1,989 research outputs found

    Necessary and sufficient condition for finite horizon H[sub ∞] estimation of time delay systems

    Get PDF
    Author name used in this publication: David ZhangVersion of RecordPublishe

    A reorganized innovation approach to linear estimation

    Get PDF
    2004-2005 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Robust filtering by fictitious noises

    Get PDF
    Author name used in this publication: David ZhangVersion of RecordPublishe

    Robust filtering for uncertain discrete-time systems : an improved LMI approach

    Get PDF
    Author name used in this publication: David ZhangVersion of RecordPublishe

    New mutations at the imprinted Gnas cluster show gene dosage effects of GsΞ± in postnatal growth and implicate XLΞ±s in bone and fat metabolism, but not in suckling

    Get PDF
    The imprinted Gnas cluster is involved in obesity, energy metabolism, feeding behavior, and viability. Relative contribution of paternally expressed proteins XLΞ±s, XLN1, and ALEX or a double dose of maternally expressed GsΞ± to phenotype has not been established. In this study, we have generated two new mutants (Ex1A-T-CON and Ex1A-T) at the Gnas cluster. Paternal inheritance of Ex1A-T-CON leads to loss of imprinting of GsΞ±, resulting in preweaning growth retardation followed by catch-up growth. Paternal inheritance of Ex1A-T leads to loss of imprinting of GsΞ± and loss of expression of XLΞ±s and XLN1. These mice have severe preweaning growth retardation and incomplete catch-up growth. They are fully viable probably because suckling is unimpaired, unlike mutants in which the expression of all the known paternally expressed Gnasxl proteins (XLΞ±s, XLN1 and ALEX) is compromised. We suggest that loss of ALEX is most likely responsible for the suckling defects previously observed. In adults, paternal inheritance of Ex1A-T results in an increased metabolic rate and reductions in fat mass, leptin, and bone mineral density attributable to loss of XLΞ±s. This is, to our knowledge, the first report describing a role for XLΞ±s in bone metabolism. We propose that XLΞ±s is involved in the regulation of bone and adipocyte metabolism

    Astrocytic Ion Dynamics: Implications for Potassium Buffering and Liquid Flow

    Get PDF
    We review modeling of astrocyte ion dynamics with a specific focus on the implications of so-called spatial potassium buffering, where excess potassium in the extracellular space (ECS) is transported away to prevent pathological neural spiking. The recently introduced Kirchoff-Nernst-Planck (KNP) scheme for modeling ion dynamics in astrocytes (and brain tissue in general) is outlined and used to study such spatial buffering. We next describe how the ion dynamics of astrocytes may regulate microscopic liquid flow by osmotic effects and how such microscopic flow can be linked to whole-brain macroscopic flow. We thus include the key elements in a putative multiscale theory with astrocytes linking neural activity on a microscopic scale to macroscopic fluid flow.Comment: 27 pages, 7 figure

    Characteristics of transposable element exonization within human and mouse

    Get PDF
    Insertion of transposed elements within mammalian genes is thought to be an important contributor to mammalian evolution and speciation. Insertion of transposed elements into introns can lead to their activation as alternatively spliced cassette exons, an event called exonization. Elucidation of the evolutionary constraints that have shaped fixation of transposed elements within human and mouse protein coding genes and subsequent exonization is important for understanding of how the exonization process has affected transcriptome and proteome complexities. Here we show that exonization of transposed elements is biased towards the beginning of the coding sequence in both human and mouse genes. Analysis of single nucleotide polymorphisms (SNPs) revealed that exonization of transposed elements can be population-specific, implying that exonizations may enhance divergence and lead to speciation. SNP density analysis revealed differences between Alu and other transposed elements. Finally, we identified cases of primate-specific Alu elements that depend on RNA editing for their exonization. These results shed light on TE fixation and the exonization process within human and mouse genes.Comment: 11 pages, 4 figure

