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Abstract

Processing speed is considered a key cognitive resource and it has a crucial role in all
types of cognitive performance. Some researchers have hypothesised the importance of
white matter integrity in the brain for processing speed; however, the relationship at the
whole-brain level between white matter volume (WMV) and processing speed relevant to
the modality or problem used in the task has never been clearly evaluated in healthy people.
In this study, we used various tests of processing speed and Voxel-Based Morphometry
(VBM) analyses, it is involves a voxel-wise comparison of the local volume of gray and
white, to assess the relationship between processing speed and regional WMV (rWMV).
We examined the association between processing speed and WMV in 887 healthy young
adults (504 men and 383 women; mean age, 20.7 years, SD, 1.85). We performed three
different multiple regression analyses: we evaluated rWMV associated with individual differ-
ences in the simple processing speed task, word—colour and colour—word tasks (processing
speed tasks with words) and the simple arithmetic task, after adjusting for age and sex. The
results showed a positive relationship at the whole-brain level between rWMV and process-
ing speed performance. In contrast, the processing speed performance did not correlate
with rWMV in any of the regions examined. Our results support the idea that WMV is associ-
ated globally with processing speed performance regardless of the type of processing
speed task.
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Introduction

Processing speed is an individual cognitive ability measured by how fast an individual executes
cognitive tasks, particularly elementary cognitive tasks [1], [2]. Moreover, processing speed is
viewed as an overall measure of cognitive mechanisms that are widely used to support fluent
execution of perceptual, cognitive and motor processes [3]. Indeed, processing speed is consid-
ered a key cognitive resource [4], [5], similar to attention, working memory and inhibition,
underlying performance in various cognitive domains [2], [6], [7]. Accordingly, previous
research showed that processing speed correlates with performance in various cognitive
domains [4], [5], [8], [9], [10].

From the perspective of neuroscience, processing speed performance has traditionally been
assumed to depend to a large extent on the properties of white matter [11], [12], [13]; the latter
affects the speed of neural transmission. In fact, white matter includes all myelinated axons in
the cerebrum, and the thickness of the myelin sheath is related to nerve conduction velocity;
therefore, its relation to processing speed seems logical [11][14].

Previous neuroimaging studies have been focused on the two major structural properties of
white matter: fractional anisotropy (FA), which reflects structural integrity of white matter[15],
[16], in diffusion tensor imaging [5], [17], [18] and white matter volume (WMV) [11], [19], [20].

Previous studies of fractional anisotropy indicate that processing speed performance corre-
lates with properties of regional white matter in brain areas relevant to the task. Processing
speed is associated with visual choice reaction time in visual-related areas (in the number of
posterior regions of the right hemisphere), the left middle frontal gyrus and the occipital and
parietal areas during the digit-symbol task (fronto-parieto-occipital areas perform important
functions in the execution of this task) [18], [21]. Moreover, the temporal lobe is associated
with processing speed in the auditory reaction time task [22]. Conversely, there are studies that
show a global association between processing speed tasks and white matter structure [17]; in
fact, processing speed is related to white matter average FA of the whole brain [23].

Other studies indicate that processing speed performance correlates with total WMV
(tWMV); in fact, processing speed is genetically related to tWMV[11]. There is also a relation-
ship between reduced tWMYV and impaired processing speed performance in patients with
temporal lobe epilepsy [24].

Many studies have been focused on correlations between white matter integrity and process-
ing speed in various tasks using diffusion tensor imaging [17], [18], [25], [26], [27]. Usually,
studies on WMV involve specific populations, such as old adults [17-27], or specific diseases,
such as temporal lobe epilepsy [24] or left-hemisphere stroke [5]. Additionally, previous ana-
tomical studies did not verify the significance of regional WMV (rfWMYV), and this is one of the
purposes of this study. To the best of our knowledge, no previous studies have observed a rela-
tionship between WMV and processing speed in a large sample of healthy young people. This
study aimed to identify the rtWMYV correlates of processing speed in healthy young people. As
we previously discussed [28], we consider that 1) FA and rWMV are moderately to weakly
related, 2) the associations between them seem particularly weak in deep white matter areas
[29] and 3) rWMYV is known to significantly correlate with cognitive functions. Particularly,
our previous studies that concurrently explored rWMV and FA correlates of cognitive func-
tions showed more significant results of rWMYV analyses in regions congruent with our
hypothesis [30], [31]. In this study, we focus on riWMYV correlates of processing speed using
various tests of processing speed and Voxel-Based Morphometry (VBM) analyses that involves
a voxel-wise comparison of the local volume of gray and white matter.

Based on previous studies, we are evaluating two sets of relatively opposite assumptions: 1)
processing speed correlates with white matter structure globally; therefore it is rather problem
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independent and 2) processing speed correlates with white matter structure relevant to the
modality or problem used in the task. Considering the contribution of processing speed to
human cognitive activity, it is important to investigate the WMV correlates with processing
speed tasks in healthy adults compared with other neuroimaging methods. In fact, 'WMYV is
widely accepted as the basis of individual intellectual abilities; the networks that underlie intel-
lectual abilities can be identified by measuring WMV [32], [33], [34].

