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Abstract

RNA interference (RNAi) approaches have been applied as a biotechnological tool for con-

trolling plant insect pests via selective gene down regulation. However, the inefficiency of

RNAi mechanism in insects is associated with several barriers, including dsRNA delivery

and uptake by the cell, dsRNA interaction with the cellular membrane receptor and dsRNA

exposure to insect gut nucleases during feeding. The cotton boll weevil (Anthonomus

grandis) is a coleopteran in which RNAi-mediated gene silencing does not function effi-

ciently through dsRNA feeding, and the factors involved in the mechanism remain unknown.

Herein, we identified three nucleases in the cotton boll weevil transcriptome denoted Agra-

Nuc1, AgraNuc2, and AgraNuc3, and the influences of these nucleases on the gene silenc-

ing of A. grandis chitin synthase II (AgraChSII) were evaluated through oral dsRNA feeding

trials. A phylogenetic analysis showed that all three nucleases share high similarity with the

DNA/RNA non-specific endonuclease family of other insects. These nucleases were found

to be mainly expressed in the posterior midgut region of the insect. Two days after nuclease

RNAi-mediated gene silencing, dsRNA degradation by the gut juice was substantially

reduced. Notably, after nucleases gene silencing, the orally delivered dsRNA against the

AgraChSII gene resulted in improved gene silencing efficiency when compared to the con-

trol (non-silenced nucleases). The data presented here demonstrates that A. grandis midgut

nucleases are effectively one of the main barriers to dsRNA delivery and emphasize the

need to develop novel RNAi delivery strategies focusing on protecting the dsRNA from gut

nucleases and enhancing its oral delivery and uptake to crop insect pests.

Introduction

The availability of different insect’s transcriptomes allows the evaluation and identification of

genes that can be potentially used for insect control using different biotechnological

approaches [1–3]. To date, more than 100 insect transcriptomes have been deposited in
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databases, such as InsectBase [4], allowing the assessment of important and essential insect

genes [3, 5–8].

The cotton boll weevil (CBW), Anthonomus grandis, belongs to the coleopteran order and

is considered one of the most damaging insect pests to cotton crops, responsible for huge dam-

ages in cotton yields in South America [3], particularly in Brazil. Adult females lay eggs inside

cotton buds and squares, where the larvae break out and feed on the plant tissue [9, 10]. This

CBW’s endophytic habit substantially affects cotton buds flowering and thereby, the produc-

tivity, making its control difficult by using chemical pesticides. [11–13]. In optimal conditions,

CBW takes approximately three weeks until reaching adulthood and each female can lay up to

300 eggs in cotton buds and squares, being able to generate 7 to 10 generations per year [3]. In

normal conditions, the larva breaks out after three days of oviposition and immediately starts

to feed. Approximately after 12 days, third instar larvae enter in pupa stage for five days and

emerge as an adult. Adult CBW can live about 20 to 40 days, and its life cycle can last approxi-

mately 50 days [14].

In the past decade, Cry proteins from Bacillus thuringiensis (Bt) have been applied in the

development of genetically modified (GM) cotton for CBW control [15–17]. An alternative

approach for making GM cotton resistant to CBW is the application of RNA interference

(RNAi) technology. RNAi is a promising alternative strategy for controlling crop insect pests

that shows the advantage of using the insect’s systemic gene-silencing machinery to suppress

essential gene expression [18–21]. Double-stranded RNA (dsRNA) is the RNAi trigger mole-

cule that primes the post-transcriptional downregulation of a target gene [22–24]. Studies

using this technology showed efficient silencing of several target genes through microinjection

into larvae and adult CBW insects [1, 25, 26], whereas experiments involving the dsRNA oral

uptake resulted in ineffective gene knockdown [18].

Efficient RNAi-induced gene silencing in insects requires some essential factors, including

dsRNA processing by RNAi enzymes [27], intracellular transport [28], expression of the core

RNAi machinery [29], delivery method [30], and uptake from the hemolymph or gut [31]. Dif-

ferent studies showed that the RNAi efficacy varies among insect species [32–38]. Wang and

colleagues (2016) [39] confirmed this phenomenon in a parallel study with four different insect

species from different orders: Locusta migratoria (Orthoptera), Periplaneta americana (Blat-

taria), Spodoptera lituria (Lepidoptera) and Zophobas atratus (Coleoptera). They demonstrated

that the hemolymph and midgut juice content are key factors for RNAi efficacy. Therefore,

dsRNA exposure should persist long enough to allow cellular uptake.

