66 research outputs found

    Withdrawal of life-support in paediatric intensive care - a study of time intervals between discussion, decision and death

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Scant information exists about the time-course of events during withdrawal of life-sustaining treatment. We investigated the time required for end-of-life decisions, subsequent withdrawal of life-sustaining treatment and the time to death.</p> <p>Methods</p> <p>Prospective, observational study in the ICU of a tertiary paediatric hospital.</p> <p>Results</p> <p>Data on 38 cases of withdrawal of life-sustaining treatment were recorded over a 12-month period (75% of PICU deaths). The time from the first discussion between medical staff and parents of the subject of withdrawal of life-sustaining treatment to parents and medical staff making the decision varied widely from immediate to 457 hours (19 days) with a median time of 67.8 hours (2.8 days). Large variations were subsequently also observed from the time of decision to actual commencement of the process ranging from 30 minutes to 47.3 hrs (2 days) with a median requirement of 4.7 hours. Death was apparent to staff at a median time of 10 minutes following withdrawal of life support varying from immediate to a maximum of 6.4 hours. Twenty-one per cent of children died more than 1 hour after withdrawal of treatment. Medical confirmation of death occurred at 0 to 35 minutes thereafter with the physician having left the bedside during withdrawal in 18 cases (48%) to attend other patients or to allow privacy for the family.</p> <p>Conclusions</p> <p>Wide case-by-case variation in timeframes occurs at every step of the process of withdrawal of life-sustaining treatment until death. This knowledge may facilitate medical management, clinical leadership, guidance of parents and inform organ procurement after cardiac death.</p

    Relating Habitat and Climatic Niches in Birds

    Get PDF
    Predicting species' responses to the combined effects of habitat and climate changes has become a major challenge in ecology and conservation biology. However, the effects of climatic and habitat gradients on species distributions have generally been considered separately. Here, we explore the relationships between the habitat and thermal dimensions of the ecological niche in European common birds. Using data from the French Breeding Bird Survey, a large-scale bird monitoring program, we correlated the habitat and thermal positions and breadths of 74 bird species, controlling for life history traits and phylogeny. We found that cold climate species tend to have niche positions in closed habitats, as expected by the conjunction of the biogeographic history of birds' habitats, and their current continent-scale gradients. We also report a positive correlation between thermal and habitat niche breadths, a pattern consistent with macroecological predictions concerning the processes shaping species' distributions. Our results suggest that the relationships between the climatic and habitat components of the niche have to be taken into account to understand and predict changes in species' distributions

    Operationalizing local ecological knowledge in climate change research : challenges and opportunities of citizen science

    Get PDF
    Current research on the local impacts of climate change is based on contrasting results from the simulation of historical trends in climatic variables produced with global models against climate data from independent observations. To date, these observations have mostly consisted of weather data from standardized meteorological stations. Given that the spatial distribution of weather stations is patchy, climate scientists have called for the exploration of new data sources. Knowledge developed by Indigenous Peoples and local communities with a long history of interaction with their environment has been proposed as a data source with untapped potential to contribute to our understanding of the local impacts of climate change. In this chapter, we discuss an approach that aims to bring insights from local knowledge systems to climate change research. First, we present a number of theoretical arguments that give support to the idea that local knowledge systems can contribute in original ways to the endeavors of climate change research. Then, we explore the potential of using information and communication technologies to gather and share local knowledge of climate change impacts. We do so through the examination of a citizen science initiative aiming to collect local indicators of climate change impacts: the LICCI project (www.licci.eu). Our findings illustrate that citizen science can inspire new approaches to articulate the inclusion of local knowledge systems in climate change research. However, this requires outlining careful approaches, with high ethical standards, toward knowledge validation and recognizing that there are aspects of local ecological knowledge that are incommensurable with scientific knowledge