Materials and Methods

Subjects

Eight hundred eighty-seven healthy right-handed individuals (504 men and 383 women; mean
age, 20.7 years, SD, 1.85 years) participated in this study as part of our ongoing project to
explore the associations among brain imaging, cognitive functions, ageing, genetics and daily
habits. All subjects were college students from Tohoku University in Japan. All subjects were
undergraduate or postgraduate university students. All had normal vision and none had a his-
tory of neurological or psychiatric illness. None reported recent use of any psychoactive drugs
or drugs that would be likely to negatively impact their cognitive abilities. The history of psy-
chiatric illnesses and recent drug use were assessed using our laboratory’s routine question-
naire, in which each subject answered questions related to their current or previous experience
with any of a list of illnesses and listed drugs they had taken recently. Handedness was evalu-
ated using the Edinburgh Handedness Inventory [35]. The Ethics Committee of Tohoku Uni-
versity approved all procedures. Written informed consent was obtained from each subject for
the projects in which they participated.

Psychological tests

For the measurement of processing speed we used three tasks. Moreover, we measured general
intelligence and verbal and spatial working memory of the participant, to verified the relation-
ship between processing speed and more complicate cognitive tasks. All psychological tests
were performed in the same day, with 15 minutes break between each tests; after another hour
of rest, we performed the MRI scan.

Simple processing speed tasks. The Tanaka B-type intelligence test (TBIT) [36] type 3B
was used for the measurement of processing speed. TBIT is a simple test for measuring simple
processing speed. In all subtests, the subjects had to solve as many problems as possible within
a certain period (a few minutes). This factor involved three subtests: a displacement task [sub-
stitute a figure (nine figures) with a number (1-9) according to a model chart], identification
versus same—different judgments (Japanese kana characters; decide whether a pair of meaning-
less Japanese strings are the same) and marking of figures [select shapes identical to three sam-
ples from a series (sequence) of eight different shapes]. These tasks do not require recognition
of words, and instead require recognition of symbols, letters, numbers and the like. These tasks
do not involve complex cognitive processes but constitute simple processing speed tasks.

Word-colour and colour-word tasks (processing speed tasks with words). The Stroop
[37] task is a widely used paradigm in psychology and clinical practice [38]. During Stroop par-
adigms, subjects experience cognitive interference when they resolve interferences, for exam-
ple, identifying the ink colour of a printed word while ignoring the word’s identity [37]. Asin a
previous study [39], [40], we used Hakoda’s version of the Stroop task [41]. This version of the
Stroop task is of the matching type, requiring subjects to choose and check correct answers as
possible from five options in 1 min, unlike the traditional oral naming task. This type of task is
rather similar to the button-pressing matching-type Stroop tasks used in neuroimaging studies
[42]. The task consists of two control tasks, a word-colour task and a colour-word task and a
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reverse Stroop task and a Stroop task. In this study, we focused on processing speed and used
the normalised sum of the word-colour task and the colour-word task. These tasks require rec-
ognition of words.

Simple speed tasks. Our simple arithmetic task is similar to that constructed by Grabner
et al. [43]. This task measures multiplication performance consisting of two forms of one-digit
times one-digit multiplication problems (a simple arithmetic task with numbers between 2 and
9). The two forms of each task are the same, but the numbers used in the problems are differ-
ent. Each form of the simple arithmetic task is presented with a 30-s time limit. The average of
the performance on two forms was used. This task requires simple arithmetic calculations.

Raven's Advanced Progressive Matrix. Raven's Advanced Progressive Matrix (RAPM)
[44], which is a psychometric measure of general intelligence [44], was used to assess general
intelligence. The test contains 36 nonverbal items requiring fluid reasoning ability. Each item
consists of a 3x3 matrix with a missing piece to be completed by selecting the best of 8 alterna-
tives. The score of this test (number of correct answers in 30 min) was used as a psychometric
index of individual intelligence. The RAPM was administered in a group setting in this study.
The RAPM tests can be administered individually by a psychologist or trained test administra-
tor, or administered on a group basis (Raven, 1998).

Verbal working memory task. Computerized forward and backward digit span tests were
used to assess verbal WMGC, as in our previous study [45]. Subjects were asked to view a pro-
gressively increasing number of random digits visually presented one-digit per second on a
computer screen. They were then asked to repeat the sequence by pressing numbered buttons
on the screen in the presented order (digit-span forward) or in the reverse order (digit-span
backward), starting from two digits. Three sequences were given at each level, until the partici-
pants responded incorrectly to all three sequences, at which point the task was ended. The
score of each test is equal to the sum of the number of digits correctly repeated in the digit span
forward and digit span backward tasks.

