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Abstract 

Using 31P nuclear magnetic resonance (NMR) spectroscopy, we monitor the competition between 

tri-n-butylphosphine (Bu3P) and various amine and phosphine ligands for the surface of chloride 

terminated CdSe nanocrystals. Distinct 31P NMR signals for free and bound phosphine ligands 

allow their surface coverages to be directly measured. Ligands with a small steric profile achieve 

higher surface coverages (Bu3P = 0.5 nm-2, Me2P-n-octyl = 2.0 nm-2, NH2Bu = 3–4 nm-2) and have 

greater relative binding affinity (Krel) for the nanocrystal (Krel: Me3P > Me2P–n-octyl ~ Me2P–n-

octadecyl > Et3P > Bu3P). The affinity of amine ligands is measured by the extent of Bu3P 

displacement from the nanocrystals in the presence of 1 or 50 equiv of competing ligand (Krel: 

H2NBu ~ N-n-butylimidazole > 4-ethylpyridine > Bu3P ~ HNBu2 > Me2NBu > Bu3N). The affinity 

for the CdSe surface is greatest for soft, basic donors and also depends on the number of each 

ligand that bind. Sterically unencumbered ligands such as imidazole, pyridine, and n-alkylamines 

can therefore outcompete stronger donors such as alkylphosphines. The influence of repulsive 

interactions between ligands on the binding affinity is a consequence of the high atom density of 

binary semiconductor surfaces. The situation is distinct from the self-assembly of straight chain 

surfactants on gold and silver where the ligands are commensurate with the underlying lattice and 

attractive interactions between ligands strengthen the binding. 

 

Introduction 

The photoluminescence quantum yield and chemical stability of II-VI semiconductor 

nanocrystals (NCs) depends critically on the binding affinity of their surface ligands.(1) A deeper 

understanding of surface coordination chemistry would aid the design of ligands that effectively 

stabilize NCs in cellular environments and solid state lighting applications, while maximizing their 

photoluminescence quantum yield (PLQY). However, few methods directly monitor ligand 

binding to surfaces. Photoluminescence spectroscopy has been used to study the binding of amines 

and phosphines to CdSe NCs(2-10) and bulk CdSe(11-13) surfaces, where ligand binding can raise 

(or lower) the PLQY. For example, changes to PLQY of a single crystal placed in an atmosphere 

of gaseous amine were analyzed using the Langmuir model.(11-13) Binding constants were 

extracted (H3N < H2NMe < HNMe2 > NMe3) that parallel the gas phase proton affinity of the amine 

(with the exception of NMe3). A similar strategy was used to analyze ligand binding to colloidal 

CdSe NCs in solution.(14) In both cases, the PLQY is assumed to be proportional to the fractional 
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surface coverage, which ignores several complications including changes to the recombination 

mechanism,(9) side reactions involving acidic impurities(15) or displacement of atoms from the 

crystal surface.(16) In the case of single crystals, the method convolves the ligand donor strength 

and surface coverage. Moreover, adsorption isotherms, such as the Langmuir model, do not account 

for steric interactions between ligands that reduce the number of accessible surface sites.(13) As a 

result, there is not a clear understanding of the stereo-electronic factors that determine surface 

binding affinity of simple donor ligands, nor how to explain affinities that do not follow the ligand 

donor strength (e.g. HNMe2 > NMe3), or the relatively weak binding affinity of N,N,N’,N’-

tetramethylethylenediamine(16) and bis(diphenylphosphine)ethane(13), both of which are strong 

donors and have the potential ability to chelate the surface. 

