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A Reorganized Innovation Approach to Linear Estimation

Huanshui Zhang, Lihua Xie, David Zhang, and Yeng Chai Soh

Abstract—This note will address a linear minimum variance estimation
of discrete-time systemswith instantaneous and delayedmeasurements. Al-
though the problemmay be approached via system augmentation and stan-
dard Kalman filtering, the computation of filter may be expensive when the
dimension of the system is high and the measurement lag is significant. In
this note, a new tool, termed as reorganized innovation sequence, is pre-
sented for deriving the optimal filter. The optimal filter is given by two Ric-
cati difference equations (RDEs) with the same dimension as that of the
original system. The approach is shown to induce saving of computational
cost as compared to the system augmentation approach, especially when
the delay is large. Further, it can be extended to solving the more compli-
cated fixed-lag smoothing in Krein space.

Index Terms—Delayed measurement, discrete-time systems, innovation
analysis, optimal filtering, Riccati equations.

I. INTRODUCTION

Kalman filtering [2], [3] is concerned with the minimization of fil-
tering error covariance (termed as H2 estimation) and has become a
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major tool of state estimation since the 1960s; see, e.g., [6]–[13] and
the references therein. It has been widely used in signal processing,
communication and control applications. However, there are still some
Kalman filtering problems which deserve further studies. One such
problem is the optimal filtering of systems with various measurement
delays. In the continuous-time context, the optimal estimation of time-
delay systems has been well studied in the past decades; see [6], [7],
and the references therein. The approaches in these works are usu-
ally related to solving a partial differential equation (PDE) which does
not have an explicit solution in general. For the case of discrete-time
systems, the problem has been investigated via system augmentation
and standard Kalman filtering [8], [10], [16] or the polynomial ap-
proach [9], [11], [12]. Note that the augmented Kalman filtering ap-
proach is computationally expensive, especially when the dimension
of the system is high and the measurement lags are large. On the other
hand, the polynomial approach only addresses the steady-state filtering
problem and it requires solving a much higher order of spectral factor-
ization for systems with delays.

In this note, we will revisit the Kalman filtering problem for time-
varying systems with measurement delays. We consider the system
with instantaneous and delayed measurements which is described by

x(t+ 1) =�tx(t) + �tu(t) (1.1)

y(t) =Htx(t) + v(t) (1.2)

zt�d(t) =Lt�dx(t� d) + vz(t) (1.3)

where x(t) 2 Rn is the state, u(t) 2 Rr is the input noise,
y(t) 2 Rm, and zt�d(t) 2 Rp are, respectively, the instanta-
neous and delayed measurements, v(t) 2 Rm and vz(t) 2 Rp

are the measurement noises. d is the measurement delay which
is an integer. The initial state x(0) and u(t), v(t) and vz(t) are
uncorrelated white noises with zero means and known covari-
ance matrices E [x(0)xT (0)] = P0, E [u(i)uT (j)] = Qu(i)�ij ,
E [v(i)vT (j)] = Qv(i)�ij and E [vz(i)vTz (j)] = Qv (i)�ij , respec-
tively.

Note that the previous estimation problem has important applications
in many engineering problems such as in communications and sensor
fusion [1] and networked control systems [15].

With the delayed measurement in (1.3), the system (1.1)–(1.3) is not
in a standard form to which the standard Kalman filtering is applicable.
Let ys(t) denote the observation of the system (1.1)–(1.3) at time t,
then

ys(t) =
y(t); 0 � t < d

y(t)
z (t)

; t � d:
(1.4)

It follows that

ys(t) =

Htx(t) + vs(t); 0 � t < d

Ht 0

0 Lt�d

x(t)

x(t� d)
+ vs(t); t � d

(1.5)

where

vs(t) =
v(t); 0 � t < d
v(t)
v (t)

; t � d
(1.6)

which is a white noise with zero mean and covariance matrix

Qv (t) =

Qv(t); 0 � t < d

Qv(t) 0

0 Qv (t)
; t � d:

(1.7)
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The H2 optimal estimation problem can be stated as: Given the ob-
servation ffys(i)gti=0g, find a linear least mean square error esti-
mator x̂(tjt) of x(t).

