive previous work, one may ask

why we should again try to compute nucleon-nucleon potential. The first reason is that at

least the top-down models such as ours have very few adjustable parameters and should

be very predictive and precise. This is not to say, of course, that the latter would be more

accurate. On the contrary, such top-down holographic computations are less likely to be

near the correct low energy QCD physics.

What we aim to build is not the most phenomenologically correct model, but rather

those which can give us insights and results from top-down approach and that cannot

be given by any of conventional phenomenological methods. The universal 1/r2 repulsive

core above is one fine such example. The conventional chiral perturbation, for instance,

generates 1/r3 type repulsive core from exchange rho mesons via tensor couplings as well

as 1/r from omega meson exchange [38], whose precise behavior, however, should be taken

with a grain of salt at short distance below the mass of the nucleon. In practice, one

further introduces other short-distance cut-offs to better simulate nature. Whether or not

the holographic 1/r2 repulsive core found by above holographic computations represents a

better solution to this short-distance treatment of nuclear force and a more faithful image of

real QCD is a matter to be settled eventually by lattice QCD simulations or by experiments.

5 Conclusion

We have derived a U(k) matrix model (2.1) which describes k-baryon systems at short dis-

tance, by considering open string theory on the wrapped baryon vertex D-branes embedded

in the D4-D8 model of large Nc holographic QCD. With this matrix model, we computed

the holographic size and the spectrum of the baryon (k = 1), and also short-distance nu-

clear force (k = 2). The latter exhibits a repulsive core, which has been quite important

in nuclear and hadron physics for long years.

This model complements the Yang-Mills soliton picture of the holographic baryon [17–

19], in that it is capable of addressing short-distance behavior such as the crucial hadronic

size estimate of the baryon. Recall that the size found in these studies turned out to be

comparable to the (appropriately warped) string scale, which is too small to be justified by

the Yang-Mills method used there. Our new matrix model is trustworthy well below the

string scale, in the opposite end of length scale, and represents an opportunity to check

whether the soliton picture gave us the correct estimates or not. As we summarize shortly,

the matrix model estimate gave us essentially the same size up to a numerical factor of

(5/4)1/4 ∼ 1, showing that stringy correction does very little to correct the soliton picture.

This is very fortunate for the underlying D4-D8 holographic QCD since, at least for small

number of baryons, the soliton picture has generated many predictions that agreed with

nuclear data [19–21, 23]. This is by far the best evidence we know of that justifies study
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of baryons in holographic QCD, despite the latter’s huge mass and small size in the large

Nc and large λ limit.

A distinguished character of our matrix model is its simplicity. In particular, the

form of the matrix model does not depend on the number of the baryons described —

simply changing the rank of the matrix allows one to treat larger number of baryons. By

generalizing the method we did in this paper, we can handle general k-body systems. This is

significant simplicity compared with the soliton picture, where handling general k-solitons

are quite painful due to the significant increase of the number of moduli parameters.

Therefore it is natural to apply our matrix model analysis to more general k-body

systems. In nuclear physics, the role of 3-body forces is very important. For example, for

few-body nuclear bound states (light nuclei), the three-body forces are known to play a

crucial role. Three-body forces in the soliton picture in the D4-D8 system were derived

in [39]. However, in that paper the isospins and spins were treated classically due to the

complications induced by the increase of the number of moduli parameters, so the analysis

was not complete. Applying our matrix model, it is possible to treat generic spins and

isospins quantum-mechanically [40]. It would be interesting to see how the quantum spin

and isospin effects modify the previous soliton picture results [39].

It would also be interesting to consider a large k limit, where the states are similar to

extremely heavy nuclei or a core of neutron stars. The reader may wonder the effect of

a back-reaction in that limit. Taking the large k limit certainly cause the back-reaction

of the multiple D4’-branes in D8-branes in D4-D8 system. However as we have seen, in

our system, we have no supersymmetric leftover, and as a result, there is a repulsive forces

between D4’-branes. So the D4’-branes cannot approach closer than ρ = O(1/
√

λ) ∼ leffs ,

which is too large compared with ρ ∼ (leffs )2 for Maldacena’s decoupling limit [8] in the

leffs → 0 limit.16 Therefore the back-reaction is expected not so strong enough to make a

back-reacted gravitational throat.

