12,768 research outputs found

    First-principles theory of the luminescence lineshape for the triplet transition in diamond NV centre

    Full text link
    In this work we present theoretical calculations and analysis of the vibronic structure of the spin-triplet optical transition in diamond nitrogen-vacancy centres. The electronic structure of the defect is described using accurate first-principles methods based on hybrid functionals. We devise a computational methodology to determine the coupling between electrons and phonons during an optical transition in the dilute limit. As a result, our approach yields a smooth spectral function of electron-phonon coupling and includes both quasi-localized and bulk phonons on equal footings. The luminescence lineshape is determined via the generating function approach. We obtain a highly accurate description of the luminescence band, including all key parameters such as the Huang-Rhys factor, the Debye-Waller factor, and the frequency of the dominant phonon mode. More importantly, our work provides insight into the vibrational structure of nitrogen vacancy centres, in particular the role of local modes and vibrational resonances. In particular, we find that the pronounced mode at 65 meV is a vibrational resonance, and we quantify localization properties of this mode. These excellent results for the benchmark diamond nitrogen-vacancy centre provide confidence that the procedure can be applied to other defects, including alternative systems that are being considered for applications in quantum information processing

    Response to “Nature fix: Addiction to outdoor activities” R. C. Buckley’s commentary on Heirene, R. M., Shearer, D., Roderique-Davies, G., & Mellalieu, S. D. (2016). Addiction in extreme sports: An exploration of withdrawal states in rock climbers. Journal of Behavioral Addictions, 5, 332–341.

    Get PDF
    Buckley’s commentary on our study of rock climber’s withdrawal experiences raises a number of important questions surrounding the concept of extreme or adventure sports addiction. Drawing on the few available investigations of this topic, we respond to Buckley’s questions here, though emphasize the need for further studies of extreme sports addiction in order to provide more empirically informed answers

    A fast ethanol assay to detect seed deterioration

    Get PDF
    The most common way to test seed quality is to use a simple and reliable but time- and space-consuming germination test. In this paper we present a fast and simple method to analyse cabbage seed deterioration by measuring ethanol production from partially imbibed seeds. The method uses a modified breath analyser and is simple compared to gas chromatographic or enzymatic procedures. A modified method using elevated temperatures (40°C instead of 20°C) shortened the assay time and improved its sensitivity. The analysis showed an inverse correlation between ethanol production and seed quality (e.g. the final percentages or speed of germination and the number of normal seedlings). The increase in ethanol production was observed when cabbage seeds were deteriorated by storage under ambient conditions or hot water treatments, both of which reduced the number of normal seedlings. Premature seeds produced more ethanol upon imbibition than mature seeds. Ethanol production occurred simultaneously with oxygen consumption, indicating that lack of oxygen is not the major trigger for ethanol production

    Stereoelectronic effects on the binding of neutral Lewis bases to CdSe nanocrystals

    Get PDF
    Using P-31 nuclear magnetic resonance (NMR) spectroscopy, we monitor the competition between tri-nbutylphosphine (Bu3P) and various amine and phosphine ligands for the surface of chloride terminated CdSe nanocrystals. Distinct P-31 NMR signals for free and bound phosphine ligands allow the surface ligand coverage to be measured in phosphine solution. Ligands with a small steric profile achieve higher surface coverages (Bu3P = 0.5 nm(-2), Me2P-n-octyl = 2.0 nm(-2), NH2Bu = >3 nm(-2)) and have greater relative binding affinity for the nanocrystal (binding affinity: Me3P > Me2P -n-octyl similar to Me2P -n-octadecyl > Et3P > Bu3P). Among phosphines, only Bu 3 P and Me2P-n-octyl support a colloidal dispersion, allowing a relative surface binding affinity (K-rel) to be estimated in that case (K-rel = 3.1). The affinity of the amine ligands is measured by the extent to which they displace Bu3P from the nanocrystals (K-rel: H2NBu similar to N-n-butylimidazole > 4-ethylpyridine > Bu3P similar to HNBu2 > Me2NBu > Bu3N). The affinity for the CdSe surface is greatest among soft, basic donors and depends on the number of each ligand that bind. Sterically unencumbered ligands such as imidazole, pyridine, and n-alkylamines can therefore outcompete stronger donors such as alkylphosphines. The influence of repulsive interactions between ligands on the binding affinity is a consequence of the high atom density of binary semiconductor surfaces. The observed behavior is distinct from the self-assembly of straight-chain surfactants on gold and silver where the ligands are commensurate with the underlying lattice and attractive interactions between aliphatic chains strengthen the binding