Visuospatial working memory task. A (computerized) visuospatial WM task [46]. In the
visuospatial WM task, circles were presented one by one at a rate of 1/s in a four-by-four grid-
like interface. Participants had to remember the location and order of the stimuli. After the pre-
sentation of stimuli, participants indicated the location and order of the presented stimuli by
clicking the grid-like interface on a computer screen with a mouse in the stimuli’s presented
order (forward visuospatial WM task) or in the reverse order (backward visuospatial WMtask).

The number of items to be remembered started with two items and progressively increased.
Three sequences were given at each level, until the participants responded incorrectly to all
three sequences, at which point the task was ended. The score of each test was equal to the sum
of the number of items correctly repeated in both the forward visuospatial WM task and the
backward visuospatial WM task.

Image acquisition

All MRI data were acquired using a 3-T Philips Intera Achieva scanner (Philips Medical Sys-
tems, Best, The Netherlands). High-resolution T1-weighted structural images (240 x 240
matrix; repetition time, 6.5 ms; echo time, 3 ms; field of view, 24 cm; 162 slices; slice thickness,
1.0 mm) were collected using a magnetisation-prepared rapid gradient echo (MPRAGE)
sequence [47], [48].

Pre-processing of structural data

Pre-processing of structural data was performed using the Statistical Parametric Mapping soft-
ware (SPM8; Wellcome Department of Cognitive Neurology, London, UK) implemented in
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MATLAB (Mathworks Inc., Natick, MA, USA). Using the new segmentation algorithm imple-
mented in SPM8, T1-weighted structural images of each individual were segmented into six tis-
sues. In this process, the grey matter tissue probability map (TPM) was manipulated using
maps implemented in the software so that the signal intensity of voxels with (grey matter tissue
probability of the default tissue grey matter TPM + white matter tissue probability of the
default TPM) > 0.25 became 0. When this adjusted grey matter TPM is used, the dura matter
is less likely to be classified as grey matter (compared with when the default grey matter TPM
is used) without other substantial segmentation problems. In this new segmentation process,
default parameters were used, except that affine regularisation was performed with the Interna-
tional Consortium for Brain Mapping template for East Asian brains. We then proceeded to
the diffeomorphic anatomical registration through exponentiated lie algebra (DARTEL) regis-
tration process implemented in SPM8. In this process, we used DARTEL import of images of
the five grey matter TPMs from the abovementioned new segmentation process. First, the tem-
plate for the DARTEL procedures was created using imaging data from 63 subjects who partici-
pated in an experiment in our laboratory [46]. Using this existing template, the DARTEL
procedures were performed for all of the subjects in the present study. In these procedures,
default parameter settings were used. The resulting images were spatially normalised to the
Montreal Neurological Institute (MNTI) space to produce images with 1.5 x 1.5 x 1.5 mm? vox-
els. Additionally, we performed volume change correction (modulation) by modulating each
voxel with the Jacobian determinants derived from spatial normalisation, which allowed us to
determine regional differences in the absolute amount of brain tissue [49]. Then, all images
were smoothed by convolving them with an isotropic Gaussian kernel of 8 mm full width at
half maximum for the reasons described below.

Statistical analysis

The behavioural data were analysed using the statistical software SPSS 20.0 (SPSS Inc., Chicago,
IL, USA). Associations between psychological variables were analysed using Pearson’s correla-
tion analysis. Moreover, we performed three different multiple regression analyses (non-voxel-
wise analyses) in which the dependent variable was tWMYV and age, sex and the performance
on each cognitive test were independent variables.

First, we assessed rWMYV associated with individual differences in simple processing speed
task, word—colour and colour-word tasks (processing speed tasks with words) and simple
arithmetic task. Statistical analyses of morphological data were performed using the VBMS8
software, an extension of SPMS.

In the analyses, we included only voxels that showed rtWMV > 0.1 in all subjects. The pri-
mary purpose for using white matter thresholds was to cut the periphery of the white matter
areas and effectively limit the areas for analyses. We performed this procedure by limiting the
areas for analyses to those likely to be white matter. The voxels outside the brain areas are
more likely to be affected by signals outside the brain through smoothing. Masking the analysis
to brain areas was performed in fMRI analyses of SPM8 by default.

With the whole brain data, we performed three separate multiple regressions for regression
analyses to test the relationship between the following: a) simple processing speed and rWMYV,
b) processing speed tasks with words and rwMV and c) simple arithmetic speed and rWMV.
The analyses were performed with sex and age as additional covariates. According to our
hypothesis, we performed two analyses: First, we did not use tWMYV as a covariate because we
were wanted to test whether processing speed globally (non-specifically) correlates with WMV.
Second, we analysed the data using tWMV as a covariate to evaluate regional differences in the
relationship of WMV with processing speed.
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The voxel level threshold was set to P = 0.05 [corrected for false discovery rate (FDR)]. Mul-
tiple comparison correction was performed using the FDR approach [50]. FDR-based methods
have been shown to be more powerful and sensitive than other available approaches to multiple
statistical testing [50-51]).