The uptake of dsRNA can be achieved by soaking, microinjection or feeding, and the RNAi

signal is subsequently transported between cells and tissues [40]. In CBW, the dsRNA microin-

jection methodology is known to work well [1, 25, 26], while oral feeding is not so effective

[18], and soaking methodology has not been tested. The oral ingestion of dsRNA is associated

with some barriers, such as the exposure of the dsRNA to nucleases secreted in the gut juice,

the gut pH, the dsRNA concentration and dsRNA resistance [38, 41, 42]. Furthermore, the gut

juice content is also stimulated by increasing the nucleic acid ingestion through the diet [41,

43]. The nuclease activity of some insects was previously detected in the saliva of Culex pipiens
quinquefasciatus [44], Glossina morsitans [45], and Nezara viridula [46]. Nucleases have also

been identified in the Bombyx mori gastric juice [47] and the Schistocerca gregaria gut [38]. All

of the identified nucleases belong to an ancient DNA/RNA sugar non-specific endonuclease

family that is conserved in both prokaryotes and eukaryotes [48]. This family of proteins

degrades dsDNA and dsRNA in a sequence-independent manner [49, 50]. Intriguingly, these

nucleases have been identified in insects that evolved in phylogenetically distant orders, sug-

gesting a potential conservation of these enzymes across insect taxonomy [38]. However, the

identification and characterization of gut nucleases in insects are poorly studied.

Nucleases as a barrier to gene silencing in CBW
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To understand why the oral delivery of dsRNA has not succeeded in CBW, the presence of

gut nucleases was evaluated. In silico approaches coupled with transcriptomic analyses allowed

the identification of transcript sequences that encode putative extracellular DNA/RNA non-

specific nucleases. Molecular and biochemical methodologies indicated the involvement of

potential extracellular DNA/RNA non-specific nucleases in the degradation of dsRNA in the

CBW gut. The data presented here indicate that the nucleases present in the CBW gut could be

a major barrier to RNAi gene silencing in this insect pest.

Materials and methods

Rearing of cotton boll weevil

Cotton boll weevils were reared under controlled conditions of temperature (26 ± 2˚C), rela-

tive humidity (70 ± 10%) and light (12 h photoperiod). They were fed daily with an artificial

diet. The adults were developmentally synchronized by transferring them to a different cage

after outbreak [51].

Identification and in silico analysis of CBW nucleases

An extracellular dsRNase found in B. mori (NM_001098274.1) was used to identify ortholo-

gous proteins in the CBW transcriptome database [1] utilizing the tBLASTn tool (https://blast.

ncbi.nlm.nih.gov/Blast.cgi). An open reading frame (ORF) cDNA search was performed using

ORF Finder (https://www.ncbi.nlm.nih.gov/orffinder/). Nucleotide and peptide sequence

alignments were executed with BioEdit (http://www.mbio.ncsu.edu/bioedit/bioedit.html) and

the ClustalW algorithm (PAM250) [52]. Secondary structure prediction was performed on the

GeneSilico protein structure Metaserver, which provides the mean secondary structure predic-

tion from 16 different algorithms [53]. The signal peptide was predicted using the TargetP

server [54]. Motifs were predicted with GLAM2 [55] using the 46 amino acid sequences. The

phylogenetic analysis of the amino sequences from the nuclease catalytic domain was obtained

using the phylogeny.fr server (one click mode) [56, 57]. The generated file was exported to the

interactive Tree of Life (iTOL) software to view and format the constructed tree [58].

RNA extraction and cDNA synthesis

Tissues of interest from CBW (anterior midgut, posterior midgut, posterior gut, whole gut and

carcass) were dissected in 150 mM NaCl solution under an optical microscope and transferred

to liquid nitrogen. RNA extraction from larvae and adult insects of CBW was performed with

Trizol (Invitrogen), following the manufacturer’s recommended protocol. Equal quantities of

RNA (2 μg) were used for cDNA synthesis with the M-MLV reverse transcriptase (Invitrogen)

according to the manufacturer’s recommended protocol and 10 mM nvDT30 primer. The

cDNA was stored at -20˚C.

Synthesis of dsRNA

Template DNA flanked by the T7 promoter sequence was synthesized to produce the dsRNA

of CBW nucleases (AgraNuc1, AgraNuc2 and AgraNuc3) and chitin synthase II, as well as gus
dsRNA [26]. PCR reactions for the amplification of adult CBW cDNA were performed with

specific primers (10 mM) for each gene (Table 1), an annealing temperature of 55˚C, 10X

buffer, 50 mM MgCl2, 10 mM dNTP and 1 U Taq polymerase (Invitrogen) following the man-

ufacturer’s recommended protocol. The amplified products were analyzed by agarose gel elec-

trophoresis (1%), and the amplified fragments were purified with a QIAquick PCR

purification kit (Qiagen) and ligated into the PCR2.1 vector following the manufacturer’s

Nucleases as a barrier to gene silencing in CBW
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recommended protocol (ThermoFisher). The ligation product was transformed into Escheri-
chia coli XL1-Blue. The recombinant plasmid DNA was extracted from positive white colonies,

and a PCR reaction was performed as described above with primers T7 and T7M13 Rv

(Table 1). The amplified products were purified with a QIAquick PCR purification (Qiagen)

kit, and the purified products were used as a template for dsRNA synthesis using the MEGA-

script RNAi kit (Ambion), following the manufacturer’s recommended protocol. The dsRNAs

length for AgraNuc1, AgraNuc2 and AgraNuc3 was, respectively, 291, 290 and 305 pb.

