47 research outputs found

    Age-related differences in selection by visual saliency

    Get PDF
    We examined the ability of older adults to select local and global stimuli varying in perceptual saliency – a task requiring non-spatial visual selection. Participants were asked to identify in separate blocks a target at either the global or local level of a hierarchical stimulus, while the saliency of each level was varied (across different conditions either the local or the global form was the more salient and relatively easier to identify). Older adults were less efficient than young adults in ignoring distractors that were higher in saliency than targets, and this occurred across both the global and local levels of form. The increased effects of distractor saliency on older adults occurred even when the effects were scaled by overall differences in task performance. The data provide evidence for an age-related decline in non spatial attentional selection of low-salient hierarchical stimuli, not determined by the (global or local) level at which selection was required. We discuss the implications of these results for understanding both the interaction between saliency and hierarchical processing and the effects of aging on non-spatial visual attention

    The relationship between processing speed and regional white matter volume in healthy young people

    Get PDF
    Processing speed is considered a key cognitive resource and it has a crucial role in all types of cognitive performance. Some researchers have hypothesised the importance of white matter integrity in the brain for processing speed; however, the relationship at the whole-brain level between white matter volume (WMV) and processing speed relevant to the modality or problem used in the task has never been clearly evaluated in healthy people. In this study, we used various tests of processing speed and Voxel-Based Morphometry (VBM) analyses, it is involves a voxel-wise comparison of the local volume of gray and white, to assess the relationship between processing speed and regional WMV (rWMV). We examined the association between processing speed and WMV in 887 healthy young adults (504 men and 383 women; mean age, 20.7 years, SD, 1.85). We performed three different multiple regression analyses: we evaluated rWMV associated with individual differences in the simple processing speed task, word–colour and colour–word tasks (processing speed tasks with words) and the simple arithmetic task, after adjusting for age and sex. The results showed a positive relationship at the whole-brain level between rWMV and processing speed performance. In contrast, the processing speed performance did not correlate with rWMV in any of the regions examined. Our results support the idea that WMV is associated globally with processing speed performance regardless of the type of processing speed task

    The Impact of Augmented Information on Visuo-Motor Adaptation in Younger and Older Adults

    Get PDF
    BACKGROUND: Adjustment to a visuo-motor rotation is known to be affected by ageing. According to previous studies, the age-related differences primarily pertain to the use of strategic corrections and the generation of explicit knowledge on which strategic corrections are based, whereas the acquisition of an (implicit) internal model of the novel visuo-motor transformation is unaffected. The present study aimed to assess the impact of augmented information on the age-related variation of visuo-motor adjustments. METHODOLOGY/PRINCIPAL FINDINGS: Participants performed aiming movements controlling a cursor on a computer screen. Visual feedback of direction of cursor motion was rotated 75 degrees relative to the direction of hand motion. Participants had to adjust to this rotation in the presence and absence of an additional hand-movement target that explicitly depicted the input-output relations of the visuo-motor transformation. An extensive set of tests was employed in order to disentangle the contributions of different processes to visuo-motor adjustment. Results show that the augmented information failed to affect the age-related variations of explicit knowledge, adaptive shifts, and aftereffects in a substantial way, whereas it clearly affected initial direction errors during practice and proprioceptive realignment. CONCLUSIONS: Contrary to expectations, older participants apparently made no use of the augmented information, whereas younger participants used the additional movement target to reduce initial direction errors early during practice. However, after a first block of trials errors increased, indicating a neglect of the augmented information, and only slowly declined thereafter. A hypothetical dual-task account of these findings is discussed. The use of the augmented information also led to a selective impairment of proprioceptive realignment in the younger group. The mere finding of proprioceptive realignment in adaptation to a visuo-motor rotation in a computer-controlled setup is noteworthy since visual and proprioceptive information pertain to different objects

    Visual Working Memory Capacity and Proactive Interference

    Get PDF
    Background: Visual working memory capacity is extremely limited and appears to be relatively immune to practice effects or the use of explicit strategies. The recent discovery that visual working memory tasks, like verbal working memory tasks, are subject to proactive interference, coupled with the fact that typical visual working memory tasks are particularly conducive to proactive interference, suggests that visual working memory capacity may be systematically under-estimated. Methodology/Principal Findings: Working memory capacity was probed behaviorally in adult humans both in laboratory settings and via the Internet. Several experiments show that although the effect of proactive interference on visual working memory is significant and can last over several trials, it only changes the capacity estimate by about 15%. Conclusions/Significance: This study further confirms the sharp limitations on visual working memory capacity, both in absolute terms and relative to verbal working memory. It is suggested that future research take these limitations into account in understanding differences across a variety of tasks between human adults, prelinguistic infants and nonlinguistic animals

    Effect of Age on Variability in the Production of Text-Based Global Inferences

    Get PDF
    As we age, our differences in cognitive skills become more visible, an effect especially true for memory and problem solving skills (i.e., fluid intelligence). However, by contrast with fluid intelligence, few studies have examined variability in measures that rely on one’s world knowledge (i.e., crystallized intelligence). The current study investigated whether age increased the variability in text based global inference generation–a measure of crystallized intelligence. Global inference generation requires the integration of textual information and world knowledge and can be expressed as a gist or lesson. Variability in generating two global inferences for a single text was examined in young-old (62 to 69 years), middle-old (70 to 76 years) and old-old (77 to 94 years) adults. The older two groups showed greater variability, with the middle elderly group being most variable. These findings suggest that variability may be a characteristic of both fluid and crystallized intelligence in aging

    Motor skill learning in the middle-aged: limited development of motor chunks and explicit sequence knowledge

