6,587 research outputs found
The Properties of Field Elliptical Galaxies at Intermediate Redshift. I: Empirical Scaling Laws
We present measurements of the Fundamental Plane (FP) parameters (the
effective radius, the mean effective surface brightness, and the central
velocity dispersion) of six field elliptical galaxies at intermediate redshift.
The imaging is taken from the Medium Deep Survey of the Hubble Space Telescope,
while the kinematical data are obtained from long-slit spectroscopy using the
3.6-m ESO telescope. The Fundamental Plane appears well defined in the field
even at redshift 0.3. The data show a shift in the FP zero point with
respect to the local relation, possibly indicating modest evolution, consistent
with the result found for intermediate redshift cluster samples. The FP slopes
derived for our field data, plus other cluster ellipticals at intermediate
redshift taken from the literature, differ from the local ones, but are still
consistent with the interpretation of the FP as a result of homology, of the
virial theorem and of the existence of a relation between luminosity and mass,
. We also derive the surface brightness vs. effective
radius relation for nine galaxies with redshift up to , and data
from the literature; the evolution that can be inferred is consistent with what
is found using the FP.Comment: 17 pages, including 9 figures, MNRAS, accepte
Saturation properties and incompressibility of nuclear matter: A consistent determination from nuclear masses
Starting with a two-body effective nucleon-nucleon interaction, it is shown
that the infinite nuclear matter model of atomic nuclei is more appropriate
than the conventional Bethe-Weizsacker like mass formulae to extract saturation
properties of nuclear matter from nuclear masses. In particular, the saturation
density thus obtained agrees with that of electron scattering data and the
Hartree-Fock calculations. For the first time using nuclear mass formula, the
radius constant =1.138 fm and binding energy per nucleon = -16.11
MeV, corresponding to the infinite nuclear matter, are consistently obtained
from the same source. An important offshoot of this study is the determination
of nuclear matter incompressibility to be 288 28 MeV using
the same source of nuclear masses as input.Comment: 14 latex pages, five figures available on request ( to appear in Phy.
Rev. C
Amyotrophic lateral sclerosis-associated mutant SOD1 inhibits anterograde axonal transport of mitochondria by reducing Miro1 levels
Defective axonal transport is an early neuropathological feature of amyotrophic lateral sclerosis (ALS). We have previously shown that ALS-associated mutations in Cu/Zn superoxide dismutase 1 (SOD1) impair axonal transport of mitochondria in motor neurons isolated from SOD1 G93A transgenic mice and in ALS mutant SOD1 transfected cortical neurons, but the underlying mechanisms remained unresolved.
The outer mitochondrial membrane protein mitochondrial Rho GTPase 1 (Miro1) is a master regulator of mitochondrial axonal transport in response to cytosolic calcium (Ca2+) levels ([Ca2+]c) and mitochondrial damage. Ca2+ binding to Miro1 halts mitochondrial transport by modifying its interaction with kinesin-1 whereas mitochondrial damage induces Phosphatase and Tensin homolog (PTEN)-induced putative kinase 1 (PINK1) and Parkin-dependent degradation of Miro1 and consequently stops transport.
To identify the mechanism underlying impaired axonal transport of mitochondria in SOD1-related ALS we investigated [Ca2+]c and Miro1 levels in ALS mutant SOD1 expressing neurons. We found that expression of ALS mutant SOD1 reduced the level of endogenous Miro1 but did not affect [Ca2+]c. ALS mutant SOD1 induced reductions in Miro1 levels were Parkin dependent. Moreover, both overexpression of Miro1 and ablation of PINK1 rescued the mitochondrial axonal transport deficit in ALS mutant SOD1-expressing cortical and motor neurons.