Extraction of midgut juice and nuclease assay

The gut juice from the adult CBW anterior midgut was extracted. The insects were anesthe-

tized on ice for 10 minutes and dissected to collect the gut. The contents of the gut were

extracted by grinding and resuspended in 150 mM NaCl solution. The total protein concen-

tration was quantified using the Bradford method [59]. The nuclease assay was performed by

incubating 500 ng of dsRNA or dsDNA with the gut juice sample (1 μg) in Triple Buffer, as

described by [60], with modifications (10 mM sodium acetate, 10 mM Mes and 20 mM Tris),

pH 5.5 at 37˚C for 30 minutes in a reaction volume of 20 μL. To analyze its integrity, the

nuclease digestion product was visualized in an agarose gel (1%). The optimum pH for CBW

gut juice nuclease activity was determined by incubating 1 μg of dsRNA (~200 bp) with 2 μg

of gut juice in Triple Buffer (pH was adjusted with HCl or NaOH, from 3.0 to 9.0). The reac-

tion was incubated for 30 minutes in a reaction volume of 70 μL at 37˚C. Then, dsRNA was

purified with equal volume of phenol chloroform and chloroform and centrifuged for 10

minutes. Supernatant was removed and dsRNA was precipitated with equal volume of iso-

propanol and centrifuged for 10 minutes. Pellet was washed with ethanol 70% and centri-

fuged for 5 minutes. Supernatant was discarded and the pellet was diluted in milliQ water.

Absorbance was plotted in a graph and the products were analyzed by agarose gel electro-

phoresis (1%). One activity unit (AU) of Nuclease is defined as the amount of enzyme that

causes a ΔA260 of 0.1 in 30 min. The absorbance was measured at 260 nm in the NanoVue

Plus spectrophotometer (GE Healthcare). All the assays were performed in triplicate, using

3.3 μg gut juice protein.

Table 1. Primer sequences.

Primer Sequence (5’ - -> 3’)

AgraNuc1 Fw ATGTGACCACCGTAACCTGC

AgraNuc1 Rv GTCTGTAGGAGGATTTGGAC

AgraNuc2 Fw GACAATACGCTGCCAGAACTG

AgraNuc2 Rv TCTATCGAAGGTGAGCCAGG

AgraNuc3 Fw TTCTGAACGCGCTGCCTCAATG

AgraNuc3 Rv GATCTGATTGGCTGTCTTG

AgraChSII Fw AAGGCATTAACGGTGACGAC

AgraChSII Rv TCCAAGTCGTTGATGACTGC

nvDT30 GAATTCACGCGTCGACTAGTAGCATATGTAC(T)30VN

T7 TAATACGACTCACTATAGGGAGA

T7M13 Rv TAATACGACTCACTATAGGGAGACAGGAAACAGCTATGAC

Agra-B-actin Fw GTAGCTCACGCCTCGGTACT

Agra-B-actin Rv AGTGTTGGCCGAGGTATGAC

Agra-β-tubulin Fw AGATCGTCGAGGGTCTGATG

Agra-β-tubulin Rv AAGGCGGGAATGACTTTACC

https://doi.org/10.1371/journal.pone.0189600.t001
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Microinjection of dsRNA into the CBW body cavity

CBW young adults were anesthetized on ice for 10 minutes. Subsequently, 500 ng of dsRNA

against each nuclease was administered through a 10 μL microinjection (syringe, Hamilton)

into the insect body cavity, and these dsRNAs were injected both separately and in a mixture.

The negative controls were microinjected with gus dsRNA. After the procedure, the insects

were maintained under controlled conditions with respect to temperature (26 ± 2˚C), relative

humidity (70 ± 10%) and light (12-h photoperiod) for seven days.

Analysis of nuclease expression patterns by quantitative real time-PCR

The relative gene expression of the nucleases in both CBW adults and larvae was validated by

quantitative real-time PCR (RT-qPCR), and the relative expression levels were also measured

in different sections of the gut (anterior midgut, posterior midgut and posterior gut), the

whole gut and the carcass. Two and seven days after the microinjection, the insects were col-

lected for gene silencing analysis. The RT-qPCR reactions were performed in a 7300 Real-

Time PCR System (Applied Biosystems) using SYBR™ Green as the intercalating fluorophore.

Specific primers for the nucleases (Table 1) were used. Each reaction was performed with 2 μL

of diluted cDNA, 0.2 μM of each nucleotide and 2.5 μL of SYBR™ Green in a total volume of

10 μL.

The qRT-PCR program consisted of an initial step of 95˚C for 10 minutes followed by 40

cycles of 95˚C for 20 seconds, 55˚C for 30 seconds and 72˚C for 30 seconds. For the amplifi-

cation analysis, the Ct value and amplification efficiency for each nucleotide (ranging from

90% to 100%) were determined using the Real-Time PCR Miner program (http://www.

miner.ewindup.info/). The relative expression analysis based on the Ct values was performed

with qBasePlus 2.0 using the Pfaffl method [61]. All qRT-PCR experiments included three

biological replicates and three technical repetitions. The statistical analyses of the average

nuclease expression levels were performed using Tukey’s test with a 0.05% significance level

for comparisons between treatments. Agra-β-actin and Agra-β-tubulin were used as reference

genes.

Collection of the midgut juice two days after silencing and dsRNA

digestion

Two days after the dsRNA injection, the intestinal juices of CBW adults were collected and

incubated with dsRNA as described previously. All treatments were incubated for 30 minutes

at 37˚C with the gut juice from a total of 10 insects.