Nuclear magnetic resonance (NMR) spectroscopy provides a quantitative method to directly 

monitor ligand binding to colloidal nanocrystals. The NMR linewidth and chemical shift can 

distinguish ligands bound to the NC surface from those freely diffusing in solution. Particularly for 

anionic ligands, which undergo exchange relatively slowly, ligand exchange and binding can be 

assessed quantitatively.(17-19) NMR spectroscopy has been less useful for studying the exchange 

of neutral two electron donor ligands, e.g. n-alkylamines (L-type ligands)(20-22) because they 

undergo rapid self-exchange that causes coalescence of signals from free and bound ligands.(23, 

24) We previously reported the synthesis of CdSe NCs with both tri-n-butylphosphine (Bu3P) and 

tri-n-butylphosphonium chloride ([Bu3P–H+][Cl-]) ligands (CdSe–CdCl2/Bu3P/[Bu3P–H]+[Cl]-) 

from carboxylate terminated CdSe NCs (CdSe–Cd(O2CR)2), and chlorotrimethylsilane 

(Me3SiCl).(25) At room temperature the exchange of the phosphine ligands is slow, and distinct 

31P NMR signals for bound and free Bu3P are observed. This presents the opportunity to directly 

monitor the displacement of the Bu3P ligands from the nanocrystal surface and to study the stereo-

electronic factors that control the surface binding affinity of L-type ligands.  
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Results  

To simplify our study, we first eliminate the oleic acid impurity that produces [Bu3P–H+][Cl-] 

by pretreatment of the NCs with Me2Cd according to a previously described method (Scheme 

1).(15) After removing the solvent and any unreacted Me2Cd under vacuum, the NCs were reacted 

with Me3SiCl and Bu3P to remove the carboxylate ligands.(26) Unlike CdSe–CdCl2/Bu3P/[Bu3P–

H]+[Cl]-, which precipitates from pentane solution, CdSe–CdCl2/Bu3P is soluble in pentane and 

precipitates from methyl acetate or acetonitrile. A 31P NMR spectrum verifies that the isolated NCs 

are free from [Bu3P–H]+[Cl]- (δ = 11 ppm).  

 

Scheme 1. Synthesis of CdSe-CdCl2/Bu3P free of [Bu3PH+][Cl-]. 

To estimate the relative binding affinity of several L-type ligands, we monitored their ability to 

displace Bu3P from CdSe–CdCl2/Bu3P (Figures S1 – S11). For example, surface bound Bu3P (δ = 

-11 ppm) is liberated as n-octylamine is added (0 – 10 equiv./Bu3P) (Figure 1).(27) 5 – 10 equiv. 

of n-octylamine completely displaces Bu3P from the nanocrystal resulting in the sharp signal of a 

freely diffusing Bu3P molecule (δ = -31 ppm). The relative surface binding affinities of the amines 

could be ranked by comparing the amount of Bu3P displaced in the presence of tri-n-alkyl, di-n-

alkyl, and n-alkylamines (1 or 50 equiv. / Bu3P). One equiv. of n-butylamine more effectively 

displaces Bu3P than does di-n-butylamine which is more effective than tri-n-butylamine. Amines 

with methyl substituents displace more Bu3P than amines with long chain substituents (e.g. affinity 

of Me2NBu > Bu3N). These substituent effects do not follow the gas phase proton affinities nor the 
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pKa of the conjugate acids (pKa(R3N–H+)), which are within 1 pKa unit in water.(28) Instead they 

can be explained by the relative steric bulk, with the bulkiest ligands being the weakest competitors.  

 

Figure 1. A.) L-type ligand exchange with CdSe-CdCl2/Bu3P designating the 31P NMR handle. 

B.) A series of 31P NMR spectra of CdSe-CdCl2/Bu3P with increasing equivalents of n-

octylamine in benzene-d6. 

 

Similar effects were observed upon titration with tri-n-alkyphosphines, although in this case the 

surface coverage of both the incoming and outgoing ligands could be extracted from the 31P NMR 

spectrum. In the presence of 1 equiv. of triethylphosphine (Et3P, δ = -19 ppm), Bu3P is displaced 

from the surface and the broad signal from bound phosphines shifts downfield by 5 – 10 ppm 

(Figure 2). Although signals for bound Bu3P and Et3P overlap, their surface coverages may be 

determined from the amount of Bu3P and Et3P that remain free. Interestingly, in the presence of 

Et3P (1 equiv.) the total number of bound phosphines increases from 30 ± 5 Bu3P/NC to 36 ± 8 
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PR3/NC (23 ± 5 Et3P and 13 ± 3 Bu3P). At higher concentrations of Et3P more Bu3P is displaced, 

however the NCs begin to precipitate from the solution. Similar results were obtained with 

trimethylphosphine (Me3P). In this case the 1 equiv. of added Me3P more completely binds the 

nanocrystal than Et3P, achieving an even higher total phosphine coverage; 45 ± 8 phosphines per 

NC.  