Remark 1.1: Traditionally, the aforementioned problem can be
solved by transforming it into a standard Kalman filtering problem
through system augmentation. By introducing an augmented state

x
T
a (t) = x

T (t) fLt�1x(t� 1)gT . . . fLt�dx(t� d)gT (1.8)

we obtain an augmentated state-space model

xa(t+ 1) =�a(t)xa(t) + �a(t)u(t); (1.9)

y(t)

zt�d(t)
=HL (t)xa(t) + vs(t) (1.10)

where

�a(t) =

�t

Lt

Ip

. . .

Ip 0

�a(t) =

�t
0
...
0

HL (t) =
Ha(t)

La(t)
(1.11)

and

Ha(t) = [Ht 0 . . . 0]

La(t) = [0 . . . 0 Ip] for t > d; and

La(t) = 0 for t � d: (1.12)

Then, the optimal estimate x̂(tjt) is obtained by

x̂(tjt) = [In . . . 0]x̂a(tjt) (1.13)

where x̂a(tjt) is the optimal estimate of the previous augmented system
which can be obtained by the standard Kalman filter. However, the aug-
mentation leads to a much higher system dimension and, thus, a much
higher computational cost.

Remark 1.2: It should be pointed out that special structure of�a(t)
in the aforementioned Kalman filtering formulation leads some com-
putational simplification which to be discussed in Section IV, but nev-
ertheless our approach to be presented in this note will be computation-
ally more efficient.

In this note, we will propose a new method for the optimal filter de-
sign without resorting to system augmentation. Our approach is based
on projection and a reorganized innovation sequence which is different
from the standard Kalman innovation sequence. It is shown that the
proposed approach is computationally attractive as compared with the
augmentation approach. Furthermore, our approach can be extended to
give a solution to the H1 fixed-lag smoothing which has often been
solved via a system augmentation approach [14].

The note is organized as follows. The reorganized innovation se-
quence and the associated RDEs are introduced in Section II. The op-
timal filter is derived in Section III which is given in terms of two RDEs
having the same dimension as that of the original system. Some dis-
cussion and cost comparison with the existing system augmentation
approach is given in Section IV. Conclusions are drawn in Section V.

II. REORGANIZED INNOVATION SEQUENCE

In this section, we will present a solution to the H2 estimation of
the system (1.1)–(1.3) involving delayed measurements using the pro-

jection in Hilbert space. The key to our discussion in this section is to
reorganize the instantaneous and delayed measurements and introduce
an associated innovation sequence.

As is well known, given the measurement sequence fys(i)gti=0,
the optimal state estimator x̂(tjt) is the projection of x(t) onto the
linear space spanned by the measurement sequence, denoted by
Lffys(i)g

t
i=0g [2], [16].

First, observe from (1.4) that for d > t � 0

L fys(i)g
t

i=0
= L fy(i)gt

i=0
(2.1)

and the estimator x̂(tjt) is a standard H2 estimator associated with
(1.1)–(1.2). When t � d, it is easy to know that the linear space
Lffys(i)g

t
i=0g is equivalent to

L
y(0)

z0(d)
;

y(1)

z1(1 + d)
; . . . ;

y(t� d)

zt�d(t)

y(t� d+ 1); . . . ;y(t)g : (2.2)

Denote

yf (i)
�
=

y(i)

zi(i+ d)
; i = 0; 1; . . . ; t� d: (2.3)

It is easy to know that yf (i) satisfies

yf (i) =
Hi

Li

x(i) + vf (i); i = 0; 1; . . . ; t� d (2.4)

with

vf (i) =
v(i)

vz(i+ d)
(2.5)

being a white noise of zero mean and covariance matrix Qv (i) =
Qv(i) 0

0 Qv (i+ d)
. It should be noted that yf (i) contains mea-

surements of the state x(i) at time instants i and i + d. Observe that
(1.1) and (2.4) give a standard state-space representation.

