1,420 research outputs found

    The strong influence of substrate conductivity on droplet evaporation

    Get PDF
    We report the results of physical experiments that demonstrate the strong influence of the thermal conductivity of the substrate on the evaporation of a pinned droplet. We show that this behaviour can be captured by a mathematical model including the variation of the saturation concentration with temperature, and hence coupling the problems for the vapour concentration in the atmosphere and the temperature in the liquid and the substrate. Furthermore, we show that including two ad hoc improvements to the model, namely a Newton's law of cooling on the unwetted surface of the substrate and the buoyancy of water vapour in the atmosphere, give excellent quantitative agreement for all of the combinations of liquid and substrate considered

    Magmatic and metasomatic effects of magma-carbonate interaction recorded in calc-silicate xenoliths from Merapi volcano (Indonesia)

    Get PDF
    Magma-carbonate interaction is an increasingly recognised process occurring at active volcanoes worldwide, with implications for the magmatic evolution of the host volcanic systems, their eruptive behaviour, volcanic CO2 budgets, and economic mineralisation. Abundant calc-silicate skarn xenoliths are found at Merapi volcano, Indonesia. We identify two distinct xenolith types: magmatic skarn xenoliths, which contain evidence of formation within the magma, and exoskarn xenoliths, which more likely represent fragments of crystalline metamorphosed wall-rocks. The magmatic skarn xenoliths comprise distinct compositional and mineralogical zones with abundant Ca-enriched glass (up to 10 wt% relative to lava groundmass), mineralogically dominated by clinopyroxene (En15-43Fs14-36Wo41-51) + plagioclase (An37-100) ± magnetite in the outer zones towards the lava contact and by wollastonite ± clinopyroxene (En17-38Fs8-34Wo49-59) ± plagioclase (An46-100) ± garnet (Grs0-65Adr24-75Sch0-76) ± quartz in the xenolith cores. These zones are controlled by Ca transfer from the limestone protolith to the magma and by transfer of magma-derived elements in the opposite direction. In contrast, the exoskarn xenoliths are unzoned and essentially glass-free, representing equilibration at sub-solidus conditions. The major mineral assemblage in the exoskarn xenoliths is wollastonite + garnet (Grs73-97Adr3-24) + Ca-Al-rich clinopyroxene (CaTs0-38) + anorthite ± quartz, with variable amounts of either quartz or melilite (Geh42-91) + spinel. Thermobarometric calculations, fluid inclusion microthermometry and newly calibrated oxybarometry based on Fe3+/ΣFe in clinopyroxene indicate magmatic skarn xenolith formation conditions of ∼850 ± 45 °C, < 100 MPa and at an oxygen fugacity between the NNO and HM buffer. The exoskarn xenoliths, in turn, formed at 510-910 °C under oxygen fugacity conditions between NNO and air. These high oxygen fugacities are likely imposed by the large volumes of CO2 liberated from the carbonate. Halogen and sulphur-rich mineral phases in the xenoliths testify to the infiltration by a magmatic brine. In some xenoliths this is associated with the precipitation of copper-bearing mineral phases by sulphur dissociation into sulphide and sulphate, indicating potential mineralisation in the skarn system below Merapi. Compositions of many xenolith clinopyroxene and plagioclase crystals overlap with that of magmatic minerals, suggesting that the crystal cargo in Merapi magmas may contain a larger proportion of skarn-derived xenocrysts than previously recognised. Assessment of xenolith formation timescales demonstrates that magma-carbonate interaction and associated CO2 release could affect eruption intensity, as recently suggested for Merapi and similar carbonate-hosted volcanoes elsewhere

    Crustal CO2 contribution to subduction zone degassing recorded through calc-silicate xenoliths in arc lavas

    Get PDF
    Interaction between magma and crustal carbonate at active arc volcanoes has recently been proposed as a source of atmospheric CO2, in addition to CO2 released from the mantle and subducted oceanic crust. However, quantitative constraints on efciency and timing of these processes are poorly established. Here, we present the frst in situ carbon and oxygen isotope data of texturally distinct calcite in calc-silicate xenoliths from arc volcanics in a case study from Merapi volcano (Indonesia). Textures and C-O isotopic data provide unique evidence for decarbonation, magma-fuid interaction, and the generation of carbonate melts. We report extremely light δ13CPDB values down to −29.3‰ which are among the lowest reported in magmatic systems so far. Combined with the general paucity of relict calcite, these extremely low values demonstrate highly efcient remobilisation of crustal CO2 over geologically short timescales of thousands of years or less. This rapid release of large volumes of crustal CO2 may impact global carbon cycling