 

Figure 2. 31P NMR spectra of CdSe-CdCl2/Bu3P (0.5 mM NCs, 14.8 mM Bu3P, black, bottom) 

with triethylphosphine (δ = -19) at 1:1 equivalents (blue) and 50:1 equivalents (red). The new broad 

resonance at δ = -6 ppm is Et3P bound to the NC. 

 

We then explored the binding of P,P-dimethyl-n-octylphosphine (Me2P-n-octyl) with the 

hypothesis that this ligand would provide a stable colloidal dispersion that could be used to measure 

the coverage of a pure Me2P-n-octyl ligand shell. Indeed, stable dispersions of Me2P-n-octyl bound 

NCs (CdSe-CdCl2/Me2P-n-octyl) could be synthesized by completely displacing Bu3P ligands 

from CdSe–CdCl2/Bu3P or upon reaction of CdSe-Cd(O2CR)2, with Me2P-n-octyl and Me3SiCl 

(see Supporting Information). By either method, the Me2P-n-octyl surface coverage is 2.0 – 2.2 

nm-2 (90 ± 15 Me2P-n-octyl per NC, d = 3.8 nm, see Supporting Information), ~4x greater than the 

coverage of Bu3P ligands.  

A wide range of ligands were surveyed in this manner. The relative affinity of the tri-n-

alkylphosphines is Me3P > Me2P-n-octyl > Et3P > Bu3P while the affinity of the amine ligands is 
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H2NBu > Bu3P ~ HNBu2 > Me2NBu > NBu3. In addition, a variety of bulky and/or electron 

deficient ligands displace little or no Bu3P from the NCs even at high concentration, including 

triethylphosphite, triphenylphosphine, diphenylphosphine, tetradecanol, furan, thiophene, 

tetrahydrofuran, diethylether, n-pentylisocyanide, and di-n-butylsulfide. 

To assess the effect of ligand basicity and structure on the displacement reactivity, the pKa of 

the conjugate acid and the Tolmann cone angle of each ligand are plotted in Figure 3.(29, 30) 

Ligands that effectively compete with Bu3P for the NC surface are highlighted. Both a small cone 

angle and a high ligand basicity are key to a high affinity for the surface. Sterically unencumbered 

ligands with low basicity, such as n-pentylisocyanide (pKa(R–NC–H+) = 0.86, H2O, R = 

cyclohexyl)(31) do not compete with Bu3P for the surface. However, weakly basic ligands with 

soft donor atoms such as tetrahydrothiophene (pKa(Et2S–H+) = -6.7, H2O)(32) displace a small 

amount of Bu3P at high concentration. The special affinity of soft ligands helps explain the poor 

binding of the hard Bu3N ligand (pKa(Et3N–H+) = 10.7, H2O)(32), which is a stronger Brønsted 

base than its isostructural phosphine; Bu3P (pKa(Bu3P–H+) = 8.4, H2O)(30). Bu3N also has a greater 

cone angle than Bu3P, owing to the shorter M–N bond and the larger C–E–C angle, which increases 

its steric profile. Thus, soft, basic ligands with a small steric profile bind with the greatest affinity. 
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Figure 3. (left) pKa versus Tolmann cone angles for amines and phosphines in the ligand binding 

series. The green area contains strong binders. (right, top) Relative binding affinities of all 

molecules studied, with molecules of greatest affinity on the right. Molecules in brown do not 

support stable colloidal dispersion on their own. (right, bottom) Molecules that do not displace 

significant quantities of Bu3P at high concentration.  In all cases, R = n-alkyl. 