Chitin synthase II transcription after AgraNuc dsRNA administration

through feeding two days after nuclease gene silencing, mortality and

oviposition

Two days after the microinjection of nuclease dsRNA into the CBW body cavity and verifica-

tion of gene silencing, the insects were starved for two days. After this starvation period, 500

ng of dsRNA against chitin synthase II (AgraChSII) was administered in 5% sucrose. Three

days after the oral administration of dsRNA, the whole insects were collected to evaluate the

level of AgraChSII gene silencing through RT-qPCR. All qRT-PCR experiments included three

biological replicates and three technical repetitions. Insects were counted every 24 hours to

assess mortality and eggs were counted to evaluate oviposition.
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Results

In silico analysis of nucleases found in CBW transcriptome shows a

conserved endonuclease G domain and secretion signal peptides

A tBLASTn analysis using a B. mori (NM_001098274.1) nuclease sequence as a template

revealed three CBW ortholog genes named AgraNuc1 (GABY01017164.1), AgraNuc2
(GABY01017702.1) and AgraNuc3 (GABY01006596.1). The molecular weight of the

encoded proteins were approximately 45–50 kDa. Amino acid conservation is particularly

relevant for the catalytic domain of proteins belonging to the sugar non-specific nuclease

family [48]. Indeed, the motif Hx22Nx4Qx5Nx8E, where “x” represents any amino acid, is

characteristic to this nuclease family and specifies the key residues directly involved in

metal binding and catalysis [48, 60, 62, 63] (Fig 1A). Moreover, motif prediction showed

that all three nucleases have a high probability of carrying a putative secretory signal pep-

tide (SP) (cutoff >90) (Fig 1A). Secondary structure prediction showed similarities

between these nucleases and the sugar non-specific endonuclease G (Endo G) from Dro-
sophila melanogaster [62] (Fig 1B). Furthermore, signal peptide prediction indicated that

AgraNuc1-3 has a high probability of containing a putative secretory signal peptide (SP)

(cutoff >0.7).

The sugar non-specific endonuclease family comprises different groups of nucleases with

different specialized physiological functions such as cell death and nutrition [38, 62]. To study

the phylogenetic relationships between the AgraNuc1-3 genes and those from the non-specific

endonuclease family, a multiple alignment analysis was performed using the amino acid

sequences of the core catalytic domain (approximately 50 amino acids) of 44 nucleases that

belong to different species (Fig 1C). Motif prediction of all the nucleases selected in this study

confirmed the occurrence of the key residues from the core catalytic domain in this nuclease

family (S1 Fig). The nucleases could be further divided into two main groups (I and II) with

50% bootstrap values. The observation of paralogs in different insect species, such as Dendroc-
tonus ponderosae or D. melanogaster, suggests the occurrence of several duplication events in

the evolutionary history of this gene family. Group I includes orthologs of the EndoG and

ExoG proteins that were functionally characterized in D. melanogaster [62], Saccharomyces cer-
evisiae [64], Caenorhabditis elegans [65] and Homo sapiens [66]. These enzymes are reported to

participate in cell death-related mechanisms [62]. Group II comprises AgraNuc1-3 and other

insect nucleases that have already been characterized as having a nutrition function in S. gre-
garia [38] and B. mori [47]. Similar to the findings for AgraNuc1-3, these two previous studies

identified a secretory peptide at the N-terminal section of the protein. Interestingly, a secretory

peptide has been predicted for a large number of nucleases that only belong to group II. Alto-

gether, these data highlight the fact that AgraNuc1-3 nucleases belong to a group of sugar non-

specific nucleases that might have nuclease activity specifically in an extracellular

environment.

The gut juice from CBW presents nuclease activity

In the attempt to identify the nuclease activity responsible for nucleic acid digestion in CBW,

the gut juice was extracted from the insect anterior midgut (AMG) (S2 Fig). The ability of the

CBW gut juice to digest different forms of nucleic acids was evaluated, and digestion was

observed in a non-specific manner for both dsRNA and dsDNA (Fig 2A), which might dem-

onstrate the presence of nucleases in the gut. Subsequently, the optimal pH for the gut juice

nucleases was analyzed, and the results revealed that the nuclease activity is optimal in an

acidic pH range from 5.5 to 6.5 (Fig 2B).
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Fig 1. In silico analysis of candidate nucleases identified within the CBW gut. (A) Amino acid alignment of CBW

nucleases with those from other insects and human sugar non-specific nucleases (D. melanogaster, B. mori, S. gregaria, Mus

musculus, B. taurus, H. sapiens, and S. cerevisiae). The asterisks indicate the conserved motif Hx22Nx4Qx5Nx8E, which is

involved in metal binding and catalysis. Identical and similar amino acids are highlighted in green and yellow, respectively. (B)

CBW nucleases showing a C-terminus DNA/RNA sugar non-specific endonuclease domain and an N-terminus signal peptide.

