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It has been argued that punishment promotes the evolution of cooperation when 
mutation rates are high (i.e. when agents engage in ‘exploration dynamics’). Mutations 
maintain a steady supply of agents that punish free-riders, and thus free-riders are at a 
disadvantage. Recent experiments, however, have demonstrated that free-riders 
sometimes also pay to punish cooperators. Inspired by these empirical results, 
theoretical work has explored evolutionary dynamics where mutants are rare, and 
found that punishment does not promote the evolution of cooperation when this ‘anti-
social punishment’ is allowed. Here we extend previous theory by studying the effect of 
anti-social punishment on the evolution of cooperation across higher mutation rates, 
and by studying voluntary as well as compulsory Public Goods Games. We find that for 
intermediate and high mutation rates, adding punishment does not promote 
cooperation in either compulsory or voluntary public goods games if anti-social 
punishment is possible: Mutations generate agents that punish cooperators just as 
frequently as agents that punish defectors, and these two effects cancel each other out. 
These results raise questions about the effectiveness of punishment for promoting 
cooperation when mutations are common, and highlight how decisions about which 
strategies to include in the strategy set can have profound effects on the resulting 
dynamics. 
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1. Introduction 

 

The evolution of cooperation is a central topic of interest across the natural and social 

sciences (Antal et al., 2009; Apicella et al., 2012; Axelrod, 1984; Capraro, 2013; Chudek and 

Henrich, 2011; Dal Bó, 2005; Dal Bó and Fréchette, 2011; Fudenberg and Maskin, 1990; 

Hauert and Doebeli, 2004; Hauert et al., 2002a; Helbing and Yu, 2009; Herrmann et al., 

2008; Jacquet et al., 2011; Janssen et al., 2010; Levin, 2006; Milinski et al., 2002; Nowak and 

Sigmund, 1992; Nowak and May, 1992; Nowak and Sigmund, 1993; Nowak and Sigmund, 

1998; Ostrom, 1990; Perc and Szolnoki, 2010; Peysakhovich and Rand, 2013; Rand et al., 

2012; Rand et al., 2013; Rand et al., 2009b; Rapoport and Chammah, 1965; Rockenbach and 

Milinski, 2006; Seinen and Schram, 2006; Sigmund, 2010; Skyrms, 1996; Skyrms and 

Pemantle, 2000; Tarnita et al., 2009; Traulsen and Nowak, 2006; van Veelen et al., 2012; 

Wedekind and Milinski, 2000; Yoeli et al., 2013). Five mechanisms for the evolution of 

cooperation have been proposed: direct and indirect reciprocity, spatial selection, kin 

selection, and multi-level selection (Nowak, 2006; Rand and Nowak, 2013). Adding any of 

these interaction structures to a Prisoner’s Dilemma can result in cooperation being favoured 

over defection, as can relaxing the social dilemma by making participation optional (Hauert 

et al., 2002a). In recent years, the idea that individuals pay a personal cost to impose costs on 

others has gained increasing attention. Behavioural experiments have shown that individuals 

are willing to pay to punish others, and that this costly punishment often (although not 

always) results in an increase in cooperation (Almenberg et al., 2011; Dreber et al., 2008; 

Espín et al., 2012; Fehr and Gächter, 2000; Fehr and Gächter, 2002; Fehr and Fischbacher, 

2004; Gächter et al., 2008; Gurerk et al., 2006; Herrmann et al., 2008; Janssen et al., 2010; 

Ostrom et al., 1992; Rand et al., 2009b; Rockenbach and Milinski, 2006; Sefton et al., 2007; 

Sutter et al., 2010; Ule et al., 2009; Yamagishi, 1986). Complimenting this empirical work is 

a body of literature using evolutionary game theory to explore the co-evolution of 

punishment and cooperation (Boyd and Richerson, 1992; Boyd et al., 2003; Fowler, 2005; 

Hauert et al., 2007; Helbing et al., 2010; Isakov and Rand, 2011; Nakamaru and Iwasa, 2005; 

Nakamaru and Iwasa, 2006; Ohtsuki et al., 2009; Rand et al., 2009a; Sigmund et al., 2001; 

Sigmund et al., 2010; Traulsen et al., 2009). These papers typically examine evolutionary 

outcomes when the ability to pay to punish defectors is added to one of the mechanisms for 

the evolution of cooperation: costly punishment is not itself a mechanism for the evolution of 

cooperation, but must be combined with reciprocity, spatial structure, group selection or 

voluntary participation.  
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The existence of a darker form of punishment, however, has begun to challenge the positive 

role of punishment suggested by much of this work. Numerous experimental studies have 

shown that some people also engage in ‘anti-social punishment’ directed at co-operators 

(Cinyabuguma et al., 2006; Ellingsen et al., 2012; Gächter and Herrmann, 2009; Gächter and 

Herrmann, 2011; Gächter et al., 2010; Herrmann et al., 2008; Nikiforakis, 2008; Rand and 

Nowak, 2011; Sylwester et al., (In press)). Because this anti-social punishment was seen as 

unlikely, it was excluded a priori from most previous theoretical models. Given the empirical 

evidence of anti-social punishment, however, it is important to re-evaluate previous models 

of the co-evolution of cooperation and punishment (Dreber and Rand, 2012).  