 

Pyridine and tri-n-octylphosphine oxide (TOPO) have been reported to stabilize nanoparticle 

dispersions, although recent studies have argued otherwise.(33-36) To shed light on the issue we 

studied the displacement of Bu3P from CdSe–CdCl2/Bu3P in pyridine and TOPO solution. Despite 

its moderate basicity, pyridine (pKa(pyridine–H+) = 5.2, H2O)(37) effectively displaces the much 

more basic and soft Bu3P donor ligand. In the presence of 1 equiv. of pyridine, the NCs begin to 

precipitate. 4-Ethylpyridine, however, displaces 30% of the Bu3P and maintains a stable dispersion. 

Higher concentrations of 4-ethylpyridine also induce precipitation. Similar results are observed 

with 1-butylimidazole, which outcompetes Bu3P for the NC surface and displaces a greater quantity 

of Bu3P than does pyridine, consistent with its greater basicity (pKa(imidazole–H+) = 7.0, H2O) 

and small steric profile. TOPO, on the other hand, does not displace Bu3P, even at high 

concentrations (0.3 M). Moreover, the reaction of CdSe-Cd(O2CR)2 with Me3SiCl in pyridine or 

TOPO solution caused precipitation of the NCs. We conclude that pyridine and 1-butylimidazole 

bind the NC surface effectively but do not stabilize a colloidal dispersion, even in a neat solution 
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of the ligand. On the other hand, TOPO does not compete with Bu3P, nor does it stabilize a colloidal 

dispersion.  

 

Scheme 2. Areal density of L-type ligands. 

The relatively high affinity of the pyridine and imidazole ligands, and the influence of steric 

properties on the coverage of alkylphosphines suggests that the competitive binding equilibrium is 

determined by the number of each competitor that binds as well as the relative surface-ligand bond 

dissociation energy (BDE(S–L)) (Scheme 2). In the case of the alkylphosphines, the coverage of 

phosphines increases 4-fold on exchanging Bu3P for Me2P-n-octyl (0.5 nm-2 vs. 2 nm-2). These 

coverages are insensitive to the solution concentration and are therefore likely near the maximum 

for these ligands. n-Alkylamines, on the other hand, display concentration dependent binding - 

poor colloidal stability is observed as the amine concentration is lowered - and their rapid 

degenerate exchange prevents the coverage from being directly measured in situ using 1H NMR 

spectroscopy. A lower bound for their saturation coverage (1.5 – 5 n-alkylamines nm-2) can be 

estimated by precipitating the NCs from concentrated amine solution and drying them under 

vacuum (see Supporting Information). We conclude that the saturation coverage of n-alkylamines 

is greater than 2 nm-2. Thus, an increased coverage can compensate for a weak surface-ligand 

interaction, which helps explain the high affinity of relatively weak donors such as pyridine and 1-

n-butylimidazole. On the contrary, strong donors, such as N-heterocylic carbenes (pKa(NHC–H+) 

~ 23)(38) may form a strong surface-ligand bond in isolation, but should have low affinity if their 

substituents are bulky (e.g. mesityl). 
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The precipitation caused by displacing Bu3P with pyridine confirms a recent study of 

stoichiometric CdSe NCs.(15) That study suggested that pyridine stabilized dispersions can be  

aided by acidic impurities that contribute electrostatic stabilization.(10, 39-45) The same study also 

reported that stoichiometric CdSe NCs stabilized by Bu3P alone (CdSe–Bu3P) were unstable to 

aggregation, which is at odds with the stability of CdSe–CdCl2/Bu3P herein.(15, 25) Interestingly, 

addition of CdCl2 to CdSe–Bu3P(15) leads to the de-aggregation of the NCs and the formation of 

a clear and stable dispersion that is indistinguishable from the CdSe–CdCl2/Bu3P used in this study 

(See Supporting Information). The origin of this effect is unclear and the subject of current 

investigations in our lab.  

