25,023 research outputs found

    Comparative proteomics of uropathogenic Escherichia coli during growth in human urine identify UCA-like (UCL) fimbriae as an adherence factor involved in biofilm formation and binding to uroepithelial cells

    Get PDF
    Uropathogenic Escherichia coli (UPEC) are the primary cause of urinary tract infection (UTI) in humans. For the successful colonisation of the human urinary tract, UPEC employ a diverse collection of secreted or surface-exposed virulence factors including toxins, iron acquisition systems and adhesins. In this study, a comparative proteomic approach was utilised to define the UPEC pan and core surface proteome following growth in pooled human urine. Identified proteins were investigated for subcellular origin, prevalence and homology to characterised virulence factors. Fourteen core surface proteins were identified, as well as eleven iron uptake receptor proteins and four distinct fimbrial types, including type 1, P, F1C/S and a previously uncharacterised fimbrial type, designated UCA-like (UCL) fimbriae in this study. These pathogenicity island (PAI)-associated fimbriae are related to UCA fimbriae of Proteus mirabilis, associated with UPEC and exclusively found in members of the E. coli B2 and D phylogroup. We further demonstrated that UCL fimbriae promote significant biofilm formation on abiotic surfaces and mediate specific attachment to exfoliated human uroepithelial cells. Combined, this study has defined the surface proteomic profiles and core surface proteome of UPEC during growth in human urine and identified a new type of fimbriae that may contribute to UTI

    Punishment does not promote cooperation under exploration dynamics when anti-social punishment is possible

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.It has been argued that punishment promotes the evolution of cooperation when mutation rates are high (i.e. when agents engage in ‘exploration dynamics’). Mutations maintain a steady supply of agents that punish free-riders, and thus free-riders are at a disadvantage. Recent experiments, however, have demonstrated that free-riders sometimes also pay to punish cooperators. Inspired by these empirical results, theoretical work has explored evolutionary dynamics where mutants are rare, and found that punishment does not promote the evolution of cooperation when this ‘anti-social punishment’ is allowed. Here we extend previous theory by studying the effect of anti-social punishment on the evolution of cooperation across higher mutation rates, and by studying voluntary as well as compulsory Public Goods Games. We find that for intermediate and high mutation rates, adding punishment does not promote cooperation in either compulsory or voluntary public goods games if anti-social punishment is possible. This is because mutations generate agents that punish cooperators just as frequently as agents that punish defectors, and these two effects cancel each other out. These results raise questions about the effectiveness of punishment for promoting cooperation when mutations are common, and highlight how decisions about which strategies to include in the strategy set can have profound effects on the resulting dynamics.O.P.H. is grateful to the department of Organismic and Evolutionary Biology at Harvard for fellowship support. Funding from the John Templeton Foundation is gratefully acknowledged

    Adoption of improved potato varieties in jeldu district, oromia region, Ethiopia: a double-hurdle model

    Get PDF
    Smallholder potato producers in Jeldu district produce potato for both home consumption and market. Adoption of improved varieties is suggested to improve and diversify farmers’ household income. This study intents to identify factors determining adoption and intensity of adoption of improved potato varieties in Jeldu district of West Shewa zone, Oromia region, Ethiopia. Both primary and secondary data were used. The primary data were collected from 140 sample households’ selected using two-stage random sampling techniques. Descriptive statics and double hurdle econometric model were used to analyze the data. Results indicate that sex of the household head, access to extension services, livestock ownership and farmers’ perception about the technology positively and significantly determined adoption of improved varieties in the district. In contrast, distance from the nearest market affected adoption of improved potato varieties negatively and significantly. Intensity of adoption is measured by the area of land allocated for improved potato varieties by farmers. The truncated result identified improved varieties yield perception, family size, livestock ownership and membership to agricultural cooperative influenced intensity of improved potato varieties adoption positively and significantly. Strengthening extension services to enhance farmers’ awareness about improved potato varieties infrastructure development, family planning, asset ownership and facilitating membership to cooperatives are recommended. Int. J. Agril. Res. Innov. Tech. 9(2): 15-22, December 201

    Muscle Fatigue Analysis Using OpenSim

    Full text link
    In this research, attempts are made to conduct concrete muscle fatigue analysis of arbitrary motions on OpenSim, a digital human modeling platform. A plug-in is written on the base of a muscle fatigue model, which makes it possible to calculate the decline of force-output capability of each muscle along time. The plug-in is tested on a three-dimensional, 29 degree-of-freedom human model. Motion data is obtained by motion capturing during an arbitrary running at a speed of 3.96 m/s. Ten muscles are selected for concrete analysis. As a result, the force-output capability of these muscles reduced to 60%-70% after 10 minutes' running, on a general basis. Erector spinae, which loses 39.2% of its maximal capability, is found to be more fatigue-exposed than the others. The influence of subject attributes (fatigability) is evaluated and discussed