 

Recent work in this vein has explored the consequences of including antisocial punishment in 

various evolutionary scenarios. In the context of Prisoner’s Dilemmas played in lattice-

structured populations, adding antisocial punishment prevents cooperative mutants from 

invading populations of defectors under viability updating (Rand et al., 2010). In the context 

of stochastic evolutionary dynamics in the limit of low mutation, selection no longer favours 

cooperation in voluntary (optional) public goods games in the limit of low mutation when 

antisocial punishment is possible (Rand and Nowak, 2011), unless only defectors, and not 

loners, can punish cooperators (García and Traulsen, 2012). In the context of group-

structured populations, the effectiveness of punishment for promoting cooperation is 

substantially reduced when antisocial punishment strategies are included (Powers et al., 

2012), or when defectors can retaliate when punished (Janssen and Bushman, 2008). 

 

Here we extend this line of work by examining the evolutionary consequences of antisocial 

punishment in a setting not previously considered: ‘exploration dynamics’ where the 

evolutionary process includes a relatively high rate of mutation. A recent model which 

excludes antisocial punishment has suggested that cooperation can evolve via punishment 

when mutation rates are high (Traulsen et al., 2009). Frequent mutations serve to maintain all 

possible strategies at a high frequency in the population, regardless of fitness. In a model 

where the only possible punishment is targeted at defectors, therefore, mutations maintain a 

steady supply of punishers. As a result defectors fare poorly and are disfavoured.  

 

We now ask what happens in a model where punishment is not restricted to defectors only. 

When all forms of punishment are available, high mutation rates lead to a constant supply of 



4 / 28	  

individuals of all strategies, including those that punish cooperators. Thus cooperators are 

punished to the same extent as defectors, and punishment no longer promotes cooperation. 

We study compulsory and voluntary public goods games. We also follow (García and 

Traulsen, 2012) and examine voluntary games were loners are exempt from punishment. In 

all cases, when mutations are sufficiently common, punishment does not promote the 

evolution of cooperation if anti-social punishment is not excluded.  

 

The rest of the paper is structured as follows. In Section 2, we describe the model and the 

payoff structure of the compulsory and voluntary public goods games. In Section 3, we 

describe the dynamics of the evolutionary process and the role of mutation rates. In Section 4, 

we provide results for the compulsory game. In Section 5, we provide results for the 

voluntary game. In Section 6, we show results for the effect of varying the intensity of 

selection in both games. In Section 7, we discuss our findings and conclude. 

 

2. The model 

 

Let N denote the number of individuals in a population playing the Public Goods Game 

(PGG). The PGG is the multi-player version of the Prisoner’s Dilemma (Hardin, 1968). Each 

player in a group of n players must decide whether or not to contribute a fixed amount c to 

the ‘common good’. Contributions are multiplied by a factor r > 1, and evenly split by all 

group members, regardless of whether or not they contributed. Thus if 𝑥 players choose to 

cooperate, each player receives 𝑟𝑐𝑥/𝑛 back from the common good. We refer to this game as 

the compulsory PGG because all players must participate in the PGG.  

 

We also consider a voluntary PGG where participation in the game is not compulsory (Hauert 

et al., 2002a; Hauert et al., 2002b; Hauert et al., 2007). Players who choose to abstain from 

the game receive a constant loner’s payoff σ , that is less than the (r −1)c  payoff earned by 

each member of a group where everyone cooperates, but greater than the 0 payoff earned by 

each member of a group where everyone defects. If all but one player in a group are loners, 

the game cannot take place and everyone in the group receives the loner’s payoff σ .  

 

In both versions of the game, groups of size n are drawn from the population at random in 

each round to play a PGG. In the compulsory game, individuals choose between C 
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(cooperate) or D (defect). In the voluntary game, a third option – L (loner) – is available. 

Following the PGG decision, each player is given the option to punish the others in the 

group: a player’s punishment costs her a fee γ  for every player she chooses to punish; a 

punished player incurs a cost β  for every punishment she receives (β > γ ). Players can 

condition their punishment decisions on the PGG choice of each potential recipient of 

punishment. 

