618 research outputs found

    Recent changes in the freshwater composition east of Greenland

    Get PDF
    Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 42 (2015): 2326–2332, doi:10.1002/2014GL062759.Results from three hydrographic surveys across the East Greenland Current between 2011 and 2013 are presented with focus on the freshwater sources. End-member analysis using salinity, ÎŽ18O, and nutrient data shows that while meteoric water dominated the freshwater content, a significant amount of Pacific freshwater was present near Denmark Strait with a maximum in August 2013. While in 2011 and 2012 the net sea ice melt was dominated by brine, in 2013 it became close to zero. The amount of Pacific freshwater observed near Denmark Strait in 2013 is as large as the previous maximum in 1998. This, together with the decrease in meteoric water and brine, suggests a larger contribution from the Canadian Basin. We hypothesize that the increase of Pacific freshwater is the result of enhanced flux through Bering Strait and a shorter pathway of Pacific water through the interior Arctic to Fram Strait.The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7 2007–2013) under grant agreement 308299, NACLIM Project, and from the U.S. National Science Foundation under grant OCE-085041.2015-10-0

    Evidence for an antiferromagnetic component in the magnetic structure of ZrZn2

    Full text link
    Zero-field muon spin rotation experiments provide evidence for an antiferromagnetic component in the magnetic structure of the intermetallics ZrZn2.Comment: 5 pages, 2 figure

    The retroflection of part of the East Greenland Current at Cape Farewell

    Get PDF
    The East Greenland Current (EGC) and the smaller East Greenland Coastal Current (EGCC) provide the major conduit for cold fresh polar water to enter the lower latitudes of the North Atlantic. They flow equatorward through the western Irminger Basin and around Cape Farewell into the Labrador Sea. The surface circulation and transport of the Cape Farewell boundary current region in summer 2005 is described. The EGCC merges with Arctic waters of the EGC to the south of Cape Farewell, forming the West Greenland Current. The EGC transport decreases from 15.5 Sv south of Cape Farewell to 11.7 Sv in the eastern Labrador Sea (where the water becomes known as Irminger Sea Water). The decrease in EGC transport is balanced by the retroflection of a substantial proportion of the boundary current (5.1 Sv) into the central Irminger Basin; a new pathway for fresh water into the interior of the subpolar gyre

    The 8200 year B.P. event in the slope water system, western subpolar North Atlantic

    Get PDF
    Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 20 (2005): PA2003, doi:10.1029/2004PA001074.Stable isotope, trace metal, alkenone paleothermometry, and radiocarbon methods have been applied to sediment cores in the western subpolar North Atlantic between Hudson Strait and Cape Hatteras to reveal the history of climate in that region over the past ∌11 kyr. We focus on cores from the Laurentian Fan, which is known to have rapid and continuous accumulation of hemipelagic sediment. Although results among our various proxy data are not always in agreement, the weight of the evidence (alkenone sea surface temperature (SST), ÎŽ18O and abundance of Globigerinoides ruber) indicates a continual cooling of surface waters over Laurentian Fan, from about 18°C in the early Holocene to about 8°C today. Alternatively, Mg/Ca data on planktonic foraminifera indicate no systematic change in Holocene SST. The inferred long-term decrease in SST was probably driven by decreasing seasonality of Northern Hemisphere insolation. Two series of proxy data show the gradual cooling was interrupted by a two-step cold pulse that began 8500 years ago, and lasted about 700 years. Although this event is associated with the final deglaciation of Hudson Bay, there is no ÎŽ18O minimum anywhere in the Labrador Sea, yet there is some evidence for it as far south as Cape Hatteras. Finally, although the 8200 year B.P. event has been implicated in decreasing North Atlantic ventilation, and hence widespread temperature depression on land and at sea, we find inconsistent evidence for a change at that time in deep ocean nutrient content at ∌4 km water depth.Funding for JPS was from the NOAA Climate and Global Change Program (NA 16GP2679), NSF-Earth System History (0116940), the Jeptha H. and Emily V. Wade Award for Research, and a Henry L. and Grace Doherty Professorship. LDK and YR were funded by NSF grant OCE-0117149

    Upstream sources of the Denmark Strait Overflow : observations from a high-resolution mooring array

    Get PDF
    © The Author(s), 2016. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Deep Sea Research Part I: Oceanographic Research Papers 112 (2016): 94-112, doi:10.1016/j.dsr.2016.02.007.We present the first results from a densely instrumented mooring array upstream of the Denmark Strait sill, extending from the Iceland shelfbreak to the Greenland shelf. The array was deployed from September 2011 to July 2012, and captured the vast majority of overflow water denser than 27.8 kgm-3 approaching the sill. The mean transport of overflow water over the length of the deployment was 3.54 ± 0.16 Sv. Of this, 0.58 Sv originated from below sill depth, revealing that aspiration takes place in Denmark Strait. We confirm the presence of two main sources of overflow water: one approaching the sill in the East Greenland Current and the other via the North Icelandic Jet. Using an objective technique based on the hydrographic properties of the water, the transports of these two sources are found to be 2.54 ± 0.17 Sv and 1.00 ± 0.17 Sv, respectively. We further partition the East Greenland Current source into that carried by the shelfbreak jet (1.50 ± 0.16 Sv) versus that transported by a separated branch of the current on the Iceland slope (1.04 ± 0.15 Sv). Over the course of the year the total overflow transport is more consistent than the transport in either branch; compensation takes place among the pathways that maintains a stable total overflow transport. This is especially true for the two East Greenland Current branches whose transports vary out of phase with each other on weekly and longer time scales. We argue that wind forcing plays a role in this partitioning.The mooring and analysis work was supported by NSF OCE research grants OCE-0959381 and OCE-1433958, by the European Union 7th Framework Programme (FP7 2007-2013) under grant agreement n. 308299 NACLIM, and and by the Research Council of Norway through the Fram Centre Flaggship project 6606-299.2017-03-2

