784 research outputs found

    Identifying thesis and conclusion statements in student essays to scaffold peer review

    Get PDF
    Peer-reviewing is a recommended instructional technique to encourage good writing. Peer reviewers, however, may fail to identify key elements of an essay, such as thesis and conclusion statements, especially in high school writing. Our system identifies thesis and conclusion statements, or their absence, in students' essays in order to scaffold reviewer reflection. We showed that computational linguistics and interactive machine learning have the potential to facilitate peer-review processes. © 2014 Springer International Publishing Switzerland

    Evidence for bimodal orbital separations of white dwarf-red dwarf binary stars

    Get PDF
    We present the results of a radial velocity survey of 20 white dwarf plus M dwarf binaries selected as a follow up to a Hubble Space Telescope study that aimed to spatially resolve suspected binaries. Our candidates are taken from the list of targets that were spatially unresolved with Hubble. We have determined the orbital periods for 16 of these compact binary candidates. The period distribution ranges from 0.141 to 9.16 d and peaks near 0.6 d. The original sample therefore contains two sets of binaries, wide orbits (≈100–1000 au) and close orbits (≲1–10 au), with no systems found in the ≈10–100 au range. This observational evidence confirms the bimodal distribution predicted by population models and is also similar to results obtained in previous studies. We find no binary periods in the months to years range, supporting the post-common envelope evolution scenario. One of our targets, WD 1504+546, was discovered to be an eclipsing binary with a period of  0.931 d

    Characterisation of myocardial structure and function in adult-onset growth hormone deficiency using cardiac magnetic resonance.

    Get PDF
    Growth hormone (GH) can profoundly influence cardiac function. While GH excess causes well-defined cardiac pathology, fewer data are available regarding the more subtle cardiac changes seen in GH deficiency (GHD). This preliminary study uses cardiac magnetic resonance imaging (CMR) to assess myocardial structure and function in GHD. Ten adult-onset GHD patients underwent CMR, before and after 6 and 12 months of GH replacement. They were compared to 10 age-matched healthy controls and sex-matched healthy controls. Left ventricular (LV) mass index (LVMi) increased with 1 year of GH replacement (53.8 vs. 57.0 vs. 57.3 g/m2, analysis of variance p = 0.0229). Compared to controls, patients showed a trend towards reduced LVMi at baseline (51.4 vs. 60.0 g/m2, p = 0.0615); this difference was lost by 1 year of GH treatment (57.3 vs. 59.9 g/m2, p = 0.666). Significantly reduced aortic area was observed in GHD (13.2 vs. 19.0 cm2/m2, p = 0.001). This did not change with GH treatment. There were no differences in other LV parameters including end-diastolic volume index (EDVi), end-systolic volume index, stroke volume index (SVi), cardiac index and ejection fraction. There was a trend towards reduced baseline right ventricular (RV)SVi (44.1 vs. 49.1 ml/m2, p = 0.0793) and increased RVEDVi over 1 year (70.3 vs. 74.3 vs. 73.8 ml/m2, p = 0.062). Two patients demonstrated interstitial expansion, for example with fibrosis, and three myocardial ischaemia as assessed by late gadolinium enhancement and stress perfusion. The increased sensitivity of CMR to subtle cardiac changes demonstrates that adult-onset GHD patients have reduced aortic area and LVMi increases after 1 year of GH treatment. These early data should be studied in larger studies in the future

    Four small puzzles that Rosetta doesn't solve

    Get PDF
    A complete macromolecule modeling package must be able to solve the simplest structure prediction problems. Despite recent successes in high resolution structure modeling and design, the Rosetta software suite fares poorly on deceptively small protein and RNA puzzles, some as small as four residues. To illustrate these problems, this manuscript presents extensive Rosetta results for four well-defined test cases: the 20-residue mini-protein Trp cage, an even smaller disulfide-stabilized conotoxin, the reactive loop of a serine protease inhibitor, and a UUCG RNA tetraloop. In contrast to previous Rosetta studies, several lines of evidence indicate that conformational sampling is not the major bottleneck in modeling these small systems. Instead, approximations and omissions in the Rosetta all-atom energy function currently preclude discriminating experimentally observed conformations from de novo models at atomic resolution. These molecular "puzzles" should serve as useful model systems for developers wishing to make foundational improvements to this powerful modeling suite.Comment: Published in PLoS One as a manuscript for the RosettaCon 2010 Special Collectio

    Functional divergence in the role of N-linked glycosylation in smoothened signaling