The following notations will be used throughout the note:
td t � d;
�̂(jjt) optimal estimate of �(j) given fys(0); . . . ;ys(t)g;
�̂(jjt+ i; t) the estimate of �(j) given fyf (0); . . .yf (t);y(t+

1); . . .y(t + i); i � 0g.
It is obvious that �̂(jjt; t) is the standard Kalman estimator for

system (1.1) and (2.4), and the estimator x̂(tjt) to be sought can be
redenoted as x̂(tjt; td). In other words, the optimal estimation problem
is equivalent to finding the optimal estimate x̂(tjt; td) of x(t) which
will be discussed later in Section III.

A. Reorganized Innovation Sequence

To define the reorganized innovation and the associatedRiccati equa-
tion, we introduce the following stochastic sequence:

w(t+ i; t)
�
=y(t+ i)� ŷ(t+ ijt+ i� 1; t); i > 0 (2.6)

w(t; t)
�
=yf (t)� ŷf (tjt� 1; t� 1)

ŷf (0j � 1;�1) = 0 (2.7)

where ŷ(t + ijt + i � 1; t) is the projection of y(t + i) onto the
linear space of fyf (0); . . . ;yf (t);y(t + 1); . . . ;y(t + i � 1)g and
ŷf (tjt � 1; t � 1) is the projection of yf (t) onto the linear space of
fyf (0); . . .yf (t� 1)g. It is clear thatw(t; t) is the standard Kalman
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filtering innovation sequence for the system (1.1) and (2.4). We then
have the following relationships:

w(t+ i; t) =Ht+ie(t+ i; t) + v(t+ i); i > 0 (2.8)

w(t; t) =
Ht

Lt

e(t; t) + vf (t) (2.9)

where

e(t+ i; t)
�
=x(t+ i)� x̂(t+ ijt + i� 1; t); i > 0 (2.10)

e(t; t)
�
=x(t)� x̂(tjt� 1; t� 1): (2.11)

It is clear that e(t + 1; t) = e(t + 1; t + 1). The following lemma
shows that fw(�; �)g is in fact the innovation sequence for the model
of (1.1), (2.4), and (2.5).

Lemma 2.1: fw(0; 0); . . . ;w(td; td);w(td+1; td); . . . ;w(t; td)g
is the innovation sequence which spans the same linear space as

Lfyf (0); . . . ;yf (td); y(td + 1); . . . ;y(t)g

or, equivalently, Lfys(0); . . . ;ys(t)g.
Proof: First, it is readily seen from (2.6) and (2.7)

that w(i; i), i � td (or w(td + i; td), d � i > 0) is a
linear combination of the observations yf (0); . . . ;yf (i) (or
yf (0); . . . ;yf (td); y(td + 1); . . . ;y(td + i)). Conversely,
yf (i), td � i � 0, (or y(td + i), d � i > 0) can be given
in terms of a linear combination of w(0; 0); . . . ;w(i; i) (or
w(0; 0); . . . ;w(td; td); w(td + 1; td); . . .w(td + i; td)). Thus,
fw(0; 0); . . . ;w(td; td);w(td + 1; td); . . . ;w(t; td)g spans the
same linear space as Lfyf (0); . . . ;yf (td);y(td + 1); . . . ;y(t)g or
equivalently Lfys(0); . . .ys(t)g. Next, we show that w(�; �) is an
uncorrelated sequence. In fact, for any d � i > 0 and td � j � 0,
from (2.8) we have

E w(td + i; td)w
T (j; j) = E Ht +ie(td + i; td)w

T (j; j)