    Get PDF
    The present study examined whether middle-aged participants, like young adults, learn movement patterns by preparing and executing integrated sequence representations (i.e., motor chunks) that eliminate the need for external guidance of individual movements. Twenty-four middle-aged participants (aged 55–62) practiced two fixed key press sequences, one including three and one including six key presses in the discrete sequence production task. Their performance was compared with that of 24 young adults (aged 18–28). In the middle-aged participants motor chunks as well as explicit sequence knowledge appeared to be less developed than in the young adults. This held especially with respect to the unstructured 6-key sequences in which most middle-aged did not develop independence of the key-specific stimuli and learning seems to have been based on associative learning. These results are in line with the notion that sequence learning involves several mechanisms and that aging affects the relative contribution of these mechanisms

    Functional MRI evidence for the decline of word retrieval and generation during normal aging

    Get PDF
    International audienceThis fMRI study aimed to explore the effect of normal aging on word retrieval and generation. The question addressed is whether lexical production decline is determined by a direct mechanism, which concerns the language operations or is rather indirectly induced by a decline of executive functions. Indeed, the main hypothesis was that normal aging does not induce loss of lexical knowledge, but there is only a general slowdown in retrieval mechanisms involved in lexical processing , due to possible decline of the executive functions. We used three tasks (verbal fluency, object naming , and semantic categorization). Two groups of participants were tested (Young, Y and Aged, A), without cognitive and psychiatric impairment and showing similar levels of vocabulary. Neuropsychological testing revealed that older participants had lower executive function scores, longer processing speeds, and tended to have lower verbal fluency scores. Additionally, older participants showed higher scores for verbal automa-tisms and overlearned information. In terms of behav-ioral data, older participants performed as accurate as younger adults, but they were significantly slower for the semantic categorization and were less fluent for verbal fluency task. Functional MRI analyses suggested that older adults did not simply activate fewer brain regions involved in word production, but they actually showed an atypical pattern of activation. Significant correlations between the BOLD (Blood Oxygen Level Dependent) signal of aging-related (A > Y) regions and cognitive scores suggested that this atypical pattern of the activation may reveal several compensatory mechanisms (a) to overcome the slowdown in retrieval, due to the decline of executive functions and processing speed and (b) to inhibit verbal automatic processes. The BOLD signal measured in some other aging-dependent regions did not correlate with the behavioral and neuro-psychological scores, and the overactivation of these uncorrelated regions would simply reveal dedifferentia-tion that occurs with aging. Altogether, our results suggest that normal aging is associated with a more difficult access to lexico-semantic operations and representations by a slowdown in executive functions, without any conceptual loss

    Are APOE ɛ genotype and TOMM40 poly-T repeat length associations with cognitive ageing mediated by brain white matter tract integrity?

    Get PDF
    Genetic polymorphisms in the APOE ε and TOMM40 ‘523’ poly-T repeat gene loci have been associated with significantly increased risk of Alzheimer’s disease. This study investigated the independent effects of these polymorphisms on human cognitive ageing, and the extent to which nominally significant associations with cognitive ageing were mediated by previously reported genetic associations with brain white matter tract integrity in this sample. Most participants in the Lothian Birth Cohort 1936 completed a reasoning-type intelligence test at age 11 years, and detailed cognitive/physical assessments and structural diffusion tensor brain magnetic resonance imaging at a mean age of 72.70 years (s.d.=0.74). Participants were genotyped for APOE ε2/ε3/ε4 status and TOMM40 523 poly-T repeat length. Data were available from 758–814 subjects for cognitive analysis, and 522–543 for mediation analysis with brain imaging data. APOE genotype was significantly associated with performance on several different tests of cognitive ability, including general factors of intelligence, information processing speed and memory (raw P-values all<0.05), independently of childhood IQ and vascular disease history. Formal tests of mediation showed that several significant APOE-cognitive ageing associations—particularly those related to tests of information processing speed—were partially mediated by white matter tract integrity. TOMM40 523 genotype was not associated with cognitive ageing. A range of brain phenotypes are likely to form the anatomical basis for significant associations between APOE genotype and cognitive ageing, including white matter tract microstructural integrity

    Structural puzzles in virology solved with an overarching icosahedral design principle

    Get PDF
    Viruses have evolved protein containers with a wide spectrum of icosahedral architectures to protect their genetic material. The geometric constraints defining these container designs, and their implications for viral evolution, are open problems in virology. The principle of quasi-equivalence is currently used to predict virus architecture, but improved imaging techniques have revealed increasing numbers of viral outliers. We show that this theory is a special case of an overarching design principle for icosahedral, as well as octahedral, architectures that can be formulated in terms of the Archimedean lattices and their duals. These surface structures encompass different blueprints for capsids with same numbers of structural proteins, as well as for capsid architectures formed from a combination of minor and major capsid proteins, and are conserved within viral lineages. They also apply to other icosahedral structures in nature, and offer alternative designs for man-made materials and nanocontainers in bionanotechnology

    Effects of age on searching for and enumerating targets that cannot be detected efficiently

    No full text
    We investigated the effects of old age on search, subitizing, and counting of difficult-to-find targets. In Experiment 1, young and older adults enumerated targets ( Os) with and without distractors (Qs). Without distractors, the usual subitization-counting function occurred in both groups, with the same subitization span of 3.3 items. Subitization disappeared with distractors; older adults were slowed more overall by their presence but enumeration rates were not slowed by ageing either with or without distractors. In contrast, search rates for a single target (O among Qs) were twice as slow for older as for young adults. Experiment 2 tested and ruled out one account of age-equivalent serial enumeration based on the need to subvocalize numbers as items are enumerated. Alternative explanations based on the specific task differences between detecting and enumerating stimuli are discussed
    corecore