Finally, anatomical labelling of significant areas was performed using the ICBM-DTI-81
Atlas [52].

We analysed data only for the participants who completed the tasks. This amounted to the
data from 831, 887 and 883 participants for the simple processing speed task, simple arithmetic
task and Stroop task, respectively.

Results

Mean (M) score and SD of behavioural data are shown in Table 1. The results of correlation
analysis are also shown in Table 1. The processing speed task significantly and positively corre-
lated with the simple arithmetic task (P = 0.0001, r = 0.360), the Stroop word-colour task

(P <0.0001, r = 0.515), the Stroop colour-word task (P < 0.0001, r = 0.578), the RAPM

(P < 0.0001, r = 0.340), the Verbal working memory task (P < 0.001, r = 0.242) and Visuospa-
tial working memory task (P < 0.0001, r = 0.332). The simple arithmetic speed task signifi-
cantly and positively correlated with the Stroop word-colour task (P < 0.0001, r = 0.457),
Stroop colour-word task (P < 0.0001, r = 0.384), the Verbal working memory task (P < 0.001,
r = 0.203) and the Visuospatial working memory task (P < 0.001, r = 0.137). The simple arith-
metic speed task did not correlate with the RAPM (P = 0.893, r = 0.005).

The Stroop word—colour task significantly and positively correlated with the Stroop colour-
word task (P < 0.0001, r = 0.620; Table 1), the RAPM (P < 0.001, r = 0.162), the Verbal work-
ing memory task (P < 0.001, r = 0.208) and the Visuospatial working memory task (P < 0.001,
r = 0.172). The Stroop Colour-Word task significantly and positively correlated with the
RAPM (P < 0.001, r = 0.204), the Verbal working memory task (P < 0.001, r = 0.227) and the
Visuospatial working memory task (P < 0.001, r = 0.169). Raven's Advanced Progressive
Matrix (RAPM) significantly and positively correlated with the Verbal working memory task
(P < 0.001, r = 0.293) and the Visuospatial working memory task (P < 0.0001, r = 0.363). Ver-
bal working memory task significantly and positively correlated with Visuospatial working
memory task (P < 0.0001, r = 0.372)Regarding the three multiple regression analyses (non-
voxelwise analyses), we verified the relationship between the predictors (cognitive task perfor-
mance) and the outcome (tWMV), and the relationship was positive and significant (simple

Table 1. Pearson's correlation among Processing speed task, Simple arithmetic task, Stroop Word—Colour task and Stroop Colour-Word task,
and means (M) and standard deviations (SD).

. Processing speed task

. Simple arithmetic task

. Stroop Word—Colour task

. Stroop Colour—Word task

. Raven's Advanced Progressive Matrix
. Verbal working memory task

. Visuospatial working memory task

=2 N O WON =

(7]
o

*%p <001
*%%p < 0001

doi:10.1371/journal.pone.0136386.t001

1 2 3 4 5 6 7

578¥*** .384*** .620%** =

.340%** .005 d62** .204** =

242%* .203** .208** 227** .293** =

.332%** A37%* A72%* .169%* .363*** B72%** =
49.3 314 70.7 52.3 28.1 35.7 28.3
71 5.3 7.4 6.7 4.9 7.1 4.4
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processing speed: B = 0.093, P < 0.001, R* = 0.358; Stroop task: B = 0.098, P < 0.0001, R* =
0.356; simple arithmetic speed: B = 0.089, P < 0.001, R* = 0.355).

Correlation of WMV and the processing speed task

After adjusting for age and sex, multiple regression analysis (FDR correction, P = 0.05) revealed
a positive and significant correlation between performance on the simple processing speed task
and rWMYV across the whole white matter areas (Fig 1 and Table 2). Only in the left uncinate
fasciculus we did not find a correlation between rWMYV and performance on the simple pro-
cessing speed task.

In contrast, after adjusting for age, sex and tWMYV, multiple regression analysis revealed
that performance on the processing speed task did not correlate with rWMYV in any of the
regions.

Correlation of WMV and the simple arithmetic task

After adjusting for age and sex, multiple regression analysis (FDR correction, P < 0.05)
revealed a positive and significant correlation between performance on the simple arithmetic
task and rWMYV across the whole white matter areas (Fig 2 and Table 3). Only in the left infe-
rior cerebellar peduncle, the fornix, the left cingulum (hippocampus) and the right uncinate
fasciculus we did not find a correlation between WMV and performance on the simple arith-
metic task.

Additionally, in this case, after adjusting for age, sex and tWMV, multiple regression analy-
sis revealed that performance on the simple arithmetic task did not correlate with rwMV in
any of the regions.