    Rapamycin toxicity in MIN6 cells and rat and human islets is mediated by the inhibition of mTOR complex 2 (mTORC2)

    Get PDF
    Aims/hypothesis Rapamycin (sirolimus) is one of the primary immunosuppressants for islet transplantation. Yet there is evidence that the long-term treatment of islet-transplant patients with rapamycin may be responsible for subsequent loss of islet graft function and viability. Therefore, the primary objective of this study was to elucidate the molecular mechanism of rapamycin toxicity in beta cells. Methods Experiments were performed on isolated rat and human islets of Langerhans and MIN6 cells. The effects of rapamycin and the roles of mammalian target of rapamycin complex 2 (mTORC2)/protein kinase B (PKB) on beta cell signalling, function and viability were investigated using cell viability assays, insulin ELISA assays, kinase assays, western blotting, pharmacological inhibitors, small interfering (si)RNA and through the overproduction of a constitutively active mutant of PKB

    GenomeBlast: a web tool for small genome comparison

    Get PDF
    BACKGROUND: Comparative genomics has become an essential approach for identifying homologous gene candidates and their functions, and for studying genome evolution. There are many tools available for genome comparisons. Unfortunately, most of them are not applicable for the identification of unique genes and the inference of phylogenetic relationships in a given set of genomes. RESULTS: GenomeBlast is a Web tool developed for comparative analysis of multiple small genomes. A new parameter called "coverage" was introduced and used along with sequence identity to evaluate global similarity between genes. With GenomeBlast, the following results can be obtained: (1) unique genes in each genome; (2) homologous gene candidates among compared genomes; (3) 2D plots of homologous gene candidates along the all pairwise genome comparisons; and (4) a table of gene presence/absence information and a genome phylogeny. We demonstrated the functions in GenomeBlast with an example of multiple herpesviral genome analysis and illustrated how GenomeBlast is useful for small genome comparison. CONCLUSION: We developed a Web tool for comparative analysis of small genomes, which allows the user not only to identify unique genes and homologous gene candidates among multiple genomes, but also to view their graphical distributions on genomes, and to reconstruct genome phylogeny. GenomeBlast runs on a Linux server with 4 CPUs and 4 GB memory. The online version of GenomeBlast is available to public by using a Web browser with the URL

    Quantitative trait locus analysis of hybrid pedigrees: variance-components model, inbreeding parameter, and power

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>For the last years reliable mapping of quantitative trait loci (QTLs) has become feasible through linkage analysis based on the variance-components method. There are now many approaches to the QTL analysis of various types of crosses within one population (breed) as well as crosses between divergent populations (breeds). However, to analyse a complex pedigree with dominance and inbreeding, when the pedigree's founders have an inter-population (hybrid) origin, it is necessary to develop a high-powered method taking into account these features of the pedigree.</p> <p>Results</p> <p>We offer a universal approach to QTL analysis of complex pedigrees descended from crosses between outbred parental lines with different QTL allele frequencies. This approach improves the established variance-components method due to the consideration of the genetic effect conditioned by inter-population origin and inbreeding of individuals. To estimate model parameters, namely additive and dominant effects, and the allelic frequencies of the QTL analysed, and also to define the QTL positions on a chromosome with respect to genotyped markers, we used the maximum-likelihood method. To detect linkage between the QTL and the markers we propose statistics with a non-central Ο‡<sup>2</sup>-distribution that provides the possibility to deduce analytical expressions for the power of the method and therefore, to estimate the pedigree's size required for 80% power. The method works for arbitrarily structured pedigrees with dominance and inbreeding.</p> <p>Conclusion</p> <p>Our method uses the phenotypic values and the marker information for each individual of the pedigree under observation as initial data and can be valuable for fine mapping purposes. The power of the method is increased if the QTL effects conditioned by inter-population origin and inbreeding are enhanced. Several improvements can be developed to take into account fixed factors affecting trait formation, such as age and sex.</p
    • …
    corecore