The black arrows and black cylinders represent the predicted β-strand and α-helix, respectively. “SP” is the predicted secretory

peptide, and “TM” is a predicted transmembrane domain. The accession numbers refer to the UniProt protein data bank. (C)

Nucleases as a barrier to gene silencing in CBW
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AgraNuc2 and AgraNuc3 are highly expressed in the CBW posterior

midgut

Digestive enzymes are first produced in gut cells and then secreted in the gut juice [67]. We

compared the transcriptional expression profiles of the three above-mentioned CBW nucleases

at different developmental stages of the insect, with a focus on the gut. In the first analysis, the

carcass and gut from adults and larvae were dissected. The carcass corresponds to the whole

insect body without the gut. AgraNuc1 was found to express at a similar level in the carcass

and the gut in both adults and larvae. In contrast, AgraNuc2 and AgraNuc3 showed higher

expression levels in the gut than in the carcass. The relative expression of AgraNuc2 and Agra-
Nuc3 in larvae was 400-600-fold higher than that in adults (Fig 3A and 3B). To examine the

expression of AgraNuc genes in the gut, we conducted an additional transcriptional analysis of

the AgraNuc genes, focusing on the anterior midgut (AMG), posterior midgut (PMG) and pos-

terior gut (PG) (S2 Fig). As expected, AgraNuc1 expression was lower in all gut compartments.

However, the PMG displayed significantly higher expression of the AgraNuc2 and AgraNuc3
genes in adults (500- and 100-fold) and larvae (800- to 550-fold), respectively (Fig 3C and 3D).

AgraNuc gene silencing resulted in decreased dsRNA digestion by the

CBW gut juice

To determine whether the AgraNuc genes contribute to nucleic acid digestion in the gut juice,

an RNAi assay of AgraNuc gene expression was performed. The downregulation of the AgraNuc
genes was significant two days after the microinjection of dsRNA into the insect body cavity

(Fig 4A) and persisted for seven days after the microinjection (S3 Fig). These results also showed

that the microinjection of one specific dsRNA-AgraNuc can downregulate the gene expression

of another nuclease. For example, dsRNA-AgraNuc1 also downregulates the gene expression of

AgraNuc2 and AgraNuc3. The same phenomenon was found for AgraNuc2-dsRNA and Agra-
Nuc3-dsRNA (Fig 4A). A dsRNA digestion assay was then performed with gut juice extracted

from insects that were given a microinjection of dsRNA against nucleases and from uninjected

insects. The gut juice from the uninjected insects resulted in the digestion of dsRNA (lane 3, Fig

4B), whereas the insects that received a microinjection of a mixture of dsRNA against the nucle-

ases showed a decrease in dsRNA digestion (lane 4, Fig 4B). The treatment of insects with

dsRNA that targeted AgraNuc1 and AgraNuc3 expression lead to dsRNA degradation by the gut

juice, suggesting persistent nuclease activity after the dsRNA microinjection. However, a

decrease in dsRNA degradation by the gut juice of insects treated with dsRNA-AgraNuc2 was

observed (S4 Fig). This outcome associates the gene silencing of AgraNuc2, but not that of Agra-
Nuc1 and AgraNuc3, with a loss of nuclease activity in the gut juice. Due AgraNuc1 and Agra-
Nuc3 gene silencing had no effect on dsRNA digestion, it can be affirmed that the AgraNuc2
knock down is necessary to avoid dsRNA degradation. Furthermore, gene silencing of the three

AgraNuc genes led to a significant decrease in dsRNA degradation (Fig 4A).

AgraNucs gene silencing improves RNAi efficiency through dsRNA

feeding

Since, gene silencing of the three nucleases altogether resulted in decreased dsRNA digestion

by the gut juice, dsRNA that targets chitin synthase II (AgraChSII) was orally administered to

Maximum-likelihood phylogenetic tree of the non-specific endonuclease family divided by different animal species. Groups I

and II are included in the red and blue areas, respectively. The red disks indicate the prediction of a secretory peptide (>0.7) at

the N-terminal section of the nucleases. The accession numbers correspond to the UniProt or NCBI databases.

https://doi.org/10.1371/journal.pone.0189600.g001
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Fig 2. Biochemical characterization of CBW gut juice. (A) CBW gut juice (GJ), which is able to degrade both dsRNA,

~ 200bp, and dsDNA, > 5000 bp (as observed), has non-specific nuclease activity. MM: Molecular Marker 1-Kb Plus DNA

ladder (Invitrogen); GJ: Gut Juice. Samples were incubated with GJ for 30 minutes at 37˚C. (B) The optimal pH for

nuclease activity ranges from 5.5 to 6.5, indicating that the nucleases function best at acidic pH.

https://doi.org/10.1371/journal.pone.0189600.g002
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CBW adult insects two days after the microinjection of AgraNucs-dsRNA and gene silencing

verification. Chitin synthase II is responsible for the synthesis of chitin in the peritrophic

membrane in the insect midgut [68–70]. The AgraChSII gene was silenced by a factor of

approximately three after the oral administration of AgraChSII-dsRNA to insects in which

AgraNucs was silenced (Fig 5). Also, insects were counted every 24 hours and mortality was of

85% in insects with nucleases and ChSII silenced, compared to 60% of insects with un-silenced

nucleases and silenced ChSII. Control insects injected and fed with gus dsRNA had a mortality

rate of 15% after 10 days. Oviposition decreased 50% in insects with nucleases and ChSII

knock down, in contrast with oviposition of insects injected with gus dsRNA and fed with

ChSII dsRNA. When compared to insects injected and fed with gus dsRNA, the oviposition of

insects with nucleases and AgraChSII knock down was approximately 94% smaller, while the

oviposition of insects injected with gus dsRNA and fed with ChSII dsRNA was approximately

80% smaller (data not shown).