+E vf (td + i)wT (j; j) : (2.12)

Note that E [vf (td + i)wT (j; j)] = 0. Since e(td + i; td) is the
state prediction error, it follows that E [e(td + i; td)w

T (j; j)] = 0
and, thus, E [w(td + i; td)w

T (j; j)] = 0, which implies that
w(j; j) (td � j � 0) is uncorrelated withw(td + i; td) (d � i > 0).
Similarly, it can be verified that w(i; i) is uncorrelated with w(j; j)
for i 6= j and w(td + i0; td) is uncorrelated with w(td + j0; td)
for i0 6= j0, where td � i; j � 0 and d � i0, j0 > 0. Hence,
fw(0; 0); . . . ;w(td; td);w(td+1; td); . . .w(t; td)g is an innovation
sequence. This completes the proof of the lemma.

The white noise sequence, w(0; 0); . . . ;w(td; td);w(td +
1; td); . . .w(t; td), calculated from the reorganized observations
yf (0); . . . ;yf (td);y(td + 1); . . . ;y(t), is termed as the reorga-
nized innovation sequence. Similarly, for any s > td, the sequence
w(0; 0); . . . ;w(td; td); w(td + 1; td); . . .w(s; td) is also termed as
the reorganized innovation sequence, and spans the same linear space
as Lfyf (0); . . . ;yf (td);y(td + 1); . . . ;y(s)g. The reorganized
innovation sequence will play a key role in deriving the optimal
estimator in this note.

B. Riccati Equation

Definition 2.1:

P
t +i

t +i;t

�
= E e(td + i; td)e

T (td + i; td) ; i > 0 (2.13)

is termed as the covariance matrix of the estimation error e(td+ i; td).
From (2.8) and (2.9), the innovation covariance matrix

Qw(td + i; td)
�
= E w(td + i; td)w

T (td + i; td) ; i � 0

is given by

Qw(td + i; td)=
Ht +iP

t +i

t +i;t HT
t +i+Qv(td + i); i>0

H

L
P
t
t ;t �1

H

L

T
+Qv (td); i=0:

(2.14)
We have the following results.
Theorem 2.1: The cross-covariance matrix Pt +i

t +i;t can be calcu-
lated as follows.

• For i = 1, Pt +1

t +1;t is given by the following standard RDE:

P
t +1

t +1;t =�t P
t

t ;t �1�
T
t ��t P

t

t ;t �1

Ht

Lt

T

�Q
�1
w (td; td)

Ht

Lt

P
t
t ;t �1�

T
t +�t Qu(td)�

T
t

P00;�1=P0 (2.15)

where

Qw(td; td) =
Ht

Lt

P
t

t ;t �1

Ht

Lt

T

+Qv (td): (2.16)

• For i > 1, Pt +i

t +i;t is given by

P
t +i+1

t +i+1;t =�t +iP
t +i

t +i;t �T
t +i � �t +iP

t +i

t +i;t

�H
T
t +iQ

�1
w (td + i; td)Ht +iP

t +i

t +i;t �T
t +i

+ �t +iQu(td + i)�Tt +i (2.17)

where the initial condition Pt +1

t +1;t is from (2.15) and

Qw(td + i; td) = Ht +iP
t +i

t +i;t H
T
t +i +Qv(td + i): (2.18)

Proof: For i = 1, it is obvious that Pt +1

t +1;t is the covariance
matrix of the one-step-ahead prediction error of the state x(td + 1)
associated with (1.1) and (2.4). Thus, following the standard Kalman
filtering theory, Pt +1

t +1;t satisfies the Riccati equation (2.15).
For i > 1, note that x̂(td + i + 1jtd + i; td) is the projec-

tion of the state x(td + i + 1) onto the linear space spanned by
fw(0; 0); . . . ;w(td; td);. . .w(td + 1; td); . . .w(td + i; td)g. Since
w(�; �) is a white noise, the estimator x̂(td + i + 1jtd + i; td) is
calculated by using the projection formula as

x̂(td + i+ 1jtd + i; td)