Correlation of rWMYV and Stroop task. First, we created a normalised sum of scores on
the word-colour and colour-word tasks. After adjusting for age and sex, multiple regression
analysis (FDR correction, P < 0.05) showed a positive and significant correlation between per-
formance on the Stroop task and rWMYV across the whole white matter areas (Fig 3 and
Table 4). Furthermore, in this case, we did not find a correlation between performance on the
Stroop task and rtWMYV in the left and right inferior cerebellar peduncle and in the left

Fig 1. White matter regions showing a correlation between rWMV and Simple Processing Speed task
performance. Colourbar indicates the t-values for the regression slopes.

doi:10.1371/journal.pone.0136386.g001
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Table 2. Brain regions of significant correlation between rWMV and Simple Processing Speed task.

Region N of significant voxel (Total N of Peak t- Corrected p value MNI peak
voxel) value (FDR) coordinates
X y z
Middle cerebellar peduncle 1691 (5391) 3.60 0.007 2 -16  -32
Pontine crossing tract 424 (522) 3.36 0.010 0 -21 -24
Genu of corpus callosum 2036 (3077) 3,25 0.011 -14 24 -8
Body of corpus callosum 2785 (4759) 3.31 0.010 20 3 31
Splenium of corpus callosum 2923 (4182) 4.3 0.004 23 -52 -22
Fornix 5 (271) 2.74 0.019 -3 21 18
Corticospinal tract right 350 (495) 3.31 0.010 -5 21 -33
Corticospinal tract left 317 (497) 3.37 0.010 5 -18 -26
Medial lemniscus right 198 (265) 2.95 0.015 -5 -34 -26
Medial lemniscus left 204 (264) 3.02 0.014 3 -33 -26
Inferior cerebellar peduncle right 92 (377) 2.31 0.032 -9 -40 -35
Inferior cerebellar peduncle left 81 (367) 2.21 0.36 9 -40 -33
Superior cerebellar peduncle right 140 (372) 2.90 0.016 -6 -34 -24
Superior cerebellar peduncle left 144 (379) 3.04 0.014 5 -33 -23
Cerebral peduncle right 654 (833) 3.21 0.012 -6 -18 -21
Cerebral peduncle left 717 (827) 3.19 0.012 5 -6 -21
Anterior limb of internal capsule right 783 (1111) 3.52 0.008 23 21 -0631
Anterior limb of internal capsule left 631 (1086) 3.16 0.012 21 21 3
Posterior limb of internal capsule right 943 (1320) 2.60 0.022 26 -6 18
Posterior limb of internal capsule left 1026 (1312) 3.16 0.012 27 27 -18
Retrolenticular part of internal capsule right 672 (881) 3.67 0.007 -41 27 -3
Retrolenticular part of internal capsule left 739 (859) 3.92 0.006 36 -24 -3
Anterior corona radiata right 1571 (2368) 3.70 0.007 -12 29 12
Anterior corona radiata left 1987 (2338) 3.35 0.010 15 39 -3
Superior corona radiata right 2177 (2448) 4.33 0.004 26 3 34
Superior corona radiata left 2098 (2479) 3.07 0.014 24 -4 37
Posterior corona radiata right 1018 (1301) 4.58 0.003 27 57 22
Posterior corona radiata left 1102 (1305) 4.07 0.005 21 52 28
Posterior thalamic radiation (include optic radiation) 926 (1376) 4.13 0.005 -33 -57 18
right
Posterior thalamic radiation (include optic radiation) 1044 (1386) 3.69 0.007 35 -63 3
left
Sagittal stratum right 625 (773) 3.76 0.006 -42 27 -6
Sagittal stratum left 602 (783) 4.03 0.005 39 -21 -6
External capsule right 518 (1329) 3.49 0.008 24 21 -0
External capsule left 713 (1299) 3.55 0.008 33 -19 -3
Cingulum (cingulate gyrus) right 111 (923) 2.98 0.015 -11 -37 -33
Cingulum (cingulate gyrus) left 440 (1086) 2.97 0.015 9 -27 30
Cingulum (hippocampus) right 10 (467) 2.18 0.037 -12  -46 9
Cingulum (hippocampus) left 51 (452) 2.39 0.029 20 -25 -21
Fornix (cres) / Stria terminalis right 232 (435) 2.79 0.018 -32 -30 -5
Fornix (cres) / Stria terminalis left 311 (426) 3.82 0.006 32 -24 -6
Superior longitudinal fasciculus right 45 (2340) 4.22 0.004 -36 -58 19
1094 3.88 0.007 32 2 28
(Continued)
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Table 2. (Continued)

Region

Superior longitudinal

fasciculus left

Superior fronto-occipital fasciculus right
Superior fronto-occipital fasciculus left
Inferior fronto-occipital fasciculus right
Inferior fronto-occipital fasciculus left
Uncinate fasciculus right

Uncinate fasciculus left

Tapatum right

Tapatum left

doi:10.1371/journal.pone.0136386.t002

N of significant voxel (Total N of Peak t- Corrected p value MNI peak

voxel) value (FDR) coordinates

X y z

1756 (2332) 3.52 0.008 29 -48 30
119 (175) 3.17 0.012 23 0 24
125 (165) 2.63 0.022 21 12 19
168 (693) 3.25 0.011 21 21 -5
74 (638) 3.62 0.007 35 -19 -16
39 (150) 2.50 0.025 36 -4 -18
77 (219) 3.42 0.009 -30 52 15
161 (239) 3.23 0.011 24 -46 22

cingulum (hippocampus). Moreover, after adjusting for age, sex and tWMV, multiple regres-
sion analysis showed that performance on the Stroop task did not correlate with rtWMYV in any
of the regions.