Fig 3. RT-qPCR analysis of CBW nuclease expression at different developmental stages. (A and B) CBW was dissected to obtain the gut and

carcass, and nuclease expression was then measured in these samples. The bar chart shows that AgraNuc1 expression is similar in the gut and carcass

of the adult (A) and larvae (B), whereas AgraNuc2 and AgraNuc3 are highly expressed in the gut only. (C and D) The insect gut was sectioned into the

anterior midgut (AMG), posterior midgut (PMG) and posterior gut (PG), and the expression levels of the nucleases in these sections were evaluated.

Higher expression of AgraNuc2 and AgraNuc3 was observed in the PMG of both adults (C) and larvae (D), whereas AgraNuc1 expression was similar in

all gut sections. Agra-β-actin and Agra-β-tubulin were used as reference genes. The relative expression (UA) was calculated based on the lowest

expression value that was obtained. Statistical analyses of the average transcripts expression levels were performed using Tukey’s test with a 0.05%

significance level for comparisons between treatments.

https://doi.org/10.1371/journal.pone.0189600.g003
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Fig 4. Analysis of CBW nucleases two days after gene silencing by RT-qPCR and dsRNA digestion assay. (A) Insect microinjection was performed

with 500 ng of dsRNA against each nuclease and a mixture of all three dsRNAs (in a total of 1500 ng of dsRNA) and the analysis was performed two days

after the microinjection. dsRNA against gus was used as a negative control, and Agra-β-actin and Agra-β-tubulin were used as reference genes. The

relative expression (UA) was calculated based on the lowest expression value that was obtained. Statistical analyses of the average transcripts expression

levels were performed using Tukey’s test with a 0.05% significance level for comparisons between treatments. The bar chart shows that the expression of

the nucleases, including each individual nuclease and all three nucleases together, was silenced. (B) dsRNA (~ 200 bp) was incubated with CBW gut juice

(GJ) for 30 minutes at 37˚C. GJ was collected two days after RNAi nuclease gene silencing, and 1% agarose gel electrophoresis was performed to analyze

dsRNA digestion. GJ was collected from uninjected insects and from injected insects with all three nucleases silenced at once. GJ: Gut Juice, KD: knocked

down, WT: wild type, CBW: cotton boll weevil.

https://doi.org/10.1371/journal.pone.0189600.g004

Nucleases as a barrier to gene silencing in CBW

PLOS ONE | https://doi.org/10.1371/journal.pone.0189600 December 20, 2017 11 / 22

https://doi.org/10.1371/journal.pone.0189600.g004
https://doi.org/10.1371/journal.pone.0189600


Discussion

The main advantage of RNA interference technology in controlling crop insect pests is the

high specificity for the target gene. Therefore, RNAi is an environmentally safe strategy that

decreases off-target effects [19]. Transcriptome analysis can be performed to identify genes

that are differentially expressed throughout the lifecycle processes of insects [71]. Using

sequence information from the transcriptome, RNAi technology represents an advance in the

genetic improvement of crops by conferring resistance to insect pests [72]. However, the deliv-

ery of dsRNA to the correct intracellular location and the interaction of dsRNA with the RNAi

machinery of the target cell are important issues in the application of this technology. But cer-

tain barriers prevent the foreign invading RNA from interfering with the cellular system [73].

As RNA is negatively charged and has a high molecular weight, its movement into the cell is

impeded by the lipid bilayer of the cell [74]. In insects, the virus-induced siRNA might saturate

the cell to interfere with the artificially delivered dsRNA [75]. The interaction of dsRNA with

the cellular receptor and its uptake by the cell also pose important barriers to dsRNA delivery.

Nevertheless, the dsRNA concentration and length are critical for the effectiveness of the

RNAi response because these features affect the cellular uptake of dsRNA [28, 76–78]. Among

others, insect gut nucleases are one of the main barriers to the oral delivery of dsRNA in the

Fig 5. Analysis of CBW ChSII gene expression after nuclease gene silencing. Two days after microinjection of the nuclease dsRNA into the CBW

body cavity, which silenced the AgraNuc genes, the insect was starved for two days, and 500 ng of AgraChSII dsRNA was orally administered. The insects

with silenced nucleases (fourth bar) showed a decrease in AgraChSII transcript expression compared with the control insects (first, second and third bars).

RNA extraction, cDNA synthesis and RT-qPCR were performed with the whole insect. dsRNA against gus was used as a negative control, and Agra-β-

actin and Agra-β-tubulin were used as reference genes. The relative expression (UA) was calculated based on the lowest expression value that was

obtained the average transcripts expression levels were performed using Tukey’s test with a 0.05% significance level for comparisons between

treatments.

https://doi.org/10.1371/journal.pone.0189600.g005
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application of RNAi as a method for controlling crop insect pests. The oral delivery of dsRNA

to its target is hampered by these nucleases because dsRNA catabolism can influence its effi-

ciency. Understanding the interaction between the insects’ nuclease activity and dsRNA is fun-

damental for the advancement of this biotechnological tool, which can be applied in various

fields [27, 38, 41, 79–82].

