13 research outputs found

    Nucleases as a barrier to gene silencing in the cotton boll weevil, Anthonomus grandis.

    Get PDF
    Made available in DSpace on 2018-01-04T23:23:41Z (GMT). No. of bitstreams: 1 journal.pone.0189600.pdf: 7131320 bytes, checksum: ece3da5d8a008843e58701868100618d (MD5) Previous issue date: 2018-01-04bitstream/item/170309/1/journal.pone.0189600.pd

    Current challenges facing the assessment of the allergenic capacity of food allergens in animal models

    Get PDF
    Food allergy is a major health problem of increasing concern. The insufficiency of protein sources for human nutrition in a world with a growing population is also a significant problem. The introduction of new protein sources into the diet, such as newly developed innovative foods or foods produced using new technologies and production processes, insects, algae, duckweed, or agricultural products from third countries, creates the opportunity for development of new food allergies, and this in turn has driven the need to develop test methods capable of characterizing the allergenic potential of novel food proteins. There is no doubt that robust and reliable animal models for the identification and characterization of food allergens would be valuable tools for safety assessment. However, although various animal models have been proposed for this purpose, to date, none have been formally validated as predictive and none are currently suitable to test the allergenic potential of new foods. Here, the design of various animal models are reviewed, including among others considerations of species and strain, diet, route of administration, dose and formulation of the test protein, relevant controls and endpoints measured

    A lepidopteran-specific gene family encoding valine-rich midgut proteins

    Get PDF
    Citation: Odman-Naresh J, Duevel M, Muthukrishnan S, Merzendorfer H (2013) A Lepidopteran-Specific Gene Family Encoding Valine-Rich Midgut Proteins . PLOS ONE 8(11): e82015. https://doi.org/10.1371/journal.pone.0082015Many lepidopteran larvae are serious agricultural pests due to their feeding activity. Digestion of the plant diet occurs mainly in the midgut and is facilitated by the peritrophic matrix (PM), an extracellular sac-like structure, which lines the midgut epithelium and creates different digestive compartments. The PM is attracting increasing attention to control lepidopteran pests by interfering with this vital function. To identify novel PM components and thus potential targets for insecticides, we performed an immunoscreening with anti-PM antibodies using an expression library representing the larval midgut transcriptome of the tobacco hornworm, Manduca sexta. We identified three cDNAs encoding valine-rich midgut proteins of M. sexta (MsVmps), which appear to be loosely associated with the PM. They are members of a lepidopteran-specific family of nine VMP genes, which are exclusively expressed in larval stages in M. sexta. Most of the MsVMP transcripts are detected in the posterior midgut, with the highest levels observed for MsVMP1. To obtain further insight into Vmp function, we expressed MsVMP1 in insect cells and purified the recombinant protein. Lectin staining and glycosidase treatment indicated that MsVmp1 is highly O-glycosylated. In line with results from qPCR, immunoblots revealed that MsVmp1 amounts are highest in feeding larvae, while MsVmp1 is undetectable in starving and molting larvae. Finally using immunocytochemistry, we demonstrated that MsVmp1 localizes to the cytosol of columnar cells, which secrete MsVmp1 into the ectoperitrophic space in feeding larvae. In starving and molting larvae, MsVmp1 is found in the gut lumen, suggesting that the PM has increased its permeability. The present study demonstrates that lepidopteran species including many agricultural pests have evolved a set of unique proteins that are not found in any other taxon and thus may reflect an important adaptation in the highly specialized lepidopteran digestive tract facing particular immune challenges

    Sensory Responses in Nutrition and Energy Balance : Role of Texture, Taste, and Smell in Eating Behavior

    No full text
    Billions of people, almost 40% of the world’s population, are either overweight or underweight, which is a direct consequence of the food environment. In more and more countries in the world, people are overweight in a large part due to the obesogenic food environment. The obesogenic food environment leads to an overconsumption of energy; it is obvious that sensory characteristics of food have a tremendous impact on food choice and intake. The chapter deals with the effects of texture, taste, and smell on intake. The effect of texture on energy intake is dramatic. Liquid and soft foods are consumed at much higher rates compared to more harder foods. The energy intake rate of energy dense liquids (like sugar sweetened beverages) and soft solids (like cake, sausage roll, minced meatball) is in the range of 150-450 kcal/min, quickly leading to overconsumption of energy. Liquid and soft solid calories are not well sensed by the sense of taste, due to their short oro-sensory exposure time per kcal ingested. Various recent studies show that across the food supplies in Australia, Malaysia, the Netherlands, and the USA, sweetness, umami, saltiness, and fat sensation intensities relate to concentrations of carbohydrates, protein salt, and fat in food. So, taste serves as nutrient sensing system, and this sensing system contributes to satiation. The role of smell is different. Retronasal smell sensations coming through flavors within foods do not have an impact on satiation; odors in the environment may lead to sensory specific appetites. In summary, sensory signals from foods have a large impact on energy intake, and designing foods in an optimal way leads to a higher satiating efficiency per kcal, while maintaining palatability. In this way we can make the healthy choice the happy choice

    Molecular cloning, expression, and functional analysis of the chitin synthase 1 gene and its two alternative splicing variants in the white-backed planthopper, Sogatella furcifera (Hemiptera: Delphacidae)

    No full text
    Abstract Chitin synthase is responsible for chitin synthesis in the cuticles and cuticular linings of other tissues in insects. We cloned two alternative splicing variants of the chitin synthase 1 gene (SfCHS1) from the white-backed planthopper, Sogatella furcifera. The full-length cDNA of the two variants (SfCHS1a and SfCHS1b) consists of 6408 bp, contains a 4719-bp open reading frame encoding 1572 amino acids, and has 5′ and 3′ non-coding regions of 283 and 1406 bp, respectively. The two splicing variants occur at the same position in the cDNA sequence between base pairs 4115 and 4291, and consist of 177 nucleotides that encode 59 amino acids but show 74.6% identity at the amino acid level. Analysis in different developmental stages showed that expression of SfCHS1 and SfCHS1a were highest just after molting, whereas SfCHS1b reached its highest expression level 2 days after molting. Further, SfCHS1 and SfCHS1a were mainly expressed in the integument, whereas SfCHS1b was predominately expressed in the gut and fat body. RNAi-based gene silencing inhibited transcript levels of the corresponding mRNAs in S. furcifera nymphs injected with double-stranded RNA of SfCHS1, SfCHS1a, and SfCHS1b, resulted in malformed phenotypes, and killed most of the treated nymphs. Our results indicate that SfCHS1 may be a potential target gene for RNAi-based S. furcifera control

    Genome sequence of Aedes aegypti, a major arbovirus vector

    Get PDF
    We present a draft sequence of the genome of Aedes aegypti, the primary vector for yellow fever and dengue fever, which at approximately 1376 million base pairs is about 5 times the size of the genome of the malaria vector Anopheles gambiae. Nearly 50% of the Ae. aegypti genome consists of transposable elements. These contribute to a factor of approximately 4 to 6 increase in average gene length and in sizes of intergenic regions relative to An. gambiae and Drosophila melanogaster. Nonetheless, chromosomal synteny is generally maintained among all three insects, although conservation of orthologous gene order is higher (by a factor of approximately 2) between the mosquito species than between either of them and the fruit fly. An increase in genes encoding odorant binding, cytochrome P450, and cuticle domains relative to An. gambiae suggests that members of these protein families underpin some of the biological differences between the two mosquito species
    corecore