    Measurement and Control of Single Nitrogen-Vacancy Center Spins above 600 K

    Full text link
    We study the spin and orbital dynamics of single nitrogen-vacancy (NV) centers in diamond between room temperature and 700 K. We find that the ability to optically address and coherently control single spins above room temperature is limited by nonradiative processes that quench the NV center's fluorescence-based spin readout between 550 and 700 K. Combined with electronic structure calculations, our measurements indicate that the energy difference between the 3E and 1A1 electronic states is approximately 0.8 eV. We also demonstrate that the inhomogeneous spin lifetime (T2*) is temperature independent up to at least 625 K, suggesting that single NV centers could be applied as nanoscale thermometers over a broad temperature range.Comment: 8 pages, 5 figures, and 14 pages of supplemental material with additional figures. Title change and minor revisions from previous version. DMT and DJC contributed equally to this wor

    The effects of laterality on obstacle crossing performance in unilateral trans-tibial amputees

    Get PDF
    yesBackground Unilateral trans-tibial amputees have bilaterally reduced toe clearance, and an increased risk of foot contact, while crossing obstacles compared to the able-bodied. While the able-bodied tend to lead with a ‘preferred’ limb it is equivocal whether amputees prefer to lead with the intact or prosthetic limb. This study determined the effects of laterality, compared to side of amputation, on amputees' obstacle crossing performance. To help understand why laterality could affect performance we also assessed knee proprioception for both limbs. Methods Foot placement and toe clearance parameters were recorded while nine amputees crossed obstacles of varying heights leading with both their intact and prosthetic limbs. Joint-position sense was also assessed. Participants self-reported which limb was their preferred (dominant) limb. Findings There were no significant differences in foot placements or toe clearance variability across lead-limb conditions. There were no significant differences in toe clearance between intact and prosthetic lead-limbs (p = 0.28) but toe clearance was significantly higher when amputees led with their preferred compared to non-preferred limb (p = 0.025). There was no difference in joint-position sense between the intact and residual knees (p = 0.34) but joint-position sense tended to be more accurate for the preferred, compared to non-preferred limb (p = 0.08). Interpretation Findings suggest that, despite the mechanical constraints imposed by use of a prosthesis, laterality may be as important in lower-limb amputees as it is in the able bodied. This suggests that amputees should be encouraged to cross obstacles leading with their preferred limb.Engineering and Physical Sciences Research Counci

    A toolbox for parameter-free predictions of solid-state properties of monodisperse glassy polymers with frozen-in molecular orientation

    Get PDF
    A toolbox that allows designers to predict the properties of oriented glassy polymers using only existing material constants is constructed from a constitutive model applicable to both polymer solids and polymer melts. Two solid-state properties of practical engineering interest are considered: optical birefringence, and craze initiation stress. Predictions from the toolbox are compared to new experimental measurements on well characterized grades of monodisperse polystyrene, and confirm that the toolbox can account for the effect of polymer molecular weight

    PISA in brief : highlights from the full Australian report : PISA 2012 : how Australia measures up

    Get PDF
    PISA is a survey that measures the knowledge and skills of 15-year-olds, who are near the end of compulsory schooling in most participating education systems. PISA in Brief summarises the results from the PISA 2012 assessment of students’ mathematical, scientific and reading literacy skills. It tells us about how students performed in the assessment and describes some wider findings about what lies behind their results

    Large deformations in oriented polymer glasses: experimental study and a new glass-melt constitutive model

    Get PDF
    An experimental study was made of the effects of prior molecular orientation on large tensile deformations of polystyrene in the glassy state. A new hybrid glass-melt constitutive model is proposed for describing and understanding the results, achieved by parallel coupling of the ROLIEPOLY molecularly-based melt model with a model previously proposed for polymer glasses. Monodisperse and polydisperse grades of polystyrene are considered. Comparisons between experimental results and simulations illustrate that the model captures characteristic features of both the melt and glassy states. Polystyrene was stretched in the melt state and quenched to below Tg, and then tensile tested parallel to the orientation direction near the glass transition. The degree of strain-hardening was observed to increase with increasing prior stretch of molecules within their entanglement tubes, as predicted by the constitutive model. This was explored for varying temperature of stretching, degree of stretching, and dwell time before quenching. The model in its current form, however, lacks awareness of processes of subentanglement chain orientation. Therefore, it under-predicts the orientation-direction strain hardening and yield stress increase, when stretching occurs at the lowest temperatures and shortest times, where it is dominated by subentanglement orientation
    • 

    corecore