Previous studies demonstrated that dsRNA administration through oral feeding is efficient

for gene silencing in a variety of insect species, such as Helicoverpa armigera [20, 66, 83], Dia-
brotica virgifera [18], Aedes aegypti [84], Aphis gossypii [85] and Apis mellifera [86]. However,

this approach is not efficient in other insects, e.g., S. gregaria [38], Acyrthosiphon pisum [27],

Lygus lineolaris [87] and Locusta migratoria [30]. Coelho and colleagues (2016) showed that

the CBW shows a sensitive response to a dsRNA microinjection that interferes in gene silenc-

ing. In contrast, Baum and collaborators (2007) demonstrated that the same finding is not

observed with the oral administration of dsRNA. This inefficiency is most likely due to gut

enzymes that are capable of digesting the nutrients in cotton buds and squares, which are in

starch [88] and nucleic acids [89]. It has not been demonstrated, but it can be suggested that

CBW evolved to produce gut nucleases because of their feeding habit, being capable to degrade

nucleic acids present in the tissues it feeds on. For RNAi technology to perform satisfactorily

in crop fields, it is essential to have strategies that protect dsRNA molecules [32, 90–93] from

the insect gut, as in CBW.

A study conducted by Shukla and colleagues (2016) [94] demonstrated the degradation of

dsRNA in the gut lumen of Heliothis virescens. Herein, we report three different nucleases in

the gut juice of CBW that are capable of degrading nucleic acid in the insect digestive system.

Previously, we identified that the CBW anterior midgut has a pH value of 5.0, whereas the pH

of the posterior midgut is 7.0 [26]. In this respect, the dsRNA used in this work was digested

by gut nucleases at pH values ranging from 3.5 to 10.0, and at pH� 7.0, the dsRNA digestion

was less intense. This data suggests that the nucleases are more active in the anterior midgut of

the insect at acidic pH and inactive in the posterior sections with neutral pH. Different insects

belonging to various coleopteran families, such as Hypothenemus hampei [95], Dermestes
maculatus [96], H. hampei [97] and Sitophilus zeamais [98], the anterior midgut is acidic, with

a pH ranging from 4.5 to 5.0 [99]. Therefore, the pH regulates the nature and activity of the

digestive enzymes in the gut lumen [100]. The spatial organization of digestion must be related

to the gut compartments; in other words, the action of certain enzymes must be associated

with each insect gut lumen section, which present varying pH values [101].

The three nucleases (AgraNuc1, AgraNuc2 and AgraNuc3) found in the CBW transcriptome

[1] were identified based on the peptide sequence of the B. mori nuclease [47]. A phylogenetic

analysis showed high similarity (>50%) among the CBW nucleases and other insect nucleases.

These data, combined with the in silico analysis results, suggest that the AgraNuc genes encode

DNA/RNA non-specific endonucleases and that AgraNuc2 and AgraNuc3 are more likely to

be extracellular nucleases than AgraNuc1.

The results showed that AgraNuc2 and AgraNuc3 are expressed at higher levels in the gut

(specifically, in the posterior midgut) in both adults and larvae. These results are in agreement

with those reported by Wynant and coworkers (2014) [38], who used the same B. mori peptide

sequence to identify nucleases in the S. gregaria transcriptome. In that study, nucleases were

more expressed in the gut of S. gregaria. The transcription of AgraNuc2 and AgraNuc3 occurs

mainly within the PMG, suggesting that these genes contribute to the digestive process. Addi-

tionally, this gene expression distribution in the gut supports the compartmentalization of the

gut in terms of digestive function [101]. Insects with a peritrophic membrane show endo-ecto-

peritrophic circulation, which allows the absorption of nutrients that were previously degraded

in the endoperitrophic space and enzyme recycling [101]. Hence, the digestive enzymes can be
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synthesized, secreted in the saliva and posterior midgut, and then transported against the flow

to the anterior gut and anterior midgut. This process explains why the transcript expression of

the CBW nucleases investigated in this study is higher in the posterior midgut than in the ante-

rior midgut while most of the activity occurs in the acidic anterior midgut. Nevertheless, Agra-
Nuc1 differs from its two orthologous genes, supporting the notion of a distinct function for

this gene. Finally, in the present work, AgraNuc1-3 was found to be probably more associated

with nutrition than with cell death.

Nuclease gene silencing was detected two days after microinjection of the dsRNA into the

CBW body cavity. Gene silencing by dsRNA against nucleases prevailed even seven days after

the microinjection of a single dsRNA or a dsRNA mixture. Interestingly, an identity of a maxi-

mum of 11 nucleotides was observed among the nuclease sequences studied in this work.