Given the high binding affinities and increased surface coverages of sterically unencumbered 

ligands observed above, we sought to stabilize stoichiometric CdSe NCs in the absence of CdCl2 

using P,P-dimethyl-n-octadecylphosphine (Me2P-n-octadecyl). CdSe–Me2P-n-octadecyl was 

prepared from CdSe–NH2Bu(15) via ligand exchange (see Supporting Information). Addition of 

Me2P-n-octadecyl to CdSe–NH2Bu in C6D6 does not displace n-butylamine, as expected from the 

relative binding affinities measured above (Figure 3), until the primary amine is removed under 

vacuum with heat (See Supporting Information). Binding of the Me2P-n-octadecyl ligand can be 

monitored with 31P NMR spectroscopy because CdSe–Me2P-n-octadecyl is characterized by a 

broad resonance (δ = -38 ppm, Δδ = 15 – 20 ppm) that increases in intensity as the amine ligands 

are desorbed. Following complete removal of NH2Bu, the Me2P-n-octadecyl coverage reaches 2 

nm-2, similar to the coverage of phosphine ligands in CdSe–CdCl2/Me2P-n-octyl and 4x greater 

than CdSe–CdCl2/Bu3P. We conclude that the higher ligand coverage and the long n-octadecyl 

chain provide greater colloidal stability to CdSe–Me2P-n-octadecyl compared to CdSe–Bu3P.  

The greater surface binding affinity of NH2Bu compared to phosphines may also be explained 

by their ability to achieve higher surface coverage. In support of this hypothesis, Me2P–n-octadecyl 
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undergoes slow exchange at CdSe–Me2P-n-octadecyl, while amines undergo fast degenerate 

exchange on the 1H NMR timescale at room temperature.(23, 24). Even at temperatures as high as 

390 K (see supporting information), the average Me2P–n-octadecyl exchange rate constant is 

slower than 10-3 s-1 (Figures S10 & S11). The slow exchange of Me2P–n-octadecyl suggests it has 

a greater BDE(S–L) than an n-alkylamines. Phosphines are known to bind aqueous Cd2+ more 

tightly than amines.(46, 47) Thus, we tentatively conclude that tri-n-alkylphosphine ligands have 

a greater BDE(S–L) than an primary n-alkylamine ligands, yet their affinity for the surface is lower 

because primary n-alkylamines achieve higher surface coverages, as depicted in Scheme 2. 

In all cases described above, the surface ligand coverages are significantly lower than the aerial 

density of atoms on the CdSe surface (5.4 – 6.2 nm-2) and the packing density of crystalline alkane 

chains (4.9 nm-2). These low coverages suggest that repulsive interactions between ligands can 

block adjacent binding sites. While surface coverages higher than the areal density of crystalline 

alkanes or binding sites on the crystal surface are sometimes reported(48) these values may reflect 

the formation of multi-layers or the presence of free ligands, rather than the number of surface–

ligand bonds. On the other hand, the highly curved surfaces of very small NC can accommodate a 

greater number of surface ligands. For example, pyramidal CdSe clusters with 1.7 – 2.5 nm edge 

lengths have 1.5 – 2x increased volume available for their ligands compared to a flat facet, and one 

benzoate or n-butylamine ligand can bind every available coordination site.(49) However, as the 

particle size increases and the curvature drops, the packing of ligands must drop below that of 

crystalline n-alkanes (4.9 nm-2) and many coordination sites will remain empty. Thus, the high 

atom density of surfaces will cause steric interactions between ligands that reduces their packing 

on the NC surface and lowers their surface binding affinity.  

Self-assembled monolayers (SAMs) pack with aerial densities (4 – 4.6 nm-2) just below that of 

crystalline alkanes.(50-53) On the Au(111) surface, thiolate SAMs assume high symmetry 
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structures that are commensurate with the underlying lattice, but much less densely packed (4.6 

nm-2) than the surface atoms (12 atoms/nm-2). Van der Waals interactions between chains within 

the SAM strengthen the binding and increase as the chain length grows.(54, 55) Similarly, the 

Si(111) surface has an aerial density of atop sites (7.8 nm-2) greater than the maximum packing 

density of alkane chains. Each of these sites can be terminated by a Si–H or Si–Me bond, however 

larger functional groups, such as ethyl, do not form a complete monolayer.(56) Moreover, 

theoretical and experimental work has shown that the rotation of methyl groups on Si(111) is 

hindered by steric interactions with neighboring methyls.(57) In both cases interactions between 

neighboring ligands dictate the coverage and structure of these surface layers. On the surfaces of 