Discussion

To the best of our knowledge, this is the first study to explore the associations between rwWMV
and processing speed tasks in healthy adults at the whole brain level. First, as in previous stud-
ies [2], [6], [7], correlation analyses showed a positive correlation between processing speed
tasks and working memory and general intelligent tasks. This result are on line with the litera-
ture, considering that more are complex the processing speed tasks, stronger is the relationship
between processing speed and intelligence and vice versa [53]. Second, VBM analyses showed a
positive relationship across the whole white matter between WMV and processing speed perfor-
mance. Our results support the assumption that WMV is globally related to processing speed
performance regardless of the type of processing speed tasks. However, in our results some WM

Fig 2. White matter regions showing a correlation between rWMV and Simple arithmetic task
performance. Colourbar indicates the t-values for the regression slopes.

doi:10.1371/journal.pone.0136386.9002
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Table 3. Brain regions of significant correlation between rWMV and Simple arithmetic task.

Region N of significant voxel (Total N of Peak t- Corrected p value MNI peak
voxel) value (FDR) coordinates
X y z
Middle cerebellar peduncle 606 (5391) 2.58 0.015 -2 -15 -30
Pontine crossing tract (a part of MCP) 348 (522) 2.47 0.018 2 24 -23
Genu of corpus callosum 2601 (3077) 4.00 0.003 18 24 22
Body of corpus callosum 4076 (4759) 4,56 0.003 12 -6 36
Splenium of corpus 2978 (4182) 4.08 0.003 29 57 9
callosum 75 3.45 0.003 26 -58 12
Fornix - - - - - -
Corticospinal tract right 273 (495) 2.46 0.019 -9 22 -23
Corticospinal tract left 270 (497) 2.37 0.022 5 -24 -23
Medial lemniscus right 149 (265) 2.22 0.028 -5 -33 -26
Medial lemniscus left 113 (264) 2.21 0.028 3 -33 -26
Inferior cerebellar peduncle right 7 (377) 1.91 0.048 -8 42 -41
Inferior cerebellar peduncle left - - - - - -
Superior cerebellar peduncle right 87 (372) 2.29 0.025 -5 -30 -20
Superior cerebellar peduncle left 94 (379) 2.55 0.016 6 -33 -15
Cerebral peduncle right 654 (833) 2.56 0.016 -12 -15 -18
Cerebral peduncle left 678 (827) 2.70 0.012 12 6 -5
Anterior limb of internal capsule right 889 (1111) 3.43 0.003 21 12 18
Anterior limb of internal capsule left 882 (1086) 3.75 0.003 20 18 16
Posterior limb of internal capsule right 348 (1320) 2.47 0.018 2 -24 -23
Posterior limb of internal capsule left 1029 (1312) 3.06 .006 24 -6 18
Retrolenticular part of internal capsule right 722 (881) 4.28 0.003 -36 -33 -3
Retrolenticular part of internal capsule left 720 (859) 4.30 0.003 38 -30 -3
Anterior corona radiata right 2035 (2368) 3.68 0.003 21 14 27
Anterior corona radiata left 2035 (2338) 4.27 0.003 17 27 25
Superior corona radiata right 2206 (2448) 4.43 0.003 26 2 30
Superior corona radiata left 2218 (2479) 4.20 0.003 17 -6 36
Posterior corona radiata right 1151 (1301) 4.10 0.003 -32 -55 19
Posterior corona radiata left 1071 (1305) 3.99 0.003 21 -30 30
Posterior thalamic radiation (include optic radiation) 1212 (1376) 4.12 0.003 -32 -55 18
right
Posterior thalamic radiation (include optic radiation) 1228 (1386) 3.85 0.003 30 66 3
left
Sagittal stratum right 625 (773) 4.32 0.003 -38 -33 5
Sagittal stratum uleft 625 (783) 4.28 0.003 38 -30 -5
External capsule right 82 (1329) 3.50 0.003 -36 -16 -3
535 3.18 0.005 27 8 18
External capsule left 915 (1299) 3.59 0.003 26 9 18
Cingulum (cingulate gyrus) right 565 (923) 3.15 0.005 -12 -36 33
Cingulum (cingulate gyrus) left 674 (1086) 4.52 0.003 9 -4 37
Cingulum (hippocampus) right 8 (467) 2.19 0,030 9 45 7
Cingulum (hippocampus) left - - - - - -
Fornix (cres) / Stria terminalis right 298 (435) 3.39 0.004 -35 -15 -11
Fornix (cres) / Stria terminalis left 227 (426) 3.32 0.004 35 -12 -17
Superior longitudinal fasciculus right 1883 (2340) 4.35 0.003 -30 -24 40
(Continued)
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Table 3. (Continued)

