27 research outputs found

    Dietary Supplementation with Soluble Plantain Non-Starch Polysaccharides Inhibits Intestinal Invasion of Salmonella Typhimurium in the Chicken

    Get PDF
    Soluble fibres (non-starch polysaccharides, NSP) from edible plants but particularly plantain banana (Musa spp.), have been shown in vitro and ex vivo to prevent various enteric pathogens from adhering to, or translocating across, the human intestinal epithelium, a property that we have termed contrabiotic. Here we report that dietary plantain fibre prevents invasion of the chicken intestinal mucosa by Salmonella. In vivo experiments were performed with chicks fed from hatch on a pellet diet containing soluble plantain NSP (0 to 200 mg/d) and orally infected with S.Typhimurium 4/74 at 8 d of age. Birds were sacrificed 3, 6 and 10 d post-infection. Bacteria were enumerated from liver, spleen and caecal contents. In vitro studies were performed using chicken caecal crypts and porcine intestinal epithelial cells infected with Salmonella enterica serovars following pre-treatment separately with soluble plantain NSP and acidic or neutral polysaccharide fractions of plantain NSP, each compared with saline vehicle. Bacterial adherence and invasion were assessed by gentamicin protection assay. In vivo dietary supplementation with plantain NSP 50 mg/d reduced invasion by S.Typhimurium, as reflected by viable bacterial counts from splenic tissue, by 98.9% (95% CI, 98.1–99.7; P<0.0001). In vitro studies confirmed that plantain NSP (5–10 mg/ml) inhibited adhesion of S.Typhimurium 4/74 to a porcine epithelial cell-line (73% mean inhibition (95% CI, 64–81); P<0.001) and to primary chick caecal crypts (82% mean inhibition (95% CI, 75–90); P<0.001). Adherence inhibition was shown to be mediated via an effect on the epithelial cells and Ussing chamber experiments with ex-vivo human ileal mucosa showed that this effect was associated with increased short circuit current but no change in electrical resistance. The inhibitory activity of plantain NSP lay mainly within the acidic/pectic (homogalacturonan-rich) component. Supplementation of chick feed with plantain NSP was well tolerated and shows promise as a simple approach for reducing invasive salmonellosis

    Genus Paracoccidioides: Species Recognition and Biogeographic Aspects

    Get PDF
    Background: Paracoccidioidomycosis is a systemic mycosis caused by Paracoccidioides brasiliensis (species S1, PS2, PS3), and Paracoccidioides lutzii. This work aimed to differentiate species within the genus Paracoccidioides, without applying multilocus sequencing, as well as to obtain knowledge of the possible speciation processes. Methodology/Principal Findings: Single nucleotide polymorphism analysis on GP43, ARF and PRP8 intein genes successfully distinguished isolates into four different species. Morphological evaluation indicated that elongated conidia were observed exclusively in P. lutzii isolates, while all other species (S1, PS2 and PS3) were indistinguishable. To evaluate the biogeographic events that led to the current geographic distribution of Paracoccidioides species and their sister species, Nested Clade and Likelihood Analysis of Geographic Range Evolution (LAGRANGE) analyses were applied. The radiation of Paracoccidioides started in northwest South America, around 11–32 million years ago, as calculated on the basis of ARF substitution rate, in the BEAST program. Vicariance was responsible for the divergence among S1, PS2 and P. lutzii and a recent dispersal generated the PS3 species, restricted to Colombia. Taking into account the ancestral areas revealed by the LAGRANGE analysis and the major geographic distribution of L. loboi in the Amazon basin, a region strongly affected by the Andes uplift and marine incursions in the Cenozoic era, we also speculate about the effect of these geological events on the vicariance between Paracoccidioides and L. loboi. Conclusions/Significance: The use of at least 3 SNPs, but not morphological criteria, as markers allows us to distinguish among the four cryptic species of the genus Paracoccidioides. The work also presents a biogeographic study speculating on how these species might have diverged in South America, thus contributing to elucidating evolutionary aspects of the genus Paracoccidioides

    The Terminal End Bud: the Little Engine that Could

    Get PDF

    Effects of diesel exhaust particle exposure on a murine model of asthma due to soybean

    Get PDF
    Exposure to soybean allergens has been linked to asthma outbreaks. Exposure to diesel exhaust particles (DEP) has been associated with an increase in the risk of asthma and asthma exacerbation; however, in both cases the underlying mechanisms remain poorly understood, as does the possible interaction between the two entities.To investigate how the combination of soybean allergens and DEP can affect the induction or exacerbation of asthma in a murine model.BALB/c mice received intranasal instillations of saline, 3 or 5 mg protein/ml soybean hull extract (SHE), or a combination of one of these three solutions with DEP. Airway hyperresponsiveness (AHR), pulmonary inflammation in bronchoalveolar lavage, total serum immunoglobulin E and histological studies were assessed.A 5 mg protein/ml SHE solution was able by itself to enhance AHR (p = 0.0033), increase eosinophilic inflammation (p = 0.0003), increase levels of IL-4, IL-5, IL-13, IL-17A, IL-17F and CCL20, and reduce levels of IFN-γ. The combination of 5 mg protein/ml SHE with DEP also produced an increase in AHR and eosinophilic inflammation, but presented a slightly different cytokine profile with higher levels of Th17-related cytokines. However, while the 3 mg protein/ml SHE solution did not induce asthma, co-exposure with DEP resulted in a markedly enhanced AHR (p = 0.002) and eosinophilic inflammation (p = 0.004), with increased levels of IL-5, IL-17F and CCL20 and decreased levels of IFN-γ.The combination of soybean allergens and DEP is capable of triggering an asthmatic response through a Th17-related mechanism when the soybean allergen concentration is too low to promote a response by itself. DEP monitoring may be a useful addition to allergen monitoring in order to prevent new asthma outbreaks
    corecore