 

We describe a strategy as W-XYZ (as in (Rand and Nowak, 2011)), where W ∈ {C,D,L}  

denotes the PGG decision, X ∈ {N = "No", P = "Punish"}  denotes whether punishment is 

directed at cooperators, Y ∈ {N,P}  whether it is directed at defectors, and Z ∈ {N,P}  

whether it is directed at loners. For example, C-NNP is a cooperator strategy that does not 

punish cooperators and defectors but punishes loners, whereas D-PPP is a defector strategy 

that punishes all strategies (including others with the same strategy as itself). We now discuss 

the payoff that each strategy earns when playing against each other strategy for the 

compulsory and voluntary PGGs. Details of the payoff calculations can be found in Appendix 

A, and in the Supplementary Information of (Rand and Nowak, 2011). 

 

In the compulsory PGG, abstinence from the game (i.e., the loner strategy) is not an option. 

Thus there are, at most, 8 possible strategies: W=[C,D] • X=[P,N] • Y=[P,N] (to facilitate 

easier cross-comparison with the voluntary public goods game, we write Z=[N] for all 

strategies in the compulsory game as loners are non-existent and therefore not punishable).  

 

For the compulsory game, we study three conditions. In the ‘No punishment’ condition, 

punishment is not an option for either cooperators or defectors: the only possible strategies 

are C-NNN and D-NNN. In the ‘Pro-social punishment’ condition, only punishment of 

defectors by cooperators is allowed: the possible strategies are C-NNN, C-NPN, and D-NNN. 

This condition is equivalent to the compulsory game with punishment in (Traulsen et al., 

2009). Finally, in the ‘Full punishment’ condition, all 8 strategies are available; see details in 

Appendix A.  

 

In the voluntary PGG, the option to abstain from the public goods game is made available. 

Loners who abstain from the public goods game receive a constant payoff 𝜎  that is 
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independent from the contributions to the common good. There are 24 possible W-XYZ 

strategies:  [C,D,L] • [P,N] • [P,N] • [P,N].  

 

For the voluntary game, we study four conditions. In the ‘No punishment’ condition, 

punishment is not an option for cooperators, defectors or loners: the possible strategies are C-

NNN, D-NNN and L-NNN. In the ‘Pro-social punishment’ condition, only punishment of 

defectors by cooperators is allowed: the possible strategies are C-NNN, C-NPN, D-NNN and 

L-NNN. This condition is equivalent to the voluntary game with punishment in (Traulsen et 

al., 2009). In the ‘Full punishment’ condition, all 24 strategies are available. Finally, in the 

‘Loners alone’ condition, loners are not allowed to punish or to be punished. Thus the 

following 9 strategies are possible: 4 cooperator strategies (C-NNN, C-NPN, C-PNN, C-

PPN), 4 defector strategies (D-NNN, D-NPN, D-PNN, D-PPN) and 1 loner strategy (L-

NNN). This condition is inspired by (García and Traulsen, 2012), who propose that 

cooperation can be sustained if punishment is made available only to players that participate 

in the PGG. For detailed calculations of the payoffs, see Appendix A.  

  

 

3. Evolutionary Dynamics 

 

We study the transmission of strategies through an evolutionary process. This process may be 

genetic evolution or social learning. In either case, we assume that strategies with higher 

payoffs are more likely to survive and reproduce, while strategies with lower payoffs are less 

likely to do so. Mutations during reproduction lead to the introduction of novel strategies 

(selected uniformly at random). In the context of social learning, mutations may represent 

either confusion regarding the strategy of a player you are trying to copy, or experimentation 

with new strategies.  

 

In many contexts, humans generally avoid using dominated strategies (Camerer, 2003), 

suggesting that rates of mutation (i.e. random experimentation including with dominated 

strategies) are not so high. Recent work examining play in economic cooperation games, 

however, has suggested that a substantial portion of play is non-strategic and random, and has 

argued that learning in this setting is thus characterized by high mutation rates (Traulsen et 

al., 2010). Correspondingly, the term ‘exploration dynamics’ has been introduced to describe 
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dynamics under high mutation rates (Traulsen et al., 2009), which we focus on in the present 

paper.  

  

We study the evolutionary process as a frequency-dependent Moran process (Nowak et al., 

2004) with exponential fitness (Traulsen et al., 2008). In each round, one individual 𝑖 is 

picked for reproduction proportional to his/her fitness 𝑒!!  (where 𝜋!  is the payoff of 

individual 𝑖), while another individual 𝑗 is chosen with uniform distribution to die, changing 

his/her strategy. With probability 𝑢, a mutation occurs and individual 𝑗 picks a novel strategy. 

With probability 1− 𝑢, individual 𝑗 adopts the strategy of individual 𝑖.  