II-VI and III-V NCs, the areal densities are equal or lower than Si (111), but still greater than the 

crystalline alkanes in most cases. Even straight chain ligands such as NH2Bu will not bind every 

available site as the surfaces grow beyond a few nanometers. Branched ligands (e.g. Bu3P), can 

therefore be expected to prohibit the binding of neighboring ligands and influence the coverages 

as demonstrated above. The steric influence on the coverage must therefore be considered when 

predicting the relative surface binding affinities of L-type ligands. 

 

Conclusion  

The stereo-electronic properties of amines and phosphines were surveyed using competitive 

binding experiments. Soft, electron-rich donor ligands bind the surface most tightly making 

phosphines better ligands than the isostructural amine. However, the ligand coverage is sensitive 

to its steric bulk and 6x – 8x greater number of NH2Bu ligands bind the nanocrystal than do Bu3P 

ligands. The large difference in the number of surface–ligand bonds has a significant impact on the 

competitive binding equilibrium. Hence a strong Lewis base may therefore be readily displaced 

from the surface by weaker Lewis base with a smaller steric profile. The impact of steric bulk on 
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the coverage and competitive binding is expected for all the binary semiconductors, whose surface 

atoms are more densely packed than crystalline alkane chains, particularly as the nanocrystal grows 

larger than a few nm. 
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Methods 

General Considerations. All manipulations were performed using standard Schlenk techniques or 

within a nitrogen atmosphere glovebox unless otherwise indicated. Pentane, toluene, methyl 

acetate, diethyl ether and tetrahydrofuran were purchased anhydrous from Sigma Aldrich and 

shaken over activated alumina, filtered, and stored over 4 Å molecular sieves in an inert atmosphere 

glovebox at least 24 h prior to use. Diphenylphosphine (99%), N,N,′N,′N-tetramethylethylene-1,2-

diamine (TMEDA) (98%), triethylphosphite (99%), tri-n-octylphosphine (97%), triethylphosphine 

(99%), and tri-n-butylphosphine (99%) were purchased from Strem and used without further 

purification. CdMe2 was purchased from Strem and vacuum distilled prior to use. CAUTION: 

Dimethylcadmium is extremely toxic and because of its volatility and air-sensitivity should only be 

handled by a highly trained and skilled scientist. N,N-Dimethylbutylamine (98%), furan (99%), 

thiophene (98%), n-butylamine (98%), di-n-butylamine (98%), trimethylphosphine (99%), , n-

pentylisocyanide, di-n-butylsulifide (98%), trichloromethylsilane (98%), tri-n-butylamine (99%), 

n-octylamine (99%), benzene-d6 (99.9%) and pyridine (99.5%) were purchased from Sigma 

Aldrich and dried over CaH2, distilled, and stored in a nitrogen glovebox. Toluene-d8 was 

purchased from Cambridge Isotopes and dried over CaH2, distilled, and stored in a nitrogen 

glovebox. Tri-n-octylphosphine oxide (99%) was purchased from Sigma Aldrich and recrystallized 

from acetonitrile as reported previously.(34)   

CdSe–Cd(O2CR)2. Carboxylate terminated CdSe NCs (CdSe–Cd(O2CR)2) are synthesized and 

treated with Me2Cd to remove acidic impurities as previously described.(58)  