    Upstream sources of the Denmark Strait Overflow : observations from a high-resolution mooring array

    Get PDF
    © The Author(s), 2016. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Deep Sea Research Part I: Oceanographic Research Papers 112 (2016): 94-112, doi:10.1016/j.dsr.2016.02.007.We present the first results from a densely instrumented mooring array upstream of the Denmark Strait sill, extending from the Iceland shelfbreak to the Greenland shelf. The array was deployed from September 2011 to July 2012, and captured the vast majority of overflow water denser than 27.8 kgm-3 approaching the sill. The mean transport of overflow water over the length of the deployment was 3.54 ± 0.16 Sv. Of this, 0.58 Sv originated from below sill depth, revealing that aspiration takes place in Denmark Strait. We confirm the presence of two main sources of overflow water: one approaching the sill in the East Greenland Current and the other via the North Icelandic Jet. Using an objective technique based on the hydrographic properties of the water, the transports of these two sources are found to be 2.54 ± 0.17 Sv and 1.00 ± 0.17 Sv, respectively. We further partition the East Greenland Current source into that carried by the shelfbreak jet (1.50 ± 0.16 Sv) versus that transported by a separated branch of the current on the Iceland slope (1.04 ± 0.15 Sv). Over the course of the year the total overflow transport is more consistent than the transport in either branch; compensation takes place among the pathways that maintains a stable total overflow transport. This is especially true for the two East Greenland Current branches whose transports vary out of phase with each other on weekly and longer time scales. We argue that wind forcing plays a role in this partitioning.The mooring and analysis work was supported by NSF OCE research grants OCE-0959381 and OCE-1433958, by the European Union 7th Framework Programme (FP7 2007-2013) under grant agreement n. 308299 NACLIM, and and by the Research Council of Norway through the Fram Centre Flaggship project 6606-299.2017-03-2

    Generalized calculation of magnetic coupling constants for Mott-Hubbard insulators: Application to ferromagnetic Cr compounds

    Full text link
    Using a Rayleigh-Schr\"odinger perturbation expansion of multi-band Hubbard models, we present analytic expressions for the super-exchange coupling constants between magnetic transition metal ions of arbitrary separation in Mott-Hubbard insulators. The only restrictions are i) all ligand ions are closed shell anions and ii) all contributing interaction paths are of equal length. For short paths, our results essentially confirm the Goodenough-Kanamori-Anderson rules, yet in general there does not exist any simple rule to predict the sign of the magnetic coupling constants. The most favorable situation for ferromagnetic coupling is found for ions with less than half filled d shells, the (relative) tendency to ferromagnetic coupling increases with increasing path length. As an application, the magnetic interactions of the Cr compounds Rb2_2CrCl4_4, CrCl3_3, CrBr3_3 and CrI3_3 are investigated, all of which except CrCl3_3 are ferromagnets.Comment: 13 pages, 6 eps figures, submitted to Phys Rev

    Generation and physiological roles of linear ubiquitin chains

    Get PDF
    Ubiquitination now ranks with phosphorylation as one of the best-studied post-translational modifications of proteins with broad regulatory roles across all of biology. Ubiquitination usually involves the addition of ubiquitin chains to target protein molecules, and these may be of eight different types, seven of which involve the linkage of one of the seven internal lysine (K) residues in one ubiquitin molecule to the carboxy-terminal diglycine of the next. In the eighth, the so-called linear ubiquitin chains, the linkage is between the amino-terminal amino group of methionine on a ubiquitin that is conjugated with a target protein and the carboxy-terminal carboxy group of the incoming ubiquitin. Physiological roles are well established for K48-linked chains, which are essential for signaling proteasomal degradation of proteins, and for K63-linked chains, which play a part in recruitment of DNA repair enzymes, cell signaling and endocytosis. We focus here on linear ubiquitin chains, how they are assembled, and how three different avenues of research have indicated physiological roles for linear ubiquitination in innate and adaptive immunity and suppression of inflammation

    Understanding the Role of the Josephin Domain in the PolyUb Binding and Cleavage Properties of Ataxin-3

    Get PDF
    Ataxin-3, the disease protein in the neurodegenerative disorder Spinocerebellar Ataxia Type 3 or Machado Joseph disease, is a cysteine protease implicated in the ubiquitin proteasome pathway. It contains multiple ubiquitin binding sites through which it anchors polyubiquitin chains of different linkages that are then cleaved by the N-terminal catalytic (Josephin) domain. The properties of the ubiquitin interacting motifs (UIMs) in the C-terminus of ataxin-3 are well established. Very little is known, however, about how two recently identified ubiquitin-binding sites in the Josephin domain contribute to ubiquitin chain binding and cleavage. In the current study, we sought to define the specific contribution of the Josephin domain to the catalytic properties of ataxin-3 and assess how the topology and affinity of these binding sites modulate ataxin-3 activity. Using NMR we modeled the structure of diUb/Josephin complexes and showed that linkage preferences are imposed by the topology of the two binding sites. Enzymatic studies further helped us to determine a precise hierarchy between the sites. We establish that the structure of Josephin dictates specificity for K48-linked chains. Site 1, which is close to the active site, is indispensable for cleavage. Our studies open the way to understand better the cellular function of ataxin-3 and its link to pathology
    • 

    corecore