Going back to the results for k = 1, 2 in this work, we note that the results agree

with the previous soliton approach qualitatively, and in some case quantitatively also. The

central isospin-independent part of the repulsive core is one example. The holographic size

squared of the baryon also turned out to be larger only by a fraction which, considering the

vast separation of scales between the two approaches by a factor of λ1/2, seems pretty in-

nocuous. This tells us that physics of baryon in D4-D8 holographic QCD is relatively stable

against corrections. This stability of the baryon physics against short distance corrections

was previously anticipated and argued for on the basis of an approximate supersymme-

try [26], and is borne out in our new matrix model approach. Without such stability, study

of baryons in holographic QCD would have been very difficult and cumbersome.

On the other hand, the new results also show nontrivial change of key observables,

which cannot be ignored. From the viewpoint of low energy effective theory in terms of

mesons and baryons, the change can be summarized in the large Nc limit as a universal and

multiplicative increase by (5/4)1/2 of certain meson-nucleon-nucleon couplings. These are

16This argument could break down for finite leffs or in supersymmetric cases and we may consider a

holographic dual of the multi-baryon system in the k → ∞ limit. It leads to “holographic nuclei” [6, 7].
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couplings denoted as g(II) in section 3.5, and include the leading axial couplings to pions,

all isotriplet axial vector couplings of the operator dimension four, and the dimension-five

derivative couplings to isotriplet vector mesons. In particular, the change came about not

as subleading 1/Nc corrections, but a change in coefficients of the leading terms.

The reader may wonder whether the matrix model can describe only the short distance

physics, such as the repulsive core of the nucleon. As we argued in section 3.5 and reiterated

above, the model is capable of addressing the long-distance physics of soft-meson processes,

via the single quantity ρ2, so in that indirect sense also tells us much about baryons far away

from one another. An entirely different question is whether we can use the matrix model

directly to compute interaction, as we did in section 4, between well-separated baryons

without resorting to intermediate mesons. This is particularly important when we wish to

consider large k physics where meson exchange viewpoint would become quickly intractable.

The above matrix model does take into account the dual warped geometry of the pure

QCD background, so it already knows about effect of glues at energy scale MKK. Yet,

how to emulate the long-distance physics due to exchange of pions and other light mesons

directly by manipulating the current matrix model is a more challenging problem. For

example, in a similar problem of D0-brane interactions, it was the one-loop effect in the

open string side that emulated the long distance graviton exchange between them. This

agreement was explained by the combination of supersymmetry and the worldsheet channel

duality [33]. In the present case, we must emulate an exchange of D8-D8 open strings by

a matrix model of D4’-D4’ and D4’-D8 open strings. This appears to be a qualitative

different problem from the case of D0 interactions. Absence of unbroken supersymmetry

probably make matters a bit worse also.

Nevertheless, we believe that this can be achieved in the matrix model with judicious

insertions of effective operators and by considering quantum effects. Once this is done,

on the other hand, our matrix model may prove to be much more versatile than the

previous instanton soliton picture of baryons, since it can be more easily generalized to

many nucleon systems. Nuclei with generic atomic number k and perhaps other dense

matter systems would be more accessible that way. Perhaps we can eventually construct

a U(k) matrix model, where attractive long-distance forces and repulsive short-distance

forces are carefully balanced and produces,say, helium nucleus and carbon nucleus.

In this context, we finally comment that we only made use of bosonic fields in this work,

even though there should be fermionic partners in D4’-D8 matrix theory. For this work,

we did not need loop computation, which justifies this truncation. For a more complete

matrix model capable of directly dealing with baryons at large separation, we probably

need to consider fermionic fields as well, which is beyond the scope of this paper.

Eventually we hope to be able to compute other interesting quantities in our matrix

model, such as currents associated with chiral symmetry, energy-momentum tensor and

equations of states from that. In particular, equations of states with large baryon number

k are important to understand the dynamics of astrophysical compact starts, such as

neutron stars.
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