CdSe–CdCl2/Bu3P. All manipulations are conducted on a Schlenk line at room temperature. In a 

typical synthesis, a benzene-d6 stock solution of CdSe–Cd(O2CR)2 (1.0 ml, 0.5 – 2.0 mmolar 

carboxylate, [CdSe] = 1.6 – 6.5 mmolar, [NC] = 4 – 16 µmolar) was transferred to a 50 ml Schlenk 

tube with a magnetic stir bar. The solution was diluted to a total volume of 5 ml with toluene to 

which Bu3P (0.506 g, 0.624 ml, 2.5 mmol) was added. Me3Si–Cl (6.0 – 24 mmol, 12 equiv.) was 

added and the solution stirred for 24 hours. After this time, the volatiles were removed under 

vacuum and the red solid dissolved in pentane (5 ml) and a methyl acetate was added to precipitate 

the nanocrystals, which were separated by centrifugation (7000 RPM for 5 minutes). This process 

was repeated twice more, after which the red powder was dried overnight under vacuum. The 

nanocrystals were dispersed in benzene-d6 to a CdSe concentration of 0.5 – 1.0 M, as described 

previously.(16) 

Competitive Displacement of Bu3P from CdSe–CdCl2/Bu3P. Benzene-d6 stock solutions of 

various competitor ligands are prepared in a nitrogen filled glove box by diluting the ligand (0.9 

mmole) with benzene-d6 (1 ml). Using a 25 μl syringe, 10 μl of this stock solution (9 µmoles of 

ligand) is added to a benzene-d6 solution of CdSe-CdCl2/Bu3P (600 μl, 15 mM in Bu3P, 0.6 mM 

in NC) in a J-young NMR tube to form an equimolar solution of the added ligand and Bu3P. 
31P{1H} and 1H NMR spectra are acquired within 1 hour (31P{1H}: 2 sec delay with 0.1 sec 

acquisition, 800 scans; 1H: 30 sec delay with 5 sec acquisition, 16 scans). The J-young tube is then 

transferred to a nitrogen filled glove box where the appropriate mass of neat ligand is added to 

bring the total concentration of ligand to 0.75 M (50 equiv.). The J-young tube is then sealed and 
31P{1H} and 1H NMR spectra are acquired as described above. In some cases the procedure is 

reapeated to bring the concentration of competitor ligand to 1.5 M (100 equiv.).  
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P,P-Dimethyl-n-octylphosphine. P,P-dimethyl-n-octylphosphine was prepared on 19.7 mmole 

scale from n-octylmagnesium bromide and chlorodimethylphosphine as previously described.(59) 
31P{1H} NMR (C6D6, 162 MHz):  δ = -55 ppm, (chloroform-d, 162 MHz):  = -51 ppm. 1H NMR 

(chloroform-d, 400 MHz):  = 0.89 (d, 6H, -CH3), 0.91 (t, 3H, -CH3) 1.2-1.6 (b, 12H, -CH2), 1.59 

(m, 2H, β-CH2), 1.98 (m, 2H, -PCH2). 
31P{1H} NMR (s). 

Synthesis of CdSe–CdCl2/Me2P–n-octyl. All manipulations were conducted on a Schlenk line at 

room temperature. In a typical synthesis, a benzene-d6 stock solution of CdSe–Cd(O2CR)2 (1.0 

ml, 0.5–2.0 mmol ligand) with a known carboxylate concentration was transferred to a 50 ml 

Schlenk tube with a magnetic stir bar. The solution was diluted to a total volume of 5 ml with 

toluene to which Me2POc (0.438 g, 2.5 mmol) was added. Me3Si–Cl (0.651 – 2.607 g, 6.0 – 24 

mmol, 12 equiv.) was added and the solution stirred for 24 hours. After this time, the volatiles were 

distilled off under vacuum and the red solid dissolved in toluene (5 ml) and methyl acetate was 

added to precipitate the nanocrystals, which were separated by centrifugation (7000 RPM for 5 

minutes). This process was repeated twice more, after which the red powder was dried overnight 

under vacuum. The nanocrystals were diluted in toluene-d8 to [NC] = 0.5 – 1.0 mM and analyzed 
31P{1H} and 1H NMR spectroscopies.  

Supporting Information 

Variable temperature NMR spectroscopy of CdSe–CdCl2/Me2P–n-octyl, the synthesis of CdSe-

CdCl2/PBu3 from CdSe-NH2Bu, the synthesis of P,P-dimethyl-n-octadecylphosphine and the 

synthesis of CdSe–P,P-dimethyl-n-octadecylphosphine are described in the supporting 

information.   
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