Although it is a short sequence match, it can be enough to cause gene silencing due to the seed

region with short matches in the target site [102, 103]. Therefore, the gene silencing of one

nuclease by RNAi can interfere with the expression of another nuclease gene by crossed gene

silencing. These data suggest that the existence of an RNAi amplification pathway that is inde-

pendent of RNA-dependent RNA polymerase (RdRp), a pathway that has not been detected in

the CBW transcriptome [1]. This pathway is likely unknown but corroborates the findings

reported by Wynant and colleagues (2014) [38], who observed the same pattern of crossed

gene silencing of nuclease genes in S. gregaria.

The physiological effects of gene silencing were observed after the incubation of dsRNA

with gut juice collected from CBWs that were microinjected with a mixture of dsRNA against

the three nucleases. To obtain satisfactory physiological effects with RNAi, it is necessary to

sufficiently reduce the expression level of the targeted nucleases and block dsRNA digestion.

The physiological effects of nuclease gene silencing can be observed in this study. Silencing of

the three CBW nucleases resulted in a reduction of targeted dsRNA digestion upon incubation

with the gut juice, showing that the administration of multiple dsRNAs is not always ineffec-

tive. Regardless of the competition that might exist among the dsRNAs for the RNAi machin-

ery, the results indicate that the system was not saturated [40, 77, 82]. In contrast, the silencing

of the individual nucleases showed decreased dsRNA digestion only in the AgraNuc2-silenced

insects. It was demonstrated that there was a cross-silencing phenomenon. dsRNA of each

nuclease can silence all nucleases but this phenomenon was more intense when ds-AgraNuc2
was administered. This may be indicative of a threshold of silencing which needs to be crossed,

resulting in low levels of nucleases in gut juice in order to see a phenotype. This interesting

phenomenon needs to be better studied in the future works. It is noteworthy that the

sequences of the three nucleases did not present nucleotide identity higher than 20bp, suggest-

ing the possibility that the decrease in the number of nucleases transcripts may be occurring

due to higher levels of gene regulation for these nucleases genes. The data generated in this

study corroborate the results reported by Wynant et al. (2014) [38], who identified nucleases

that are capable of degrading dsRNA in the S. gregaria gut and were based on a B. mori
dsRNase identified in the insect gut.

As observed in this study, the presence of nucleases in the gut of crop insect pests is an issue

that needs to be addressed because RNAi can be utilized as an effective strategy for pest con-

trol. This study demonstrates that the nucleases present in the CBW midgut are capable of

being silenced by RNAi, resulting in protection of dsRNA digestion by the gut juice. Thus, fur-

ther studies are required to develop improved RNAi strategies that can effectively deliver

dsRNA to insect pests with protection against insect nucleases, with applicability at field-level

[92, 104, 105].

This work contributes to studies on the applicability of the RNAi technique for controlling

crop insect pests. The presence of nucleases in the CBW gut leads to a decrease in dsRNA
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effectiveness. The inhibition of dsRNA digestion improves its uptake by epithelial midgut

cells, which is an effect that appears to be mediated by scavenger receptors [106, 107], and

becomes significant with a dsRNA greater than 60 bp in length [28]. Digestion of dsRNA can

be avoided by the development of approaches that bypass these digestion mechanisms, includ-

ing the massive production of dsRNA inside chloroplasts [105, 108], dsRNA nanoencapsula-

tion with chitosan [43, 92, 109], and cell-internalizing peptides [91] inside the plant cell.

Together, these processes increase dsRNA half-life, enhancing its activity. This field is a novel

and vast area associated with plant and crop insect pest biotechnology that requires further

study. Thus, overcoming the current barriers to dsRNA delivery would be beneficial for the

fruitful application of RNAi to crop fields with the aim of controlling endophytic crop insect

pests, such as the cotton boll weevil.

Supporting information

S1 Fig. Conserved amino acids of nucleases. The tree detailed in Fig 1C was constructed from

the conserved regions (50 amino acids) of 44 nucleases. Through a Glam2 analysis [55], we veri-

fied whether these regions contain the conserved metal binding and catalytic core motifs, which

are represented by the Hx22Nx4Qx5Nx8E motif and indicated by the black arrows.

(TIF)

S2 Fig. Gut sections of CBW. The CBW gut is morphologically divided into four sections: the

anterior gut (AG), the anterior midgut (AMG), the posterior midgut (PMG) and the posterior

gut (PG).

(TIF)

S3 Fig. RT-qPCR analysis of CBW nucleases two and seven days after gene silencing. Insect

microinjection was performed with a mixture of nuclease dsRNAs, and the analysis was per-

formed two and seven days after the microinjection. dsRNA against gus was used as a negative

control, and Agra-β-actin and Agra-β-tubulin were used as reference genes. The relative

expression (UA) was calculated based on the lowest expression value that was obtained. Statis-

tical analyses of the average transcripts expression levels were performed using Tukey’s test

with a 0.05% significance level for comparisons between treatments.

(TIF)

S4 Fig. dsRNA digestion assay with gut juice from insects with silenced AgraNuc1, Agra-
Nuc2 and AgraNuc3. dsRNA (~200 bp) was incubated with CBW gut juice (GJ) that was col-

lected 48 hours after the silencing of nuclease genes by RNAi, and 1% agarose gel

electrophoresis was performed to analyze dsRNA digestion. NC: Negative Control; GJ: Gut

Juice, KD: knocked down, CBW: cotton boll weevil.

(TIF)
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