    Cell biology:Collagen secretion explained

    Get PDF
    Cells package proteins into vesicles for secretion to the extracellular milieu. A study shows that an enzyme modifies the packaging machinery to encapsulate unusually large proteins such as collagen

    Cooperating with the future

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Publishing Group via the DOI in this record.Overexploitation of renewable resources today has a high cost on the welfare of future generations1,2,3,4,5. Unlike in other public goods games6,7,8,9, however, future generations cannot reciprocate actions made today. What mechanisms can maintain cooperation with the future? To answer this question, we devise a new experimental paradigm, the ‘Intergenerational Goods Game’. A line-up of successive groups (generations) can each either extract a resource to exhaustion or leave something for the next group. Exhausting the resource maximizes the payoff for the present generation, but leaves all future generations empty-handed. Here we show that the resource is almost always destroyed if extraction decisions are made individually. This failure to cooperate with the future is driven primarily by a minority of individuals who extract far more than what is sustainable. In contrast, when extractions are democratically decided by vote, the resource is consistently sustained. Voting10,11,12,13,14,15 is effective for two reasons. First, it allows a majority of cooperators to restrain defectors. Second, it reassures conditional cooperators16 that their efforts are not futile. Voting, however, only promotes sustainability if it is binding for all involved. Our results have implications for policy interventions designed to sustain intergenerational public goods.Financial support from the Department of Organismic and Evolutionary Biology at Harvard, the Harvard Office for Sustainability and the John Templeton Foundation is gratefully acknowledged

    Think global, act local: Preserving the global commons

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Nature via the DOI in this recordPreserving global public goods, such as the planet’s ecosystem, depends on large-scale cooperation, which is difficult to achieve because the standard reciprocity mechanisms weaken in large groups. Here we demonstrate a method by which reciprocity can maintain cooperation in a large-scale public goods game (PGG). In a first experiment, participants in groups of on average 39 people play one round of a Prisoner’s Dilemma (PD) with their two nearest neighbours on a cyclic network after each PGG round. We observe that people engage in “local-to-global” reciprocity, leveraging local interactions to enforce global cooperation: Participants reduce PD cooperation with neighbours who contribute little in the PGG. In response, low PGG contributors increase their contributions if both neighbours defect in the PD. In a control condition, participants do not know their neighbours’ PGG contribution and thus cannot link play in the PD to the PGG. In the control we observe a sharp decline of cooperation in the PGG, while in the treatment condition global cooperation is maintained. In a second experiment, we demonstrate the scalability of this effect: in a 1,000-person PGG, participants in the treatment condition successfully sustain public contributions. Our findings suggest that this simple “local-to-global” intervention facilitates large-scale cooperation.This work was supported by Office of Naval Research grant N00014-16-1-2914 and by the John Templeton Foundation. The Program for Evolutionary Dynamics is supported in part by a gift from B Wu and Eric Larson

    Scene Coordinate Regression with Angle-Based Reprojection Loss for Camera Relocalization

    Get PDF
    Image-based camera relocalization is an important problem in computer vision and robotics. Recent works utilize convolutional neural networks (CNNs) to regress for pixels in a query image their corresponding 3D world coordinates in the scene. The final pose is then solved via a RANSAC-based optimization scheme using the predicted coordinates. Usually, the CNN is trained with ground truth scene coordinates, but it has also been shown that the network can discover 3D scene geometry automatically by minimizing single-view reprojection loss. However, due to the deficiencies of the reprojection loss, the network needs to be carefully initialized. In this paper, we present a new angle-based reprojection loss, which resolves the issues of the original reprojection loss. With this new loss function, the network can be trained without careful initialization, and the system achieves more accurate results. The new loss also enables us to utilize available multi-view constraints, which further improve performance.Comment: ECCV 2018 Workshop (Geometry Meets Deep Learning

    Static characterization of the driving, normal and stall forces of a double-sided moving-permanent magnet-type planar actuator based on orthogonal planar windings

    Full text link
    © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This work presents a study of the traction, normal and stall forces in a two-sided planar actuator with orthogonal planar windings and a mover that comprises two cars magnetically coupled to each other through two pairs of permanent magnets (PMs). There is no ferromagnetic armature core because of the permanent magnets array in the mover and orthogonal traction forces can be generated in order to move both cars jointly in any direction on a plane. The stall force is the minimal force necessary to break up the magnetic coupling between the two cars. When one of the cars is subjected to an external force through the x-or y-axis, the cars can become out of alignment with respect to each other and the planar actuator cannot work properly. The behavior of the forces was modelled by numerical and analytical methods and experimental results were obtained from tests carried out on a prototype. The average sensitivity of the measured static propulsion planar force along either axis is 4.48 N/A. With a 20-mm displacement between the cars along the direction of the x-axis and no armature current, a magnetic stall force of 17.26 N is produced through the same axis in order to restore the alignment of the two cars
    • 

    corecore