    Environmental disclosure in Spain: Corporate characteristics and media exposure

    Get PDF
    Social and environmental issues have become a major concern for accounting research over the past two decades. Social and Environmental Accounting has attracted the attention of a number of researchers attempting to understand, explain and predict the disclosure of information on the social and environmental implications of business activities. Empirical research has hypothesized that size, profitability and the potential environmental impact of the firm are the main factors explaining the amount of information disclosed. On the other hand, several studies have focused on the motivations for disclosing environmental information, hypothesizing that disclosures are aimed at building or sustaining corporate legitimacy. We test the main hypotheses developed to date by empirical research with regard to the disclosure of environmental information based on a sample of companies listed on the Madrid Stock Exchange. Results of a content analysis show that firms disclosing environmental information tend to be larger, have higher risk (measured by the beta coefficient) and operate in industries that have a high potential environmental impact. The environmental implications of the activities carried out by these companies also seem to receive more attention from print media. Our results also provide evidence that two factors directly associated with the amount of environmental information disclosed are the potential environmental impact of the industry and the extent of media coverage of the firms

    Ground-state properties of rutile: electron-correlation effects

    Full text link
    Electron-correlation effects on cohesive energy, lattice constant and bulk compressibility of rutile are calculated using an ab-initio scheme. A competition between the two groups of partially covalent Ti-O bonds is the reason that the correlation energy does not change linearly with deviations from the equilibrium geometry, but is dominated by quadratic terms instead. As a consequence, the Hartree-Fock lattice constants are close to the experimental ones, while the compressibility is strongly renormalized by electronic correlations.Comment: 1 figure to appear in Phys. Rev.

    Floating stones off El Hierro, Canary Islands: xenoliths of pre-island sedimentary origin in the early products of the October 2011 eruption

    Get PDF
    The eruption that started off the south coast of El Hierro, Canary Islands, in October 2011 has emitted intriguing eruption products found floating in the sea. These specimens appeared as floating volcanic "bombs" that have in the meantime been termed "restingolites" (after the close-by village of La Restinga) and exhibit cores of white and porous pumice-like material. Currently the nature and origin of these "floating stones" is vigorously debated among researchers, with important implications for the interpretation of the hazard potential of the ongoing eruption. The "restingolites" have been proposed to be either (i) juvenile high-silica magma (e.g. rhyolite), (ii) remelted magmatic material (trachyte), (iii) altered volcanic rock, or (iv) reheated hyaloclastites or zeolite from the submarine slopes of El Hierro. Here, we provide evidence that supports yet a different conclusion. We have collected and analysed the structure and composition of samples and compared the results to previous work on similar rocks found in the archipelago. Based on their high silica content, the lack of igneous trace element signatures, and the presence of remnant quartz crystals, jasper fragments and carbonate relicts, we conclude that "restingolites" are in fact xenoliths from pre-island sedimentary rocks that were picked up and heated by the ascending magma causing them to partially melt and vesiculate. They hence represent messengers from depth that help us to understand the interaction between ascending magma and crustal lithologies in the Canary Islands as well as in similar Atlantic islands that rest on sediment/covered ocean crust (e.g. Cape Verdes, Azores). The occurrence of these "restingolites" does therefore not indicate the presence of an explosive high-silica magma that is involved in the ongoing eruption

    Correlation effects in MgO and CaO: Cohesive energies and lattice constants

    Full text link
    A recently proposed computational scheme based on local increments has been applied to the calculation of correlation contributions to the cohesive energy of the CaO crystal. Using ab-initio quantum chemical methods for evaluating individual increments, we obtain 80% of the difference between the experimental and Hartree-Fock cohesive energies. Lattice constants corrected for correlation effects deviate by less than 1% from experimental values, in the case of MgO and CaO.Comment: LaTeX, 4 figure

    Spacial and temporal dynamics of the volume fraction of the colloidal particles inside a drying sessile drop

    Full text link
    Using lubrication theory, drying processes of sessile colloidal droplets on a solid substrate are studied. A simple model is proposed to describe temporal dynamics both the shape of the drop and the volume fraction of the colloidal particles inside the drop. The concentration dependence of the viscosity is taken into account. It is shown that the final shapes of the drops depend on both the initial volume fraction of the colloidal particles and the capillary number. The results of our simulations are in a reasonable agreement with the published experimental data. The computations for the drops of aqueous solution of human serum albumin (HSA) are presented.Comment: Submitted to EPJE, 7 pages, 8 figure
    • …
    corecore