  

We study the evolutionary outcomes over a range of mutation rates using agent-based 

simulations. We also study the 𝑢 → 1 ‘high mutation rate’ limit analytically (Antal et al., 

2009). Here, selection contributes only slightly to the evolutionary dynamics, which are 

largely dominated by mutation. As a result, all possible strategies are on average almost 

equally abundant at the same time (unlike the low mutation, weak selection limit where 

strategies are equally abundant on average but there are never more than two strategies 

present at the same time). Thus, if there are 𝑀 strategies, the frequency of strategy 𝑠 is a 

perturbation from 1/𝑀 which is a linear function of the payoff obtained when all strategies 

are equally abundant (Antal et al., 2009). Specifically, the relative perturbation 𝛥! from 1/𝑀 

is given by 𝜋!∗ −
!!
∗

!

!
, where 𝜋!∗  is the expected payoff of strategy 𝑥 in a population where all 

strategies have abundance 1/𝑀. Therefore the strategy that is most common at 𝑢 → 1 is the 

strategy with the highest payoff when 𝑢 = 1 (i.e. when all strategies have frequency 1/𝑀). 

Note that this result holds regardless of selection strength. 

 

 

4. Compulsory PGG Results 

 

We begin with analytical calculations in the high mutation limit. We ask under what 

conditions cooperation can be favoured by natural selection. Selection favours cooperation in 

the high mutation limit if the expected payoff averaged over all cooperative strategies minus 

the expected payoff averaged over all possible strategies, 𝛥!  is positive (i.e., if cooperators 

out-earn non-cooperators on average). Although this is an extreme (and physically 

unrealistic) limit, it is analytically tractable, and we will subsequently explore how the 
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conclusions generated in the high mutation limit generalize to lower mutation rates using 

agent based simulations. 

 

Using the No Punishment strategy set, we find 

 

𝛥! = − !"
!

. 

 

Thus regardless of the payoff parameters, selection disfavours cooperation. Using the Pro-

social Punishment strategy set, however,  

 

Δ! =
!(!,!)!(!"!!)

!"
− !"

!
. 

 

If punishment is sufficiently effective,  

 

𝛽 > !!!!! !,! !"
!! !,! !

, 

 

cooperation can be favoured. Using the Full Punishment strategy set, however, the result is 

identical to the No Punishment case:  

 

𝛥! = −
𝐹𝑐
2  

 

Once again cooperation is disfavoured regardless of payoffs, and thus punishment does not 

promote cooperation.  

 

We also explore dynamics outside of the high mutation limit using agent based simulations. 

We fix 𝑁 = 100,𝑛 = 5, 𝑟 = 3, 𝛾 = 0.3, and  𝜔 = 𝛽 = 𝑐 = 1 . For each strategy set, we 

simulate 10!  generations, and calculate the time averaged frequency of each strategy over the 

second half of the simulation (Figure 1). The simulations show qualitative agreement with the 

analytical results in the high mutation limit over a wide range of mutation rates: punishment 

does not promote cooperation when the Full Punishment strategy set is used. We also note 

that selection disfavours punishment of any kind (Figure 2): the aggregate frequency of 

strategies that punish defectors never rises above neutrally (0.5 in this case) using either the 
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Prosocial Punishment or Full Punishment strategy sets, nor does the aggregate frequency of 

strategies that punish cooperation in the Full Punishment case. 

 

 

5. Voluntary PGG Results 

 

We again begin with analytical calculations in the high mutation limit, and compare 𝛥! 	  	  

across our four voluntary public goods game conditions. Using the No Punishment strategy 

set, we find 

 

𝛥! =
!!(!)
!

− !
!
− !!"

!
. 

 

Thus even in the absence of punishment, cooperation can be favoured if the returns on 

cooperation are sufficiently high:  

 

𝐵! 𝑋 > 𝜎 + 2𝐹! . 

 

Using the Pro-social Punishment strategy set,  

 

𝛥! =
!
!
  – !

!
  – !"

!
  + !(!,!)!(!!!)

!"
  . 

 

Thus, if the effect of punishment is greater than the cost, 𝛽 > 𝛾, cooperation is favoured over 

a wider range of 𝐵′(𝑋) values than in the No Punishment case: here punishment promotes 

cooperation (as in (Traulsen et al., 2009)). Using the Full Punishment strategy set, however, 

we again obtain a result identical to the No Punishment case: 

 

𝛥! =
!!(!)
!

− !
!
− !!"

!
; 

 

thus punishment does not promote cooperation when all strategies are possible, as in the 

compulsory game. Finally, we consider the “loners alone” strategy set, where we find  

 

𝛥! =
!!(!)
!