    Response of a Specialist Bat to the Loss of a Critical Resource

    Get PDF
    Human activities have negatively impacted many species, particularly those with unique traits that restrict their use of resources and conditions to specific habitats. Unfortunately, few studies have been able to isolate the individual and combined effects of different threats on population persistence in a natural setting, since not all organisms can be associated with discrete habitat features occurring over limited spatial scales. We present the results of a field study that examines the short-term effects of roost loss in a specialist bat using a conspicuous, easily modified resource. We mimicked roost loss in the natural habitat and monitored individuals before and after the perturbation to determine patterns of resource use, spatial movements, and group stability. Our study focused on the disc-winged bat Thyroptera tricolor, a species highly morphologically specialized for roosting in the developing furled leaves of members of the order Zingiberales. We found that the number of species used for roosting increased, that home range size increased (before: mean 0.14±SD 0.08 ha; after: 0.73±0.68 ha), and that mean association indices decreased (before: 0.95±0.10; after: 0.77±0.18) once the roosting habitat was removed. These results demonstrate that the removal of roosting resources is associated with a decrease in roost-site preferences or selectivity, an increase in mobility of individuals, and a decrease in social cohesion. These responses may reduce fitness by potentially increasing energetic expenditure, predator exposure, and a decrease in cooperative interactions. Despite these potential risks, individuals never used roost-sites other than developing furled leaves, suggesting an extreme specialization that could ultimately jeopardize the long-term persistence of this species' local populations

    Genomic comparisons reveal biogeographic and anthropogenic impacts in the koala (Phascolarctos cinereus): a dietary-specialist species distributed across heterogeneous environments

    Get PDF
    The Australian koala is an iconic marsupial with highly specific dietary requirements distributed across heterogeneous environments, over a large geographic range. The distribution and genetic structure of koala populations has been heavily influenced by human actions, specifically habitat modification, hunting and translocation of koalas. There is currently limited information on population diversity and gene flow at a species-wide scale, or with consideration to the potential impacts of local adaptation. Using species-wide sampling across heterogeneous environments, and high-density genome-wide markers (SNPs and PAVs), we show that most koala populations display levels of diversity comparable to other outbred species, except for those populations impacted by population reductions. Genetic clustering analysis and phylogenetic reconstruction reveals a lack of support for current taxonomic classification of three koala subspecies, with only a single evolutionary significant unit supported. Furthermore, similar to 70% of genetic variance is accounted for at the individual level. The Sydney Basin region is highlighted as a unique reservoir of genetic diversity, having higher diversity levels (i.e., Blue Mountains region; AvHe(corr)-0.20, PL% = 68.6). Broad-scale population differentiation is primarily driven by an isolation by distance genetic structure model (49% of genetic variance), with clinal local adaptation corresponding to habitat bioregions. Signatures of selection were detected between bioregions, with no single region returning evidence of strong selection. The results of this study show that although the koala is widely considered to be a dietary-specialist species, this apparent specialisation has not limited the koala's ability to maintain gene flow and adapt across divergent environments as long as the required food source is available

    Grass strategies and grassland community responses to environmental drivers: a review

    Full text link

    Forgoing life support: How the decision is made in European pediatric intensive care units

    No full text
    Purpose: To determine how decisions to forgo life support are made in European pediatric intensive care units (PICUs). Methods: A multicenter, prospective study, the Eurydice II study, among 45 PICUs: 20 in France, 21 in Northern/Western (N/W) European countries and 4 in Eastern/Central (E/C) Europe. Data were collected between November 2009 and April 2010 through a questionnaire. Results: The decision to forgo life-sustaining treatment was made in 166 (40.6%) out of 409 deceased children (median 42.9%, France 38.2%, N/W European countries 60.0%, E/C European countries 0%; P < 0.001). In the E/C group, more patients died after cardiopulmonary resuscitation (CPR) failure than after forgoing life support (P < 0.001). In all PICUs, caregivers discussed the decision during a formal meeting, after which the medical staff made the final decision. The decision was often documented in the medical record (median 100%). The majority of the parents were informed of the final decision and were at the bedside during their child's death (median 100%). Decision to forgo life-sustaining treatment occurred in 40.6% of children, compared with 33% in Eurydice I. A high percentage of parents from France were now informed about the meeting and its conclusion as compared with Eurydice I (median 100%). Conclusions: The results of this study and comparison with the Eurydice I study (2002) show a trend towards standardization of end-of-life practices across N/W European countries and France in the past decade
    corecore