= Proj fx(td + i+ 1jw(0; 0); . . .w(td; td);

w(td + 1; td); . . . ;w(td + i� 1; td)g

+ Projfx(td + i+ 1jw(td + i; td)g

= �t +ix̂(td + ijtd + i� 1; td)

+ �t +iE x(td + i)eT (td + i; td)

�H
T
t +iQ

�1
w (td + i; td)w(td + i; td)

= �t +ix̂(td + ijtd + i� 1; td) + �t +iP
t +i

t +i;t

�H
T
t +iQ

�1
w (td + i; td)w(td + i; td): (2.19)
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It is readily obtained from (1.1) and (2.19) that

e(td + i+ 1; td)

= x(td + i+ 1)� x̂(td + i+ 1jtd + i; td)

= �t +ie(td + i; td) + �t +iu(td + i)� �t +iP
t +i

t +i;t

�H
T
t +iQ

�1

w (td + i; td)w(td + i; td): (2.20)

Since e(td + i + 1; td) is uncorrelated with w(td + i; td) and so
is e(td + i; td) with u(td + i), it follows from the aforementioned
equation that

P
t +i+1

t +i+1;t +�t +iP
t +i

t +i;t H
T
t +iQ

�1

w (td+i; td)

�Ht +iP
t +i

t +i;t �T
t +i

=�t +iP
t +i

t +i;t �T
t +i+�t +iQu(td + i)�Tt +i (2.21)

which is (2.17).
Remark 2.1: Observe that (2.15) is the standard RDE associated

with the Kalman filtering for (1.1) and (2.4), and (2.17) is the RDE
for (1.1) and (1.2).

III. OPTIMAL ESTIMATE x̂(tjt)

In this section, we will give the solution to the optimal filtering
problem.

Based on the discussion in the previous section, the following results
are obtained by applying the reorganized innovation sequence.

Theorem 3.1: Consider the system (1.1)–(1.3). Given d > 0, the
optimal filter x̂(tjt) = x̂(tjt; td) is given by

x̂(tjt; td) = x̂(tjt� 1; td) + Pt
t;t H

T
t Q

�1

w

�(t; td) [y(t)�Htx̂(tjt� 1; td)] (3.1)

where x̂(tjt � 1; td) is calculated recursively as

x̂(td + i+ 1jtd + i; td)

= �t +ix̂(td + ijtd + i� 1; td)

+ �t +iP
t +i

t +i;t H
T
t +iQ

�1

w (td + i; td)

� [y(td + i)�Ht +ix̂(td + ijtd + i� 1; td)] ;

i = 1; . . . ; d� 1 (3.2)

while Qw(td + i; td) = Ht +iP
t +i

t +i;t HT
t +i + Qv(td + i) and

P
t +i

t +i;t (i = 2; . . . ; d) is computed by (2.17). The initial value x̂(td+
1jtd; td) in (3.2) can be computed from the recursion

x̂(td + 1jtd; td) =�t x̂(tdjtd � 1; td � 1)

+ �t P
t
t ;t �1

Ht

Lt

T

Q
�1

w (td; td)

� yf (td)�
Ht

Lt

x̂(tdjtd � 1; td � 1)

x̂(0j � 1;�1) = 0 (3.3)

where Qw(td; td) =
H

L
P
t
t ;t �1

H

L

T
+ Qv (td) and P

t
t ;t �1

is as in (2.15).
Proof: By applying Lemma 2.1, x̂(tjt) = x̂(tjt; td) is the

projection of the state x(t) onto the linear space spanned by

fw(0; 0); . . .w(td; td);w(td+1; td); . . . ;w(t; td)g. Sincew(�; �) is
a white noise, the filter x̂(tjt; td) is calculated by using the projection
formula as

x̂(tjt; td) =Proj fx(t)jw(0; 0); . . .w(td; td);

w(td + 1; td); . . . ;w(t� 1; td)g

+Projfx(t)jw(t; td)g

= x̂(tjt� 1; td) + E x(t)wT (t; td)