− !
!
− !!"

!
− !! !,! !(!!!)

!"
. 
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As can be seen, punishment inhibits cooperation in this strategy set: ∆𝐶 is decreasing in both 

β and γ. 

 

Turning to agent based simulations, we use the same parameters as for the compulsory PGG 

with the additional parameter of 𝜎 = 1 (loner’s payoff), and simulate over 10! generations. 

We calculate the time-averaged frequencies of all strategies in the second half of the 

simulation (Figure 3). The results are similar to those of the compulsory game. Regardless of 

mutation rate, cooperation is never favoured by selection in the Full Punishment strategy set 

where anti-social punishment strategies are included. Similarly, cooperation is disfavoured in 

the “Loners Alone” strategy set as long as mutation rates are sufficiently large. We also find 

that punishment of all kinds is disfavoured when mutation rates are sufficiently large (Figure 

4).  

 

 

6. Intensity of selection 

 

Previous studies have shown that the intensity of selection can play an important role in 

determining evolutionary outcomes (Manapat et al., 2012; Rand and Nowak, 2012; Wu et al., 

2013). In our previous simulations, we held the intensity of selection constant at 𝑤 = 1 and 

varied the mutation rate. Here we demonstrate that our central result, the fact that punishment 

does not promote cooperation when mutations are common and antisocial punishment is 

possible, is robust to varying the intensity of selection.  

 

To  do so, we fix a fairly high mutation rate of 𝜇 = 10!!.! and vary the intensity of selection 

𝑤 ∈ 0.1, 10 . For each value of w, we carry out agent based simulations using each of the 

strategy sets discussed above.  

 

We begin be considering the compulsory PGG (Figure 5). We find qualitatively equivalent 

results across intensities of selection: cooperation is favoured only in the prosocial 

punishment case. The results for the voluntary game are similar (Figure 6). Again, it is only 

in the Prosocial Punishment strategy set that cooperation is ever favoured. In the Loners 

Alone strategy set (Figure 6d), loners become less common when selection is weak, but still 
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defectors are always more common than cooperators. Thus we conclude that our results from 

Sections 4 and 5 were not unique to the particular intensity of selection used, w = 1. 

 

 

7. Discussion 

 

We have shown that when cooperators can be the targets of punishment, adding punishment 

does not promote the evolution of cooperation under exploration dynamics. When all forms 

of punishment are available, anti-social punishment towards cooperators is as common as 

traditional punishment of defectors in the high mutation limit. Thus anti-social punishment 

cancels out the positive effects that pro-social punishment may otherwise provide.  

 

These results emphasize the importance of which strategies are (or are not) included in the 

strategy set. The choice of strategies is always important. But when agents are selecting 

strategies at random a substantial fraction of the time (as is the case when mutation rates are 

not so small), then one’s choice of which strategies to include has an especially profound 

effect on the evolutionary outcomes: even strategies which perform extremely poorly will 

sometimes be played, and thus can have a substantial impact on the evolutionary outcomes. 

Thus it is critical to not inadvertently alter one’s results by selectively omitting certain 

strategies (for example, strategies that are possible but seem unlikely based on our 

observations of the world around us). 

 

Our findings are consistent with previous work on anti-social punishment in the low mutation 

limit using the same payoff structures we studied here (Rand and Nowak, 2011). The 

extension to higher mutation rates is of substantial interest because it has been suggested that 

such mutation rates are a form of ‘exploration’ and innovation that play an important role in 

human learning (Traulsen et al., 2009; Traulsen et al., 2010). Under these circumstances of 

high mutation, evolutionary dynamics may favour qualitatively different strategies compared 

to when mutation is rare (Antal et al., 2009). We see this on our results when considering the 

voluntary public goods game in which loners are not allowed to punish or be punished. This 

concept of ‘leaving the loners alone’ is an effective mechanism for promoting cooperation in 

the low mutation limit (García and Traulsen, 2012). We show here, however, that when 

mutations are sufficiently common, punishment does not promote cooperation even when 

loners are left alone. On the contrary, punishment actually inhibits cooperation (by giving the 
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non-punished loners an advantage over both cooperators and defectors). Determining how the 

mutation threshold at which cooperators are no longer favoured varies with the game 

parameters is an important direction for future work.  

 

In sum, we have shown that punishment does not promote cooperation when mutations are 

common unless cooperators are protected from punishment. These results add to a growing 

body of literature using evolutionary game theory that calls into question the positive role of 

peer punishment in the evolution of cooperation (Dreber and Rand, 2012; Janssen and 

Bushman, 2008; Powers et al., 2012; Rand and Nowak, 2011; Rand et al., 2009a; Rand et al., 

2010).  
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Appendix A 

 

Calculation of voluntary Public Goods Game payoffs 

 

The payoff of strategy 𝑠 in the PGG 𝛿! is determined as follows. If 𝑖! + 𝑖! < 1, then there 

are not enough non-loners for the public goods game to occur, and so 𝛿! = 𝜎 regardless of 

the strategy of player 𝑠. Otherwise, 

 

𝛿! = 𝑟𝑐
𝑖!