    Get PDF
    The G protein-coupled receptor (GPCR) Smoothened (Smo) is the requisite signal transducer of the evolutionarily conserved Hedgehog (Hh) pathway. Although aspects of Smo signaling are conserved from Drosophila to vertebrates, significant differences have evolved. These include changes in its active sub-cellular localization, and the ability of vertebrate Smo to induce distinct G protein-dependent and independent signals in response to ligand. Whereas the canonical Smo signal to Gli transcriptional effectors occurs in a G protein-independent manner, its non-canonical signal employs Gαi. Whether vertebrate Smo can selectively bias its signal between these routes is not yet known. N-linked glycosylation is a post-translational modification that can influence GPCR trafficking, ligand responsiveness and signal output. Smo proteins in Drosophila and vertebrate systems harbor N-linked glycans, but their role in Smo signaling has not been established. Herein, we present a comprehensive analysis of Drosophila and murine Smo glycosylation that supports a functional divergence in the contribution of N-linked glycans to signaling. Of the seven predicted glycan acceptor sites in Drosophila Smo, one is essential. Loss of N-glycosylation at this site disrupted Smo trafficking and attenuated its signaling capability. In stark contrast, we found that all four predicted N-glycosylation sites on murine Smo were dispensable for proper trafficking, agonist binding and canonical signal induction. However, the under-glycosylated protein was compromised in its ability to induce a non-canonical signal through Gαi, providing for the first time evidence that Smo can bias its signal and that a post-translational modification can impact this process. As such, we postulate a profound shift in N-glycan function from affecting Smo ER exit in flies to influencing its signal output in mice

    Integrated Polygenic Tool Substantially Enhances Coronary Artery Disease Prediction

    Get PDF
    BACKGROUND: There is considerable interest in whether genetic data can be used to improve standard cardiovascular disease risk calculators, as the latter are routinely used in clinical practice to manage preventative treatment. METHODS: Using the UK Biobank resource, we developed our own polygenic risk score for coronary artery disease (CAD). We used an additional 60 000 UK Biobank individuals to develop an integrated risk tool (IRT) that combined our polygenic risk score with established risk tools (either the American Heart Association/American College of Cardiology pooled cohort equations [PCE] or UK QRISK3), and we tested our IRT in an additional, independent set of 186 451 UK Biobank individuals. RESULTS: The novel CAD polygenic risk score shows superior predictive power for CAD events, compared with other published polygenic risk scores, and is largely uncorrelated with PCE and QRISK3. When combined with PCE into an IRT, it has superior predictive accuracy. Overall, 10.4% of incident CAD cases were misclassified as low risk by PCE and correctly classified as high risk by the IRT, compared with 4.4% misclassified by the IRT and correctly classified by PCE. The overall net reclassification improvement for the IRT was 5.9% (95% CI, 4.7–7.0). When individuals were stratified into age-by-sex subgroups, the improvement was larger for all subgroups (range, 8.3%–15.4%), with the best performance in 40- to 54-year-old men (15.4% [95% CI, 11.6–19.3]). Comparable results were found using a different risk tool (QRISK3) and also a broader definition of cardiovascular disease. Use of the IRT is estimated to avoid up to 12 000 deaths in the United States over a 5-year period. CONCLUSIONS: An IRT that includes polygenic risk outperforms current risk stratification tools and offers greater opportunity for early interventions. Given the plummeting costs of genetic tests, future iterations of CAD risk tools would be enhanced with the addition of a person’s polygenic risk

    Field-adapted sampling of whole blood to determine the levels of amodiaquine and its metabolite in children with uncomplicated malaria treated with amodiaquine plus artesunate combination

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Artemisinin combination therapy (ACT) has been widely adopted as first-line treatment for uncomplicated falciparum malaria. In Uganda, amodiaquine plus artesunate (AQ+AS), is the alternative first-line regimen to Coartem<sup>® </sup>(artemether + lumefantrine) for the treatment of uncomplicated falciparum malaria. Currently, there are few field-adapted analytical techniques for monitoring amodiaquine utilization in patients. This study evaluates the field applicability of a new method to determine amodiaquine and its metabolite concentrations in whole blood dried on filter paper.</p> <p>Methods</p> <p>Twelve patients aged between 1.5 to 8 years with uncomplicated malaria received three standard oral doses of AQ+AS. Filter paper blood samples were collected before drug intake and at six different time points over 28 days period. A new field-adapted sampling procedure and liquid chromatographic method was used for quantitative determination of amodiaquine and its metabolite in whole blood.</p> <p>Results</p> <p>The sampling procedure was successively applied in the field. Amodiaquine could be quantified for at least three days and the metabolite up to 28 days. All parasites in all the 12 patients cleared within the first three days of treatment and no adverse drug effects were observed.</p> <p>Conclusion</p> <p>The methodology is suitable for field studies. The possibility to determine the concentration of the active metabolite of amodiaquine up to 28 days suggested that the method is sensitive enough to monitor amodiaquine utilization in patients. Amodiaquine plus artesunate seems effective for treatment of falciparum malaria.</p

    Left Ventricular Systolic Dysfunction in Patients Diagnosed With Hypertrophic Cardiomyopathy During Childhood: Insights From the SHaRe Registry.