�Q
�1

w (t; td)w(t; td)

= x̂(tjt� 1; td) + Pt
t;t H

T
t Q

�1

w (t; td)

� [y(t)�Htx̂(tjt� 1; td)] (3.4)

which is (3.1). Similarly, from Lemma 2.1, x̂(td + i + 1jtd + i; td)
(i > 0) is the projection of the state x(td + i + 1) onto the linear
space spanned by the innonvation fw(0; 0); . . . ;w(td; td);w(td +
1; td); . . . ;w(td + i; td)g, it follows from the projection formula that

x̂(td + i+ 1jtd + i; td)

= Projfx(td + i+ 1)jw(0;0); . . . ;w(td; td);

w(td + 1; td); . . . ;w(td + i; td)g

= �t +ix̂(td + i)jtd + i; td) + �t +i

� Projfu(td + i)jw(0; 0); . . . ;w(td; td);

w(td + 1; td); . . . ;w(td + i; td)g : (3.5)

Noting that u(td + i) is uncorrelated with the innovation
w(0; 0); . . . ;w(td; td);w(td + 1; td); . . . ;w(td + i; td), we have

x̂(td + i+ 1jtd + i; td)

= �t +ix̂(td + ijtd + i; td)

= �t +ix̂(td + ijtd + i� 1; td)

+ �t +iE x(td + i)wT (td + i; td)

�Q
�1

w (td + i; td)w(td + i; td)

= �t +ix̂(td + ijtd + i� 1; td)

+ �t +iP
t +i

t +i;t H
T
t +iQ

�1

w (td + i; td)

� [y(td + i)�Ht +ix̂(td + ijtd + i� 1; td)] (3.6)

which is (3.2). Furthermore, x̂(td + 1jtd; td) is the standard Kalman
filter of (1.1) and (2.4), which is obviously given by (3.3).
Remark 3.1: The Kalman filtering solution for (1.1)–(1.3) with de-

layed measurement has been given by applying the reorganized in-
novation analysis. Different from the standard Kalman filtering ap-
proach, our approach consists of two parts. The first is (3.2) and (2.17),
which is theKalman formulation for the system (1.1)–(1.2). The second
part is (3.3) and (2.15), which is the Kalman formulation for system
(1.1) and (2.4). Observe that the solution only relies on two Riccati
recursions of dimension n � n. This is in comparison with the tradi-
tional augmentation method where one Riccati equation of dimension
(n+d�p)� (n+d�p) is involved. In the following section, we will
demonstrate that the proposed method indeed possesses computational
advantages over the latter.
Remark 3.2: The aforementioned reorganized innovation analysis

in Hilbert space can be extended to Krein space to address the more
complicatedH1 fixed-lag smoothing [4] andH1 estimation problem
for time-delay systems [5].
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IV. DISCUSSIONS AND COMPARISON

The purpose of the section is to compare the computational cost of
the presented approach and the traditional augmentation method. As
additions are much faster than multiplications and divisions, it is the
number of multiplications and divisions that is used as the operation
count. LetMD denote the number of multiplications and divisions.