𝑖! + 𝑖!
− 𝑐𝑠!  

 

The payoff of strategy 𝑠 from being punished is given by  

 

𝛿! = −𝛽 𝑠𝑐 𝑖!" − 𝑠!" + 𝑠! !!"!!!" + 𝑠! 𝑖!" − 𝑠!" . 

 

The payoff of strategy 𝑠 from paying to punish others 𝛿! is given by 

 

𝛿! = −𝛾 𝑠!" 𝑖! − 𝑠! + 𝑠!" 𝑖! − 𝑠! + 𝑠!" 𝑖! − 𝑠! . 

 

The total payoff of strategy 𝑠 is then given by 

 

𝑃! = 𝛿! + 𝛿! + 𝛿! 

 

Thus far we have calculated the payoff of a particular strategy playing the PGG with 

punishment in a group with a particular set of 𝑛 − 1 other players. To calculate the expected 

(average) payoff of a strategy 𝑠 in a population of size 𝑁, we must now consider the average 

group composition. Let 𝑋! be the total number of players in the population of size 𝑁 using 

strategy 𝑖, 𝑖 ∈ [1, 24]. A randomly sampled group of size 𝑛 has a specific composition given 

by the multivariate hypergeometric distribution, 

 

𝐻 𝑰,𝑿 =
!!
!!

!!
!!

… !!"
!!"

!
!
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where 𝑰 = (𝑖!, 𝑖!,… , 𝑖!") and 𝑿 = (𝑋!,𝑋!,… ,𝑋!"). The average payoff 𝜋!  for strategy 𝑠 is 

then … 𝑯 … 𝑃!!!"!!!! . 

 

Substituting for each of the 24 strategies and simplifying gives  

 

𝜋!!!!! = 𝐵′(𝑿)−   𝐹′(𝑋!)𝑐 − 𝑋!"𝛽𝐷(𝑁,𝑛)  

𝜋!!!!" = 𝐵′(𝑿)−   𝐹′(𝑋!)𝑐 − 𝑋!"𝛽 + 𝑋!𝛾 𝐷(𝑁,𝑛)  

𝜋!!!"! = 𝐵′(𝑿)−   𝐹′(𝑋!)𝑐 − 𝑋!"𝛽 + 𝑋!𝛾 𝐷(𝑁,𝑛)  

𝜋!!!"" = 𝐵′(𝑿)−   𝐹′(𝑋!)𝑐 − 𝑋!"𝛽 + 𝑋! + 𝑋! 𝛾 𝐷(𝑁,𝑛)  

𝜋!!!"" = 𝐵′(𝑿)−   𝐹′(𝑋!)𝑐 − 𝑋! − 1 𝛾 + 𝑋!" − 1 𝛽 𝐷(𝑁,𝑛)  

𝜋!!!"! = 𝐵′(𝑿)−   𝐹′(𝑋!)𝑐 − 𝑋! + 𝑋! − 1 𝛾 + 𝑋!" − 1 𝛽 𝐷(𝑁,𝑛)  

𝜋!!!!" = 𝐵′(𝑿)−   𝐹′(𝑋!)𝑐 − 𝑋! + 𝑋! − 1 𝛾 + 𝑋!" − 1 𝛽 𝐷(𝑁,𝑛)  

𝜋!!!!! = 𝐵′(𝑿)−   𝐹′(𝑋!)𝑐 − 𝑋! + 𝑋! + 𝑋! − 1 𝛾 + 𝑋!" − 1 𝛽 𝐷(𝑁,𝑛)  

𝜋!!!!! = 𝐵′(𝑿)− 𝑋!"𝛽𝐷(𝑁,𝑛)  

𝜋!!!!" = 𝐵′(𝑿)− 𝑋!𝛾 + 𝑋!"𝛽 𝐷(𝑁,𝑛)  

𝜋!!!"! = 𝐵′(𝑿)− 𝑋! − 1 𝛾 + 𝑋!" − 1 𝛽 𝐷(𝑁,𝑛)  

𝜋!!!"" = 𝐵′(𝑿)− 𝑋! + 𝑋! − 1 𝛾 + 𝑋!" − 1 𝛽 𝐷(𝑁,𝑛)  

𝜋!!!"" = 𝐵′(𝑿)− 𝑋!"𝛽 + 𝑋!𝛾 𝐷(𝑁,𝑛)  