Together these results provide evidence that ALS mutant SOD1 inhibits axonal transport of mitochondria by inducing PINK1/Parkin-dependent Miro1 degradation
Recommended from our members
Tetranucleosome Interactions Drive Chromatin Folding
The multiscale organizational structure of chromatin in eukaryotic cells is instrumental to DNA transcription, replication, and repair. At mesoscopic length scales, nucleosomes pack in a manner that serves to regulate gene expression through condensation and expansion of the genome. The particular structures that arise and their respective thermodynamic stabilities, however, have yet to be fully resolved. In this study, we combine molecular modeling using the 1CPN mesoscale model of chromatin with nonlinear manifold learning to identify and characterize the structure and free energy of metastable states of short chromatin segments comprising between 4- and 16-nucleosomes. Our results reveal the formation of two previously characterized tetranucleosomal conformations, the “α-tetrahedron” and the “β-rhombus”, which have been suggested to play an important role in the accessibility of DNA and, respectively, induce local chromatin compaction or elongation. The spontaneous formation of these motifs is potentially responsible for the slow nucleosome dynamics observed in experimental studies. Increases of the nucleosome repeat length are accompanied by more pronounced structural irregularity and flexibility and, ultimately, a dynamic liquid-like behavior that allows for frequent structural reorganization. Our findings indicate that tetranucleosome motifs are intrinsically stable structural states, driven by local internucleosomal interactions, and support a mechanistic picture of chromatin packing, dynamics, and accessibility that is strongly influenced by emergent local mesoscale structure
Structural operational semantics for stochastic and weighted transition systems
We introduce weighted GSOS, a general syntactic framework to specify well-behaved transition systems where transitions are equipped with weights coming from a commutative monoid. We prove that weighted bisimilarity is a congruence on systems defined by weighted GSOS specifications. We illustrate the flexibility of the framework by instantiating it to handle some special cases, most notably that of stochastic transition systems. Through examples we provide weighted-GSOS definitions for common stochastic operators in the literature
Unique Decomposition of Processes
AbstractIn this paper, we examine questions about the prime decomposability of processes, where we define a process to be prime whenever it cannot be decomposed into nontrivial components.We show that any finite process can be uniquely decomposed into prime processes with respect to bisimulation equivalence, and demonstrate counterexamples to such a result for both failures (testing) equivalence and trace equivalence.Although we show that prime decompositions cannot exist for arbitrary infinite processes, we motivate but leave as open a conjecture on the unique decomposability of a wide subclass of infinite behaviours
Ultrasonic Attenuation in the Vortex State of d-wave Superconductors
We calculate the low temperature quasi-particle contribution to the
ultrasonic attenuation rate in the mixed state of d-wave superconductors. Our
calculation is performed within the semi-classical approximation using
quasi-particle energies that are Doppler shifted, with respect to their values
in the Meissner phase, by the supercurrent associated with the vortices. We
find that the attenuation at low temperatures and at fields has a temperature independent contribution which is proportional to
where is the applied magnetic field. We indicate how our result
in combination with the zero-field result for ultrasonic attenuation can be
used to calculate one of the parameters , or given the
values for any two of them.Comment: 10 pages, RevTeX, submitted to Physica
Mirroring everyday clinical practice in clinical trial design: a new concept to improve the external validity of randomized double-blind placebo-controlled trials in the pharmacological treatment of major depression
Background: Randomized, double-blind, placebo-controlled trials constitute the gold standard in clinical research when testing the efficacy of new psychopharmacological interventions in the treatment of major depression. However, the blinded use of placebo has been found to influence clinical trial outcomes and may bias patient
selection.
Discussion: To improve clinical trial design in major depression so as to reflect clinical practice more closely we propose to present patients with a balanced view of the benefits of study participation irrespective of their assignment to placebo or active treatment. In addition every participant should be given the option to finally
receive the active medication. A research agenda is outlined to evaluate the impact of the proposed changes on the efficacy of the drug to be evaluated and on the demographic and clinical characteristics of the enrollment fraction with regard to its representativeness of the eligible population.