    Get PDF
    BACKGROUND: The development of left ventricular systolic dysfunction (LVSD) in hypertrophic cardiomyopathy (HCM) is rare but serious and associated with poor outcomes in adults. Little is known about the prevalence, predictors, and prognosis of LVSD in patients diagnosed with HCM as children. METHODS: Data from patients with HCM in the international, multicenter SHaRe (Sarcomeric Human Cardiomyopathy Registry) were analyzed. LVSD was defined as left ventricular ejection fraction <50% on echocardiographic reports. Prognosis was assessed by a composite of death, cardiac transplantation, and left ventricular assist device implantation. Predictors of developing incident LVSD and subsequent prognosis with LVSD were assessed using Cox proportional hazards models. RESULTS: We studied 1010 patients diagnosed with HCM during childhood (<18 years of age) and compared them with 6741 patients with HCM diagnosed as adults. In the pediatric HCM cohort, median age at HCM diagnosis was 12.7 years (interquartile range, 8.0-15.3), and 393 (36%) patients were female. At initial SHaRe site evaluation, 56 (5.5%) patients with childhood-diagnosed HCM had prevalent LVSD, and 92 (9.1%) developed incident LVSD during a median follow-up of 5.5 years. Overall LVSD prevalence was 14.7% compared with 8.7% in patients with adult-diagnosed HCM. Median age at incident LVSD was 32.6 years (interquartile range, 21.3-41.6) for the pediatric cohort and 57.2 years (interquartile range, 47.3-66.5) for the adult cohort. Predictors of developing incident LVSD in childhood-diagnosed HCM included age <12 years at HCM diagnosis (hazard ratio [HR], 1.72 [CI, 1.13-2.62), male sex (HR, 3.1 [CI, 1.88-5.2), carrying a pathogenic sarcomere variant (HR, 2.19 [CI, 1.08-4.4]), previous septal reduction therapy (HR, 2.34 [CI, 1.42-3.9]), and lower initial left ventricular ejection fraction (HR, 1.53 [CI, 1.38-1.69] per 5% decrease). Forty percent of patients with LVSD and HCM diagnosed during childhood met the composite outcome, with higher rates in female participants (HR, 2.60 [CI, 1.41-4.78]) and patients with a left ventricular ejection fraction <35% (HR, 3.76 [2.16-6.52]). CONCLUSIONS: Patients with childhood-diagnosed HCM have a significantly higher lifetime risk of developing LVSD, and LVSD emerges earlier than for patients with adult-diagnosed HCM. Regardless of age at diagnosis with HCM or LVSD, the prognosis with LVSD is poor, warranting careful surveillance for LVSD, especially as children with HCM transition to adult care

    Additive QTLs on three chromosomes control flowering time in woodland strawberry (Fragaria vesca L.)

    Get PDF
    Flowering time is an important trait that affects survival, reproduction and yield in both wild and cultivated plants. Therefore, many studies have focused on the identification of flowering time quantitative trait locus (QTLs) in different crops, and molecular control of this trait has been extensively investigated in model species. Here we report the mapping of QTLs for flowering time and vegetative traits in a large woodland strawberry mapping population that was phenotyped both under field conditions and in a greenhouse after flower induction in the field. The greenhouse experiment revealed additive QTLs in three linkage groups (LG), two on both LG4 and LG7, and one on LG6 that explain about half of the flowering time variance in the population. Three of the QTLs were newly identified in this study, and one co-localized with the previously characterized FvTFL1 gene. An additional strong QTL corresponding to previously mapped PFRU was detected in both field and greenhouse experiments indicating that gene(s) in this locus can control the timing of flowering in different environments in addition to the duration of flowering and axillary bud differentiation to runners and branch crowns. Several putative flowering time genes were identified in these QTL regions that await functional validation. Our results indicate that a few major QTLs may control flowering time and axillary bud differentiation in strawberries. We suggest that the identification of causal genes in the diploid strawberry may enable fine tuning of flowering time and vegetative growth in the closely related octoploid cultivated strawberry.Peer reviewe

    Autism as a disorder of neural information processing: directions for research and targets for therapy

    Get PDF
    The broad variation in phenotypes and severities within autism spectrum disorders suggests the involvement of multiple predisposing factors, interacting in complex ways with normal developmental courses and gradients. Identification of these factors, and the common developmental path into which theyfeed, is hampered bythe large degrees of convergence from causal factors to altered brain development, and divergence from abnormal brain development into altered cognition and behaviour. Genetic, neurochemical, neuroimaging and behavioural findings on autism, as well as studies of normal development and of genetic syndromes that share symptoms with autism, offer hypotheses as to the nature of causal factors and their possible effects on the structure and dynamics of neural systems. Such alterations in neural properties may in turn perturb activity-dependent development, giving rise to a complex behavioural syndrome many steps removed from the root causes. Animal models based on genetic, neurochemical, neurophysiological, and behavioural manipulations offer the possibility of exploring these developmental processes in detail, as do human studies addressing endophenotypes beyond the diagnosis itself
    corecore