𝜋!!!"! = 𝐵′(𝑿)− 𝑋!"𝛽 + 𝑋! + 𝑋! 𝛾 𝐷(𝑁,𝑛)  

𝜋!!!!" = 𝐵′(𝑿)− 𝑋! + 𝑋! − 1 𝛾 + 𝑋!" − 1 𝛽 𝐷(𝑁,𝑛)  

𝜋!!!!! = 𝐵′(𝑿)− 𝑋! + 𝑋! + 𝑋! − 1 𝛾 + 𝑋!" − 1 𝛽 𝐷(𝑁,𝑛)  

𝜋!!!!! = 𝜎 − 𝑋!"βD(N,n)  

𝜋!!!!" = 𝜎 − 𝑋! − 1 𝛾 + 𝑋!" − 1 𝛽 D(N,n)  

𝜋!!!"! = 𝜎 − 𝑋!𝛾 + 𝑋!𝛽 D(N,n)  

𝜋!!!"" = 𝜎 − 𝑋! + 𝑋! − 1 𝛾 + 𝑋!" − 1 𝛽 D(N,n)  

𝜋!!!"" = 𝜎 − 𝑋!𝛾 + 𝑋!𝛽 D(N,n)  

𝜋!!!"! = 𝜎 − 𝑋! + 𝑋! − 1 𝛾 + 𝑋!" − 1 𝛽 D(N,n)  
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𝜋!!!!" = 𝜎 − 𝑋! + 𝑋! 𝛾 + 𝑋!"𝛽 D(N,n)  

𝜋!!!!! = 𝜎 − 𝑋! + 𝑋! + 𝑋! − 1 𝛾 + 𝑋!" − 1 𝛽 D(N,n)  

 

where 𝑋!  is the frequency of cooperators, 𝑋!  is the frequency of defectors, 𝑋!  is the 

frequency of loners, 𝑋!"  is the frequency of players that punish cooperators, 𝑋!"  is the 

frequency of players that punish defectors, and 𝑋!" is the frequency of players that punish 

loners, the benefit of the PGG is given by  

 

𝐵′ 𝑿 =
𝑟𝑐𝑋!

𝑁 − 𝑋! − 1
1−

𝑁
𝑛 𝑁 − 𝑋!

+
!!
!!!
!!!
!!!

𝜎 +
𝑟𝑐𝑋! 𝑋! − 𝑛 + 1

𝑛 𝑁 − 𝑋! − 1 𝑁 − 𝑋!
 

 

the effective cost of contributing is given by  

 

𝐹′ 𝑋! = 1− !
!

!!!
!!!!!!

+
!!
!!!
!!!
!!!

!
!

!!!!
!!!!!!

+ 𝑟 !!!!!!
!!!!!!

− 1 . 

 

and  𝐷 𝑁,𝑛 = !!!
!!!

. 

 

If 𝑋!   ≥    (𝑁  −   1), then there is never more than 1 loner in a group, the public goods game is 

never played, and 𝐵(𝑿)   =   𝜎 and 𝐹(𝑋!)   =   0.	  

 

These payoff expressions were originally presented in (Rand and Nowak, 2011), and based 

on original derivations in (Traulsen et al., 2009). We refer readers to these prior publications 

for further details. 

 

Calculation of compulsory Public Goods Game payoffs 

 

Using the same approach as in the calculation of the payoffs in the voluntary PGG, we define 

the payoff 𝜋! of each strategy s as a function of the frequencies of cooperators 𝑋! , defectors 

𝑋!, punishers of cooperation 𝑋!"  and punishers of defection 𝑋!": 

 

𝜋!!!!! = 𝐵 𝑿 − 𝐹 𝑁,𝑛 − 𝑋!"𝛽𝐷 𝑁,𝑛   
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𝜋!!!"! = 𝐵(𝑿)− 𝐹(𝑁,𝑛)− 𝑋!"𝛽  +   𝑋!𝛾 𝐷(𝑁,𝑛)  

𝜋!!!"" = 𝐵 𝑿 − 𝐹 𝑁,𝑛 − 𝑋!" − 1 𝛽 + 𝑋! − 1 𝛾 𝐷 𝑁,𝑛   

𝜋!!!!" = 𝐵 𝑿 − 𝐹 𝑁,𝑛 − 𝑋!" − 1 𝛽 + 𝑋! − 1+ 𝑋! 𝛾 𝐷 𝑁,𝑛   

𝜋!!!!! = 𝐵 𝑿 − 𝑋!"𝛽𝐷 𝑁,𝑛   

𝜋!!!"! = 𝐵 𝑿 − 𝑋!" − 1 𝛽 + 𝑋! − 1 𝛾 𝐷 𝑁,𝑛   

𝜋!!!"" =   𝐵(𝑿)− 𝑋!"𝛽  +   𝑋!𝛾 𝐷(𝑁,𝑛)  

𝜋!!!!" = 𝐵 𝑿 − 𝑋!" − 1 𝛽 + 𝑋! + 𝑋! − 1 𝛾 𝐷(𝑁,𝑛)	  

 

where 𝐵(𝑿)   = !"!!
!!!