Summary: We propose a list of measures to be taken to improve the external validity of double-blind, placebocontrolled trials in major depression. The recommended changes to clinical trial design may also be relevant for other psychiatric as well as medical disorders in which expectations regarding treatment outcome may affect the
outcome itself
A Calculus for Orchestration of Web Services
Service-oriented computing, an emerging paradigm for distributed computing based on the use of services, is calling for the development of tools and techniques to build safe and trustworthy systems, and to analyse their behaviour. Therefore, many researchers have proposed to use process calculi, a cornerstone of current foundational research on specification and analysis of concurrent, reactive, and distributed systems. In this paper, we follow this approach and introduce CWS, a process calculus expressly designed for specifying and combining service-oriented applications, while modelling their dynamic behaviour. We show that CWS can model all the phases of the life cycle of service-oriented applications, such as publication, discovery, negotiation, orchestration, deployment, reconfiguration and execution. We illustrate the specification style that CWS supports by means of a large case study from the automotive domain and a number of more specific examples drawn from it
Reply To "comment On 'photoionization Of Helium Atoms Irradiated With Intense Vacuum Ultraviolet Free-electron Laser Light. Part I. Experimental Study Of Multiphoton And Single-photon Processes'"
We do not agree with the conclusion of the Comment by Charalambidis questioning our observation of two-photon ionization of helium by intense radiation with 13 eV photons from a vuv free-electron laser. Two-photon ionization is clearly established by the detection of low-energy photoelectrons at ∼1.7 eV, which agrees very well with the expected energy for a two-photon ionization process. © 2006 The American Physical Society.743Laarmann, T., De Castro, A.R.B., Schulz, J., Wabnitz, H., Möller, T., (2005) Phys. Rev. A, 72, p. 023409. , PLRAAN. 1050-2947. 10.1103/PhysRevA.72.023409Ayvazyan, V., Baboi, N., Bohnet, I., Brinkmann, R., Castellano, M., Castro, P., Catani, L., Zapfe, K., (2002) Phys. Rev. Lett., 88, p. 104802. , PRLTAO. 0031-9007. 10.1103/PhysRevLett.88.104802Ayvazyan, V., Baboi, N., Bähr, J., Balandin, V., Beutner, B., Brandt, A., Bohnet, I., Schreiber H, -J., (2006) Eur. Phys. J. D, 37, p. 297. , EPJDF6. 1434-6060. 10.1140/epjd/e2005-00308-1Wabnitz, H., Bittner, L., De Castro, A.R.B., Döhrmann, R., Gürtler, P., Laarmann, T., Laasch, W., Yurkov, M., (2002) Nature (London), 420, p. 482. , NATUAS. 0028-0836. 10.1038/nature01197Laarmann, T., De Castro, A.R.B., Gürtler, P., Laasch, W., Schulz, J., Wabnitz, H., Möller, T., (2004) Phys. Rev. Lett., 92, p. 143401. , PRLTAO. 0031-9007. 10.1103/PhysRevLett.92.143401Laarmann, T., Rusek, M., Wabnitz, H., Schulz, J., De Castro, A.R.B., Gürtler, P., Laasch, W., Möller, T., (2005) Phys. Rev. Lett., 95, p. 063402. , PRLTAO. 0031-9007. 10.1103/PhysRevLett.95.063402Wabnitz, H., De Castro, A.R.B., Gürtler, P., Laarmann, T., Laasch, W., Schulz, J., Möller, T., (2005) Phys. Rev. Lett., 94, p. 023001. , PRLTAO. 0031-9007. 10.1103/PhysRevLett.94.023001Santra, R., Greene, C.H., (2004) Phys. Rev. A, 70, p. 053401. , PLRAAN 1050-2947 10.1103/PhysRevA.70.053401Tzallas, P., Charalambidis, D., Papadogiannis, N.A., Witte, K., Tsakiris, G.D., (2003) Nature (London), 426, p. 267. , NATUAS 0028-0836 10.1038/nature02091Papadogiannis, N.A., Nikolopoulos, L.A.A., Charalambidis, D., Tsakiris, G.D., Tzallas, P., Witte, K., (2003) Appl. Phys. B, 76, p. 721. , APDOEM 0946-2171Papadogiannis, N.A., Nikolopoulos, L.A.A., Charalambidis, D., Tsakiris, G.D., Tzallas, P., Witte, K., (2003) Phys. Rev. Lett., 90, p. 133902. , PRLTAO 0031-9007 10.1103/PhysRevLett.90.133902De Castro, A.R.B., Laarmann, T., Schulz, J., Wabnitz, H., Möller, T., (2005) Phys. Rev. A, 72, p. 023410. , PLRAAN. 1050-2947. 10.1103/PhysRevA.72.02341
- …