First, note that the algorithm by Theorem 3.1 can be summarized as
follows:

i) compute matrix Pt +1
t +1;t using the RDE (2.15);

ii) compute Pt +i
t +i;t , i = 2; . . . ; d using (2.17);

iii) compute x̂(tjt; td) using (3.1)–(3.3).
It is easy to know that the totalMD number of obtaining x̂(tjt; td)

for one step, denoted as MDnew, is given by

MDnew= 3n3+(3m+r)n2+2m2n+m3 d+(6p+1)n2

+ 2(m+p)2�2m2+4mp+2p2+m+p n

+2(m+p)3+(m+p)2�2m3: (4.1)

On the other hand, recall the Kalman filtering for the augmented
state-space model (1.8)–(1.12). The optimal filter x̂a(tjt) is computed
by

x̂a(t+ 1jt+ 1) = �a(t)x̂a(tjt) + Pa(t)H
T
L (t)Q�1w (t)

�
y(t)

zt�d(t)
�HL (t+ 1)�a(t)x̂a(tjt) (4.2)

where the matrix Pa(t) satisfies the following RDE:

Pa(t+ 1) = �a(t)Pa(t)�
T
a (t)� �a(t)Pa(t)H

T
L (t)Q�1w (t)

�HL (t)Pa(t)�
T
a (t) + �a(t)Qu(t)�

T
a (t) (4.3)

with Qw(t) = HL (t)Pa(t)H
T
L (t) +Qv (t). In view of the special

structure of the matrices �a(t), �a(t),Ha(t) and La(t), the calcula-
tion burden for the RDE (4.3) can be reduced. We partition Pa(t) as

Pa(t) = fPa;ij(t); 1 � i � d+ 1; 1 � j � d+ 1g

where the dimension of Pa;11(t) is n � n, the dimension of Pa;ii(t),
i > 1, is p� p, and the other blocks are of corresponding dimensions.
Also, introduce a similar partition for �a(t). Then, the RDE (4.3) is
simplified as [14]

�a(t)=Pa(t)�Pa;1(t)H
T
t Qv(t)+HtPa;11(t)H

T
t

�1

�HtP
T
a;1(t) (4.4)

�a(t)=�a(t)��a;d+1(t) Qv (t)+�a;(d+1)(d+1)(t)
�1

��T
a;d+1(t) (4.5)

Pa(t+ 1)=�a(t)Qu(t)�
T
a (t)+�a(t)�a(t)�

T
a (t) (4.6)

where Pa;i(t) and �a;i(t) represent the ith column blocks of Pa(t)
and �a(t), respectively. Suppose that �a(t) is partitioned similarly to
Pa(t) and �a(t). By taking into account the structure of the matrices
�a(t) and �a(t), the operation number of calculating x̂a(t+ 1jt+ 1)
by the previous ormula, which is denoted asMDaug , is given as

MDaug = p2(n+ p)d2 + 4pn2 + (4p2 + 3mp)n

+ (m2 +m+ p2 + p)p d

+ 4n3 + (4m+ 3p+ 1)n2

+ (2m2 + 2m� p2 + 2p)n

+m3 +m2 + p3: (4.7)

From (4.1) and (4.7), it is clear thatMDaug is of magnitude O(d2)
whereas MDnew is linear in d. Thus, when the delay d is sufficiently
large, it is easy to know thatMDaug > MDnew . Moreover, the larger
the d, the larger the ratio MDaug=MDnew . To see this, we consider
one example.
Example 5.1: Consider the system (1.1)–(1.3), with n = 3,m = 1,

r = 1, and p = 3. The MD numbers of the proposed approach and
the system augmentation approach are compared in the following table
for various values of d:

d 1 2 3 6 12
MDnew 629 753 877 1249 1993
MDaug 605 1052 1607 3920 11462
MD

MD
0:9618 1:3971 1:8324 3:1385 5:7511:

V. CONCLUSION

In this note, we have revisited the H2 estimation problem for
discrete-time systems with instantaneous and delayed measurements
by a reorganized innovation analysis. Our contributions are twofold.
First, the presented approach simplifies the calculation of the estimator
as compared with the traditional system augmentation approach.
Second, the new concept of reorganized innovation can be extended
to solving the H1 estimation, particularly the long standing H1
fixed-lag smoothing and the H1 estimation for both the discrete and
continuous time-delay systems [4], [5].
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