1− !
!

 is the payoff from the compulsory public goods game, 

𝐹(𝑁,𝑛) = 1− !
!
!!!
!!!

𝑐 is the effective cost of contributing to the compulsory public goods 

game, and 𝐷 𝑁,𝑛 = !!!
!!!

.  

 

These payoff expressions are based on the original derivations in (Traulsen et al., 2009). We 

refer readers to these prior publications for further details. 
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Figure Legends 

 

Figure 1. In the compulsory public goods game, defection dominates when antisocial 

punishment is allowed. Shown is the frequency of strategies that cooperate (red) and defect 

(blue) from agent based simulations averaged over 107 generations using the No Punishment 

strategy set (a), the Prosocial Punishment strategy set (b) and the Full Punishment strategy set 

(c). Parameters: 𝑁 = 100,𝑛 = 5, 𝑟 = 3, 𝛾 = 0.3,𝜔 = 𝛽 = 𝑐 = 1  (except for b, d, and f: 

𝑁 = 96). 

 

Figure 2. Punishment is disfavoured by selection in the compulsory public goods game. 

Shown is the frequency of strategies that punish cooperators (red) and punish defectors (blue) 

from agent based simulations averaged over 107 generations using the Prosocial Punishment 

strategy set (a) and the Full Punishment strategy set (b). Parameters: 𝑁 = 100,𝑛 = 5, 𝑟 =

3, 𝛾 = 0.3,𝜔 = 𝛽 = 𝑐 = 1. 

 

Figure 3. In the voluntary public goods game with antisocial punishment, cooperation is 

disfavoured when mutations are common. Shown is the frequency of strategies that 

cooperate (red), defect (blue) and choose to be loners (yellow) from agent based simulations 

averaged over 107 generations using the No Punishment strategy set (a), the Prosocial 

Punishment strategy set (b), the Full Punishment strategy set (c) and the Loners Alone 

strategy set (d). Parameters: 𝑁 = 100,𝑛 = 5, 𝑟 = 3, 𝛾 = 0.3,𝜔 = 𝛽 = 𝜎 = 𝑐 = 1 (except for 

b, d, f and g: 𝑁 = 96). 

 

Figure 4. Punishment is disfavoured by selection in the voluntary public goods game 

when mutation rates are large. Shown is the frequency of strategies that punish cooperators 

(red), punish defectors (blue), and punish loners (yellow) from agent based simulations 

averaged over 107 generations using the Prosocial Punishment strategy set (a), the Full 

Punishment strategy set (b), and the Loners Alone strategy set (c). Parameters: 𝑁 = 100,𝑛 =

5, 𝑟 = 3, 𝛾 = 0.3,𝜔 = 𝛽 = 𝑐 = 1. 

 

Figure 5. In the compulsory public games, our results are robust across a wide range of 

selection strengths, in that cooperation is only favoured when punishment cannot be 

targeted at cooperators. Shown is the frequency of strategies that punish cooperators (red), 
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punish defectors (blue), and punish loners (yellow) from agent based simulations averaged 

over 107 generations. We show that our results are qualitatively the same for a wide range of 

selection strengths for the No Punishment strategy set (a), the Prosocial Punishment strategy 

set (b), and the Full Punishment strategy set (c). Parameters: 𝑁 = 100,𝑛 = 5, 𝑟 = 3, 𝛾 =

0.3,𝛽 = 𝑐 = 1, 𝜇 = 10!!.!. 

 

Figure 6. For the voluntary public goods games, varying the selection strength does not 

alter our main result that cooperation is only favoured when punishment cannot be 

targeted at cooperators. Shown are the results using the No Punishment strategy set (a), the 

Prosocial Punishment strategy set (b), the Full Punishment strategy set (c) and the Loners 

Alone strategy set (d), where the frequency of strategies that punish cooperators (red), punish 

defectors (blue), and punish loners (yellow) are averaged over 107 generations. Parameters: 

𝑁 = 100,𝑛 = 5, 𝑟 = 3, 𝛾 = 0.3,𝛽 = 𝑐 = 1, 𝜇 = 10!!.!. 
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Figure 1. 
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Figure 3. 
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Figure 4.  
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Figure 5. 
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Figure 6. 
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