Region

Superior longitudinal fasciculus left
Superior fronto-occipital fasciculus right
Superior fronto-occipital fasciculus left
Inferior

fronto-occipital fasciculus right

Inferior

fronto-occipital fasciculus left
Uncinate fasciculus right

Uncinate fasciculus left

Tapatum right

Tapatum left

doi:10.1371/journal.pone.0136386.t003

N of significant voxel (Total N of
voxel)

1930 (2332)
125 (175)
125 (165)
181 (693)

166
251 (638)
137
111 (150)
183 (219)
154 (239)

Peak t-
value

3.90
4.01
3.76
3.90
3.70
3.25
3.19

3.57
3.90
3.30

Corrected p value

(FDR)

0.003
0.003
0.003
0.003
0.003
0.004
0.005

0.003
0.003
0.004

MNI peak
coordinates
X y z
2 -12 36

21 5 24
20 17 19
-18 14 -12
-38 -15 -8
36 -12 -12
17 14 -12
36 -1 -21
-32 52 15
29 54 7

area are not correlated with the processing speed performances. This could be possible consider-
ing the high specialization and the lateralization of this areas that consequently they are not
involved in processing speed activity. These results do not support the other assumption, i.e., pro-

cessing speed performance is related to volume of a specific white matter area.
Considering the physiological functions of white matter, we found evidence that WMV
might be essential for processing speed, which is often viewed as a key variable of cognitive

architecture[2], [6]. In fact, processing speed in each task is likely to largely depend on the
properties of white matter that are essential for performance on that task [5-46]. White matter

consists mostly of glial cells and myelinated axons; it controls the signals that neurons share,

coordinating the cooperative work of brain regions [52]. In fact, the speed of neural signals is

associated with the thickness and degree of myelination of axons [16], [54], [55]. As we previ-

ously discussed [29], [42], enhancement of these physiological components, which is presum-

ably secondary to increased myelination [56] or increased axonal calibre [57], may be

Fig 3. White matter regions showing a correlation between rWMV and Stroop task performance.
Colourbar indicates the t-values for the regression slopes.

doi:10.1371/journal.pone.0136386.9003
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Table 4. Brain regions of significant correlation between rWMV and Stroop task.

Region N of significant voxel (Total N of Peak t- Corrected p value MNI peak
voxel) value (FDR) coordinates
X y z
Middle cerebellar peduncle 1231 (5391) 3.30 0.006 2 -19 -27
Pontine crossing tract (a part of MCP) 376 (522) 3.27 0.006 0 -21 -24
Genu of corpus callosum 1994 (3077) 3.48 0.005 17 20 25
Body of corpus callosum 2881 (4759) 4.55 0.004 14 -3 37
Splenium of corpus callosum 3542 (4182) 4.43 0.004 27 -54 19
Fornix 17 (271) 2.45 0.022 2 3 1
Corticospinal tract right 313 (495) 3.20 0.006 -6 -18 -26
Corticospinal tract left 312 (497) 3.26 0.006 5 -19 -29
Medial lemniscus right 72 (265) 2.54 0.019 -5 -33 -26
Medial lemniscus left 85 (264) 2.54 0.019 3 -33 -26
Inferior cerebellar peduncle right - - - - - -
Inferior cerebellar peduncle left - - - - - -
Superior cerebellar peduncle right 81 (372) 2.55 0.018 -6 -30 -21
Superior cerebellar peduncle left 95 (379) 2.68 0.015 5 -30 -21
Cerebral peduncle right 670 (833) 2.96 0.009 6 -19 -21
Cerebral peduncle left 550 (827) 2.97 0.009 5 21 -21
Anterior limb of internal capsule right 744 (1111) 3.38 0.005 23 21 -0
Anterior limb of internal capsule left 372 (1086) 3.14 0.007 21 15 18
Posterior limb of 186 (1320) 2.43 0.023 -4 -3 -2
internal capsule right 97 2.41 0.024 26 -6 18
Posterior limb of 108 (1312) 2.63 0.016 27 27 18
internal capsule left 33 2.07 0.041 12 -4 -3
Retrolenticular part of internal capsule right 568 (881) 4.46 0.004 41 -30 -3
Retrolenticular part of internal capsule left 595 (859) 3.76 0.004 41 -36 -3
Anterior corona radiata right 2013 (2368) 3.80 0.004 27 35 3
Anterior corona radiata left 2004 (2338) 3.68 0.004 15 17 30
Superior corona radiata right 2206 (2448) 4.61 0.004 24 -1 37
Superior corona radiata left 2209 (2479) 4.49 0.004 14 -3 39
Posterior corona radiata right 1151 (1301) 4.53 0.004 -30 -55 21
Posterior corona radiata left 1132 (1305) 4.19 0.004 27 -43 21
Posterior thalamic radiation (include optic radiation) 1197 (1376) 4.46 0.004 -30 -55 18
right
Posterior thalamic radiation (include optic radiation) 1221 (1386) 4.07 0.004 29 -45 18
left
Sagittal stratum uright 625 (773) 4.80 0.004 42 -30 -6
Sagittal stratum uleft 617 (783) 3.80 0.004 39 -12 -17
External capsule right 406 (1329) 3.48 0.005 24 21 -3
36 2.62 0.016 35 22 1
External capsule left 477 (1299) 3.19 0.007 27 9 18
36 2.55 0.018 33 22 1
Cingulum (cingulate gyrus) right 256 (923) 3.64 0.004 9 -34 33
61 2.34 0.027 11 9 31
23 217 0.035 9 32 12
Cingulum (cingulate gyrus) left 800 (1086) 4.02 0.00 9 -6 36
Cingulum (hippocampus) right 19 (467) 2.50 0.020 -12 46 9
(Continued)
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Table 4. (Continued)

Region

Cingulum (hippocampus) left

Fornix (cres) / Stria terminalis right
Fornix (cres) / Stria terminalis left
Superior longitudinal fasciculus right
Superior longitudinal fasciculus left
Superior fronto-occipital fasciculus right
Superior fronto-occipital fasciculus left
Inferior fronto-occipital fasciculus right
Inferior fronto-occipital fasciculus left
Uncinate fasciculus right

Uncinate fasciculus left

Tapatum right

Tapatum left

doi:10.1371/journal.pone.0136386.1004

N of significant voxel (Total N of Peak t- Corrected p value MNI peak

voxel) value (FDR) coordinates

X y z
182 (435) 3.07 0.008 -36 -12 -17
141 (426) 3.26 0.006 33 -7 -18
1659 (2340) 4.33 0.004 36 -1 27
1946 (2332) 3.97 0.004 383 2 27
125 (175) 3.40 0.005 23 0 24
117 (165) 3.50 0.005 20 9 24
450 (693) 34 0.005 24 21 -5
424 (638) 3.16 0.007 23 21 -6
43 (145) 2.50 0.020 35 -4 -14
109 (150) 3.40 0.005 36 -4 -18
183 (219) 4.02 0.004 -30 -52 15
167 (239) 4.18 0.004 24 45 22

associated with greater effectiveness of neural circuit communication and consequently may
facilitate cognitive functions [47].

Our results suggest that globally distributed white matter structures support performance
on different processing speed tasks, and this finding is in agreement with the following studies.
Previous psychological studies showed that processing speed correlates with performance in
various cognitive domains during development and healthy ageing [58], [59]. Furthermore,
general white matter integrity is considered a lifelong stable biological foundation of processing
speed throughout the lifespan [2], [15], [17]. Simultaneously, performance on so-called pro-
cessing speed tasks is actually considered to depend on various cognitive activities. For exam-
ple, the digit symbol test [8], which is a typical test of processing speed, is considered to be
affected by psychomotor speed, attention, perceptual organisation, motor persistence and
visual short-term memory [60], [61]. Thus, various white matter structures of brain areas may
be responsible for processing speed. We may assume that processing speed is a fundamental
component of cognitive efficiency or cognitive proficiency, and our results show that data from
global WMV partly support this idea and help to explain that variable.

The present findings are expected to stimulate further research in this area, in particular
how the relationship between processing speed and WMV can change during cognitive devel-
opment and ageing process. Moreover, it seems important to test how the relationship between
rWMYV and improvements in processing speed via training [46] changes in healthy people and
patients with cognitive impairment.

This study has some limitations. One limitation is shared with our previous studies and
studies by others that involve college cohorts [39], [44], [47], [62], [63]. As mentioned above,
we tested young healthy subjects at a relatively high educational level. Limited sampling of the
full range of intellectual abilities is a common problem when sampling from college cohorts
[57]. Limited sampling may be an important step to rule out the effects of age or the education
level that could strongly influence brain structures and increase sensitivity of the analyses. In
fact, processing speed correlates with age-related changes in cognition in the course of child-
hood development [15], [64], [65] (and healthy ageing [2], [15]
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This study seems to be the first study to explore the associations between rWMYV and pro-
cessing speed in a large sample of young adults. Supporting our hypothesis, the results confirm
that WMV is related globally to performance on different tests of processing speed. Our results
support the notion that global WMV could help to explain in detail the influence of white mat-
ter on processing speed performance.

Supporting Information

S1 Table. Psychological data of the included participants (Psychological _data_SPSS_Fi-
le_The relationship between processing speed and regional white matter volume in healthy

young people.sav).
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